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ABSTRACT 

Background 

Preeclampsia (PE) is one of the leading factors in maternal and perinatal mortality and morbidity 

worldwide. The only cure for PE to date is to deliver the placenta and stop gestation. However, 

the timing of delivery among PE patients is essential to minimize the risk of severe maternal 

morbidities, and at the same time ensure the survival of the baby. 

Methods 

In this study, we constructed a series of deep learning-based models to predict the prognosis, or 

the time to delivery, since the initial diagnosis of PE using electronic health record (EHR) data. 

We extracted and processed 1578 pregnancies in Michigan Medicine at the University of 

Michigan in 2015-2021 as the discovery cohort. Using the Cox-nnet v2 algorithm, we built the 

baseline model with EHR information prior to diagnosis, as well as the full model including 

baseline information and lab testing results and vital signs at the time of diagnosis. We evaluated 

the models using the C-index and log-rank p-values in KM survival curves, using both 20% 

testing data of the Michigan cohort, as well as 1177 PE pregnancy EHR data from the Medical 

Center of the University of Florida.  

 

Results  

The baseline prognosis model for time to delivery since PE diagnosis achieved C-index values of 

0.75 and 0.72 on the training and testing set respectively. While the full model reached C-indices 

of 0.77 and 0.74 in the same training and testing sets. Both models performed better than their 

Cox-PH model counterparts. The seven most important features in the baseline model in 

descending order were diagnosis gestational age, severe PE, past PE, age, parity, gravidity, and 
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uncomplicated diabetes. Meanwhile, 14 most important features were selected and interpreted in 

the full model, including diagnosis gestational age, parity, severe PE, past PE, features in lab 

tests (white blood cell, platelet, and red blood cell counts, AST value), min respiratory rate, and 

features measuring blood pressure (minimum, mean and standard deviation of systolic blood 

pressure, and maximum and standard deviation of diastolic blood pressure).  

 

Conclusion 

The time to delivery predicting models provide clinicians valuable tools and options to quantify 

the delivery risks and make better decisions on the optimal delivery time of PE patients at the 

time of diagnosis. Implementation of these actionable models into PE clinical care practice is 

expected to significantly improve the management of PE patients. 

 

INTRODUCTION 

Preeclampsia (PE), characterized by hypertension with proteinuria during gestation, is a severe 

pregnancy complication that affects about 2% to 8% of all pregnancies worldwide. It’s one of the 

worldwide leading causes of maternal and perinatal mortality and morbidity1,2. PE is a 

heterogenous complication and consists of various subtypes3. Based on the severity, PE patients 

can be classified as severe PE and mild PE; based on onset gestational age, PE occurring before 

34 weeks of gestation is classified as early-onset PE (EOPE) and called onset PE (LOPE) if 

symptoms show up after 34 weeks4,5. Current clinical management of PE includes detecting and 

controlling blood pressure, preventing maternal seizures, and limiting the damage to fetuses. 

However, to date the only effective treatment for PE is the delivery of the babies, many of them 

being pre-terms6.  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 26, 2022. ; https://doi.org/10.1101/2022.04.03.22273366doi: medRxiv preprint 

https://doi.org/10.1101/2022.04.03.22273366
http://creativecommons.org/licenses/by-nc-nd/4.0/


Clinicians often face a dilemma when treating PE patients: earlier delivery can potentially 

prevent severe maternal morbidities including seizure, stroke, organ dysfunction, but this leads to 

premature birth and various neonatal complications7. Current guidelines on deciding the delivery 

time in PE pregnancies depend mainly on the diagnosis time and severity of PE: in general, 

patients beyond 37 weeks of gestation or beyond 34 weeks but diagnosed with severe PE should 

be delivered immediately; patients with severe PE but less than 34 weeks of gestation should 

only continue pregnancies if intensive care resources are available; other related medical history 

and complications should also be considered when deciding delivery time8,9. These guidelines 

identified some important clinical determinants of PE delivery, however, neither the individual 

impact nor combined impacts were quantified based on each patient’s unique profile. In 

particular, the determination of delivery time for patients with complicated conditions still 

largely relies on clinicians’ judgment. Additionally, risk factors of developing PE, such as the 

patients’ demographics, social status, lifestyle, and other comorbidities may also have influences 

on the timing of delivery, but they are rarely discussed8. Therefore, a comprehensive quantitative 

model to assess the contributions of these risk factors to PE patients’ prognosis for the time of 

delivery is very informative to help clinicians to make decisions, particularly among the 

challenging early onset PE cases. 

Here for the first time, we report the time to delivery of predicting models since the initial 

diagnosis of PE, utilizing electronic health record (EHR) data. The model is built upon a 

previously reported state-of-the-art neural network method called Cox-nnet, which showed 

consistently better performances over the conventional Cox-PH models under various conditions, 

including EHR data10-12. We extracted and processed 1576 PE complicated pregnancy records 

from the University of Michigan Medicine Healthcare System from year 2015 to 2021. The EHR 
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features cover patients’ demographics, social status, lifestyle, comorbidities, medical history, lab 

results and vital signs at the earliest PE diagnosis were collected. Our objectives are: (1) to 

predict the time to delivery from the earliest diagnosis, by constructing and validating prognosis 

models utilizing EHR data; (2) to assess the contributions of critical EHR features informative of 

delivery time among PE patients.  

 

METHODS 

Data source and description 

The data were obtained through Precision Health DataDirect, a web-based interface to access de-

identified EHR data of more than 4 million Michigan Medicine patients. Data usage was 

approved by the Institutional Review Board (IRB) of the University of Michigan Medical School 

(HUM#00168171). The need for consent was waived. We conducted a query on all antepartum 

PE patients (mild and severe) with ICD-10 code and excluded HELLP syndromes that require 

delivery immediately. We extracted all pregnancy records associated with these selected patients 

and removed the pregnancies with no PE diagnosis or with only postpartum PE diagnosis. PE 

pregnancies without known delivery gestational age data were also removed from the analysis. In 

total, we extracted a total of 1576 antepartum PE pregnancy records from 1512 patients, between 

year 2015 and 2021 from Michigan Medicine, the academic health care system of the University 

of Michigan, Ann Arbor.  

  

EHR Feature Processing 

The EHR records provide a variety of heterogeneous features from demographics, lifestyle, 

related medical history, pregnancy information, comorbidities, lab test results and vital signs. All 
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features except lab test results and vital signs are considered baseline features, meaning that they 

exist before the diagnosis of PE. 

Among the baseline features, demographic data include age, race, ethnicity, smoking status, and 

illegal drug use status at the earliest diagnosis of PE. Cumulated medical histories related to each 

PE were extracted: past PE, history of gestational diabetes, history of renal disease, history of 

placental abruption, history of IUGR, history of preterm labor and history of C-section. All 

medical history features are coded as binary variables with 1 denoting the present and 0 denoting 

the absence of a history. Pregnancy information features include parity, gravidity, number of 

fetuses in current pregnancy, PE onset gestational age, and the severity of PE at the initial 

diagnosis (mild vs severe). Elixhauser comorbidity index was used to categorize patients’ 

comorbidities at the earliest PE diagnosis13. Elixhauser comorbidity index summaries a large 

number of common patient comorbidities ICD diagnosis codes into 29 categories, with each 

category being a binary variable, indicating whether this comorbidity presents or not. It is 

commonly used to reduce feature dimensionality and improve interpretability.  

Lab test results were collected around the earliest diagnosis of each PE pregnancy, for the 

purpose of delivery prediction at the time of PE diagnosis. The most frequent lab test results 

ordered within 5 days of the initial diagnosis of PE were used for data processing. For tests 

ordered multiple times in the time window, we used the mean result value in the analysis. Results 

with more than 20% missing values among patients were removed. As a result, 13 lab test 

features were used in the final dataset, including 10 blood test features, 2 liver function test 

features, and 1 urine test feature. Similar to the lab test results, we used vital signs collected 

within 5 days before the initial diagnosis of PE. We included the statistics (maximum, minimum, 

mean and standard deviation) of systolic and diastolic blood pressures, oxygen saturation level 
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and respiratory rate, similar to others14. We removed other vital signs due to a large number of 

missing values.  

All EHR features with more than 20% of missing values were removed from the analysis. As a 

result, 71 features were kept (Supplementary Table 1). The remaining missing values were 

imputed using the PMM algorithm from R package “mice”15. All categorical features were 

converted into dummy variables. Scaling was done to all numeric variables, dividing their values 

by their root mean square16.  

 

Model Construction  

We developed one baseline model and one full model using a subset or all EHR features. The 

baseline model consists of baseline features including demographic, medical history, 

comorbidities and PE diagnosis gestational age. The full model incorporated all features from the 

baseline model, as well as additional lab test results and vital signs measured at the earliest 

diagnosis of PE.  

 

We constructed both baseline and full models using the Cox-nnet v2 algorithm. The Cox-nnet 

model is an artificial neural network (ANN) prognosis predicting model based on Cox 

Proportional Hazard (Cox-PH). The model consists of one input layer, one hidden layer and one 

Cox-PH output layer10,11. The updated version of Cox-nnet, Cox-nnet v2, significantly reduced 

the computational cost to make it suitable for large-scale input like EHR data. To fit each model, 

we randomly divided the corresponding dataset into a training set (80%) and a testing set (20%). 

Hyperparameters in the Cox-nnet v2 model were auto tunned using Adam Optimizer17. For 
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comparison, we used the Cox-PH model with ridge regulation. We compared Cox-nnet v2 and 

Cox-PH models using the concordance index (C-index), as done previously10,11. 

 

To derive a subset of clinically significant and easily interpretable features, we reduced Cox-nnet 

features based on both their importance scores and significance levels. To do so, we first selected 

the top 15 most important features based on their permutation importance score generated by the 

Cox-nnet model. Then we created single-variable Cox-ph models using each of the 15 features 

and obtained their log-rank p-values. Only features with significant log-rank test results (p<0.05) 

were kept in the analysis.  

 

Model Validation 

The validation dataset containing 3407 pregnancy records diagnosed with antepartum PE was 

obtained from the University of Florida (Table 1). Data processing and feature engineering on 

the validation set follow strictly the same procedures as those of the training and testing set. We 

validated the Cox-nnet model by plotting K-M survival curves dichotomized by the median of 

each significant feature from the reduced baseline model. If the plots generated using validation 

data present similar trends and p-values from the log-rank tests are of similar magnitude, we 

conclude that the time-to-delivery model is adaptable. 

 

Software 

R 4.0.2 and Python 2.7 were used for all analysis18,19. R package “dplyr”, “mice” were used in 

data preparation20,21. Python 2.7 was used to construct the cox-nnet v2 model. R package 
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“survival”, “pec”, “glmnet” were used to build and evaluate the cox-ph model with ridge 

regulation22-24. “ggplot2” was used for visualization25,26. 

 

 

RESULT 

Study overview 

To obtain the discovery cohort to predict the prognosis, or the time to delivery, since diagnosis of 

PE during pregnancy, we queried all antepartum PE patients (mild and severe) with the ICD-10 

code in Michigan Medicine’s Electronic Health Record (EHR) system. We excluded the cases 

for postpartum PE where the time to delivery is negative values and those with HELLP 

syndromes that require delivery immediately. To avoid confounding from prior PE history, we 

only used the EHR records of PE patients during the pregnancies when this disease is diagnosed 

for the first time. As a result, 1576 antepartum PE pregnancies remain in the final discovery 

dataset (Figure 1A). 

The EHR records provide a variety of heterogeneous features from demographics, social status, 

related medical history, pregnancy information, comorbidities, lab test results and vital signs 

(Supplementary Table 1). After preprocessing, such as removing variables with more than 20% 

missing values, imputation and normalization, a total of 71 variables were used in this study 

(Figure 1A). The overall patient characteristics are presented in Table 1. The majority of the 

population are Caucasians (74%), followed by African Americans (18.3%) and Asians (6.6%). 

The average age at PE diagnosis is 30 (+/- 5.73). Each patient on average has 0.72 (+/- 1.15) past 

parity and 2.35 (+/-1.82) past gravidity. The time between first PE diagnosis and delivery is 

heavily left-skewed, with a mean of 6.5 days and a median of 2 days (Figure 1C). About 13% of 

patients were delivered on the same day as the presence of PE.   
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The baseline model of time to delivery since PE diagnosis 

We first aim to construct and validate a baseline model which only basic information, including 

demographics, social status, related medical history, pregnancy information and comorbidities. 

To predict the time to delivery, or prognosis of PE, we employed the state-of-the-art survival 

prediction method using Cox-nnet version 2 algorithm11. The Cox-nnet model is an artificial 

neural network (ANN) prognosis predicting model, based on the Cox-PH model7. Cox-nnet 

consists of one hidden layer and one Cox-PH fitting output layer (Figure 1B). The updated 

version of Cox-nnet, Cox-nnet v2, significantly reduced the computational cost to make it 

suitable for large-scale EHR data. For modeling, we randomly divided the dataset into a training 

set (80%) and a testing set (20%). The resulting Cox-nnet v2 model shows high performing 

prediction on time-to-delivery, with median C-index scores of 0.75 and 0.72 in training and hold-

out testing data, as compared to 0.74 and 0.71 in the conventional Cox-PH models (Figure 2A).  

 

To identify the most important variables among the EHR data that are predictive of PE prognosis 

time to delivery, we next calculated the importance scores of the input features in the Cox-nnet 

model and ranked the top 15 features (Figure 2B, 2C). We also calculated the p-value of each of 

these 15 features in single variate Cox-PH fitting and kept the 7 features with log-rank p-values < 

0.05. The 7 features in the descending order of their importance scores are diagnosis gestational 

age, severe PE, past PE, age, parity, gravidity, and uncomplicated diabetes, and their details are 

listed in Table 2.  Diagnosis gestational age is shown the most predictive of time to delivery, 

with an importance score of 464. It is subsequently followed by severe PE, past PE and maternal 

age. We denote this Cox-nnet model of seven features as the “reduced baseline model”. It still 
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reaches a C-index of 0.71 on the testing set, higher than the C-index of 0.70 from the Cox-PH 

model based on the same features.  

 

The predicted prognosis index (PI) scores, or the fitted prognosis scores from the Cox-nnet 

model, can be used to illustrate the clinically discriminative values of the computational model. 

Patients with a higher prognosis score are expected to have shorter times to delivery. In the hold-

out testing data, the PI scores of the reduced baseline model range from -2.06 to 2.25, with an 

average of 0.93. We stratify patients by the median PI score into the high-risk and low-risk 

groups and plot their Kaplan Meier (KM) curves (Figure 2D). The two risk groups have 

significant differences in the survival status (log-rank p-value < 0.0001). The associated log-rank 

test has a p-value close to 0, proving the strong distinction power of the prognosis scores. In 

associating the two risk groups with other risk factors, we identified that the high-risk group has 

a significantly larger diagnosis gestational age, more severe PE, and fewer patients with PE 

history (Figure 2E), confirming the observations based on the feature importance scores 

earlier (Figure 2B, C).  To validate the significance of the features derived from the University 

of Michigan cohort, we extracted and processed a PE EHR cohort from the University of Florida, 

following the same inclusion and exclusion criteria and data processing pipeline. or illustration. 

In figure 2F we showed the dichotomized KM curves of the most important and significant 

features: diagnosis gestational age, severe PE and past PE using the University of Florida 

validation set. have a very similar trend, directionality, and p-values, confirming the validity of 

our baseline model. 

 

Results of the full model of time to delivery since PE diagnosis 
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We next investigated the contribution to time of delivery, from all 71 variables, including the 

baseline variables as well as lab testing results and vital signs that were obtained around the time 

of diagnosis. We call this the full model. We conducted model building, optimization and testing 

the same as the baseline model, using the Cox-nnet v2 algorithm. As shown in Figure 3A, the 

full model shows higher predictive accuracy on time-to-delivery compared to the baseline model, 

with median C-index scores of 0.77 and 0.74 in training and hold-out testing data, respectively. It 

is also more accurate than the conventional Cox-PH model using the same 71 variables, with C-

index scores of 0.76 and 0.73 in the same training and testing datasets. 

 

Similar to the baseline model, we identified the top 15 most important variables among the EHR 

data that are predictive of time to delivery (Figure 3B). We also calculated the p-value of each of 

these 15 features in single-variate Cox-PH fitting. Except for maternal age, all other 14 features 

are also significant in the single variate Cox-PH models (Figure 3C). Diagnosis gestational age 

is still shown as the most predictive of time to delivery, with an importance score of 407. It is 

subsequently followed by the minimum systolic blood pressure, aspartate aminotransferase (AST) 

value and standard deviation of diastolic blood pressure (Table 3). The PI scores predicted by 

the full model range from -2.62 to 2.76 with a mean of 0.99. Compared to the baseline model, 

the full model prediction results are less skewed, suggesting a better separation. The KM curves 

applied to testing samples, stratified by median PI scores in the training dataset, are drastically 

different with the log-rank p-value close to 0, confirming the high distinction of the full model 

(Figure 3D).  
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To demonstrate the significance of each of these 14 features, we again stratified the patients into 

the high-risk vs low-risk groups based on the median value of each feature using the testing set, 

and then compared the KM curves of two groups respectively (Figure 3E). The KM curves in 

each plot are significantly different, showing strong distinction power of all features. Larger 

gestational age and severe PE are associated with shorter times to delivery, consistent with the 

observations from the baseline model. Different from the baseline model, in the reduced full 

model patients with higher white blood cell count, higher AST, lower platelet count and red 

blood cell count have significantly short times to delivery. Among vital signs collected at PE 

diagnosis, larger variation in systolic and diastolic blood pressure, higher mean systolic blood 

pressure, and lower minimum respiratory rate are all associated with shorter times to delivery. 

Nulliparous women also have significantly shorter times to delivery. Additionally, we found that 

patients with a past PE have longer time to delivery than those who were diagnosed with PE for 

the first time. 

 

DISCUSSION 

Implementing time to delivery predicting models may provide clinicians with valuable 

information in determining patient-specific optimal delivery time. In this study, we successfully 

constructed and evaluated a time to delivery model for PE patients at the time of diagnosis 

utilizing EHR data. In addition, the model reveals and quantifies important factors informative to 

predict the delivery time.  

 

In total, we identified 7 features from the baseline model and 14 features from the full model that 

present strong distinctions among the delivery time of PE patients. In both models, diagnosis 

gestational age and PE severity presented some of the strongest influences on delivery time. 
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Patients with larger gestational age and severe PE tend to be delivered faster than patients with 

smaller gestational age and mild PE, which agree with the clinical guidelines. Additionally, older 

patient age and prior past PE have protective effects in both models, associated with longer time 

to delivery. Surprisingly, with the addition of more quantitative EHR variables at the time of 

diagnosis, such as blood testing results and blood pressure measurements, the resulting full 

model (C-index 0.74) is only slightly more accurate than the baseline model (C-index 0.72) 

based on the same testing data. A possible explanation is that the test results and vital signs are 

related to the severity of PE. 

 

Nevertheless, the inclusion of lab tests and vital signs at the time of PE diagnosis provides 

additional predictive, and much more interpretable information for the time to delivery. Patients 

with lower platelet counts and higher AST values were also delivered significantly faster 

compared to others. Low platelet count and high AST are signs of thrombocytopenia and 

impaired lever function respectively, which are important severe features of PE3. Patients with 

those two characteristics are likely to have comorbid severe PE and require more urgent delivery. 

Patients with low red blood cell count and high white blood cell counts are associated with 

shorter times to delivery. Low red blood cell count is a symptom of anemia, a risk factor for 

preterm birth and comorbidity of PE27,28. High white blood cell count is a common indicator of 

maternal inflammation or infection. We also found that larger fluctuation in blood pressure 

contributes to the risk of faster delivery. Specifically, patients with larger standard deviation in 

blood pressure measures and patients with lower minimum systolic blood pressure have a shorter 

time to delivery. A lower respiratory rate is associated with a shorter time to delivery. This effect 
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agrees with the guidelines that for patients with severe PE and unstable conditions, delivery is 

recommended soon after the maternal stabilization.  

 

Interestingly, nulliparous patients presented shorter times between diagnosis and delivery in the 

full model but not the baseline model. Rather, in the baseline model, no prior PE history suggests 

a shorter time to delivery. While the selection of these two variables is largely dependent on 

other associating variables in their respective models, both variables suggest that prior history of 

pregnancy or PE helps patients to adapt and increase the duration between PE diagnosis to 

delivery in a particular pregnancy. The latter observation of a longer time to delivery given the 

prior past PE is particularly interesting since the past PE is a risk factor for developing PE. 

Further mechanistic studies are warranted to understand the complex relationships among them. 

 

A few caveats are worth pointing out. This is a retrospective study, and it was not clear if a 

patient was delivered at the most optimal time with the minimum damage. It will be interesting 

to check how well this model will perform in perspective studies from other hospitals. Also, like 

all other EHR studies, prediction is dependent on the quality of the EHR data, which are 

influenced by clinicians’ previous judgment, past hospital protocols, intensive care resources 

availability and patients’ own intentions. These factors cannot be quantified and included in the 

model but can potentially affect the prognosis for delivery. Despite these potential issues, to our 

best knowledge, this is the first report to build a quantitative model to predict the delivery time 

among PE patients using EHR data. The ICD diagnosis codes we constructed the features from 

are widely used among health systems across the world and can be converted to older coding 

schemes such as Read Codes or OPCS4 used in Britain. Thus, the modeling methodology 
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reported here can be applied to the abundant EHR data to address prognosis or survival issues in 

PE as well as many other diseases. 

 

In conclusion, we successfully constructed and evaluated high-performing time to delivery 

models for PE patients utilizing EHR data. We identified that factors such as diagnosis 

gestational age, parity, severe PE, past PE, AST, white blood cell count, AST, platelet count, red 

blood cell count and blood pressure are important in predicting delivery time among PE patients. 

Using this model in PE care practice could provide clinicians with a strong tool to quantify the 

delivery risk level and decide the optimal delivery time for PE patients at the time of diagnosis. 
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Tables  

Table 1: The Characteristics of most important features in the PE discovery cohort from University 

of Michigan and validation cohort from University of Florida 

 University of Michigan Cohort (n = 1576) University of Florida Cohort (n = 3407) 
Variable Name Mean (sd) Mean (sd) 

Maternal Age 30.09(5.73) 28.05(6.49) 
Gravidity Count 2.35(1.82) 2.25(2.06) 
Parity Count 0.72(1.15) 0.62(1.52) 
Number of fetuses 1.07(0.27) NA 
Diagnosis Gestational Age(day) 249.74(27.13) 260.20(6.49) 
Time to delivery (day) 6.50(13.57) 7.12(16.81) 
Race (%)   
African American 18.30% 36.31% 
American Indian or Alaska Native 0.40% 0.12% 
Asian 6.60% 1.41% 
Caucasian 74.30% 49.72% 
Native Hawaiian and Other Pacific Islander 0.40% 0.06% 
Unknown or Other 0.00% 12.38% 
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Ethnicity (%)   
Hispanic 5.50% 10.60% 
Non-Hispanic 94.50% 88.11% 
Unknown 0.00% 1.29% 
Illegal Drug Use Status (%)   
Yes 9.52% 0.09% 
No 90.48% 99.91% 
Past PE (%)   
Yes 7.99% 9.33% 
No 92.01% 90.67% 

 

Table 2: Feature details of reduced baseline model 

Feature Name Permutation Importance Score Single variate Cox-PH P-value 
Diagnosis GA 464.226835 6.52E-112 
Severe PE 115.886885 1.75E-12 
Past PE 9.907836 6.77E-08 
Age 7.231669 4.69E-02 
Parity 4.091492 9.09E-07 
Gravidity 3.045364 1.09E-06 
Uncomplicated Diabetes 2.654092 6.72E-03 

 

Table 3: Feature details of reduced full model 

Variable Name Permutation Importance Score Single variate Cox-PH P-value 
Diagnosis GA 407.389062 2.66E-95 
Min Systolic BP 33.087822 8.68E-35 
AST 32.956872 1.27E-04 
Diastolic BP Standard Deviation 21.886153 6.36E-39 
Max Diastolic BP 21.173801 4.19E-32 
Severe PE 19.780133 2.97E-11 
Mean Systolic BP 12.821062 2.23E-03 
Platelet Count 10.860128 6.39E-09 
Systolic BP Standard Deviation 9.986978 1.93E-31 
Min Respiratory Rate 9.74149 2.82E-13 
Parity 9.525487 4.40E-05 
White Blood Cell Count 6.461414 5.93E-09 
Past PE 6.266599 4.48E-06 
Red Blood Cell Count 5.861864 2.06E-02 

 

 

Figure and Figure Legends 

Figure 1: Overview of study design, model construction and validation. A: Flowchart of model 

development B: Cox-nnet neural network architecture. C. The KM curves of time to delivery since PE 

diagnosis, in the University of Michigan discovery cohort.  

Figure 2: Baseline model results, interpretation, and evaluation. A: The boxplots of C-index values from 

Cox-PH (green) and Cox-nnet (red) models on the 80% training and 20% testing set, using University of 
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Michigan cohort. B: The ln-transformed permutation importance score of the top 15 most important 

features. Positive and negative signs indicate that higher value in the feature is associated with increased 

and reduced risk (hazard), respectively.  C. The heatmap of the top 15 most important features sorted by 

the Cox-nnet permutation importance score and their ranks by p-value from individual Cox-PH fitting. 

Features with star in their name were selected in the reduced model. D: The KM curves of high-risk and 

low-risk groups on the testing set, dichotomized by the median value of predicted prognosis score. E: The 

KM curves on the testing set, based on each of the seven features from the reduced model dichotomized 

by their median values. F: The KM plots dichotomized by median value of diagnosis GA, severe PE and 

past PE, generated using validation set. 

Figure 3: Full model results, interpretation and evaluation. A: The boxplots of C-index values from Cox-

PH (green) and Cox-nnet (red) models on the 80% training and 20% testing set, using University of 

Michigan cohort. B: The ln-transformed permutation importance score of the top 15 most important 

features. Positive and negative signs indicate that higher value in the feature is associated with increased 

and reduced risk (hazard), respectively.  C. The heatmap of the top 15 most important features sorted by 

the Cox-nnet permutation importance score and their ranks by p-value from individual Cox-PH fitting. 

Features with star in their name were selected in the reduced model. D: The KM curves of high-risk and 

low-risk groups on the testing set, dichotomized by the median value of prognosis score predicted by 

reduced full model. E: The KM curves on the testing data, based on each of the 14 features from the 

reduced model dichotomized by their median values. 
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