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Abstract

In response to the COVID-19 pandemic, many higher educational institutions moved their courses
on-line in hopes of slowing disease spread. The advent of multiple highly-effective vaccines offers
the promise of a return to “normal” in-person operations, but it is not clear if – or for how long
– campuses should employ non-pharmaceutical interventions such as requiring masks or capping the
size of in-person courses. In this study, we develop and fine-tune a model of COVID-19 spread to UC
Merced’s student and faculty population. We perform a global sensitivity analysis to consider how both
pharmaceutical and non-pharmaceutical interventions impact disease spread. Our work reveals that
vaccines alone may not be sufficient to eradicate disease dynamics and that significant contact with an
infected surrounding community will maintain cases on-campus. Our work provides a foundation for
higher-education planning allowing campuses to balance the benefits of in-person instruction with the
ability to quarantine/isolate infected individuals.

1 Introduction

In late 2019, a novel coronavirus, SARS-CoV-2, was identified as the cause of a cluster of pneumonia
cases [1]. On March 11, 2020 the World Health Organization declared the 2019 novel coronavirus
outbreak (COVID-19) a pandemic [2]. Shortly after, nearly every higher-education institute rapidly
transitioned all classes to on-line instruction to “flatten the epidemic curve”. As of February 8, 20225

the cumulative number of confirmed COVID-19 cases exceeds 400 million [3]. Although the advent of
multiple effective vaccines offers the likelihood of a return to normal life, with the advent of booster
shots and the emergence of highly-infectious variants means that the return to our pre-COVID existence
is not in our immediate future [4].

In Fall 2020 in the United States, many colleges and universities attempted to re-open their class-10

rooms and dorms to students with mixed-results. Overall, there were substantial increases in the
number of new COVID-19 cases after school re-opening [5]. Moreover, even though by age college stu-
dents are less likely to experience severe complications from COVID-19, the same is not true for their
surrounding communities. In Winter 2020, large surges in COVID-19 cases from college students were
followed by subsequent infections and deaths in the wider community [6]. In addition, many campuses15

delayed their in-person start in early 2022 due to emergence of the omicron variant [7]. While there
is a strong desire for higher-educational institutions to maintain in-person instruction, it is clear that
for the foreseeable future this will require an effective COVID-19 management policy.

Nationally, educational institutions need to evaluate how to most effectively plan their 2022-2023
academic years while ensuring their activities do not result in local outbreaks [8, 9, 10]. Although20

some campuses, such as the University of California (UC) and California State University systems,
are mandating the COVID-19 vaccine for all students and employees, these mandates will not be
required by all campuses or campus populations [11]. In places where the COVID-19 vaccination
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is not mandated, the population vaccination levels are likely to vary with local COVID-19 vaccine
acceptance patterns [12].25

Mathematical models have a proven track record of providing novel insights into the spread and
control of epidemics. Dynamic epidemic models have been used to study COVID-19 at many scales
[13, 14, 15, 16, 17, 18, 19]. Given the wide-spread campus closures due to COVID-19, models have
been developed to study the spread of COVID-19 on college campuses to evaluate reopening strategies
[20, 21, 22].30

In this study, we develop a structured SEIR model of COVID-19 dynamics on a college cam-
pus and investigate the sensitivity of behavior to the vaccinated population on campus and other
non-pharmaceutical interventions (NPIs) such as mask-use and social distancing. Our goal is to un-
derstand how vaccine hesitancy both within the campus population and the surrounding community
will impact disease propagation and which interventions will be the most effective. More specifically,35

we individually model the various subpopulations at the university, including on-campus undergrad-
uates, off-campus undergraduates, graduate students, and faculty/staff. We connect our campus to
the surrounding community where behavior outside the university will impact COVID-19 dynamics
within the university. We perform a global sensitivity analysis of model behavior—cumulative number
of cases at the end of the semester and case doubling time—and consider the first and total-order effect40

of epidemic parameters and social contact behavior.
In section 2, we first develop our structured epidemic model, then describe the model outputs we

will study as well as the variance based sensitivity analysis approach we employ. In section 3, we
discuss the campus data we use to parameterize our model. Although we use the campus network of
UC Merced, we believe our results are representative of mid-size rural colleges. In section 4, we present45

our results. We conclude in section 5. We note that under all conditions, NPIs are still important to
mitigating the spread of COVID-19 on campus and urge universities to continue to support their use.

2 Methods

2.1 Model Description

Figure 1: (a) Contacts between the 4 campus populations (on-campus undergraduates (d), off-campus
undergraduates (u), graduate students (g), faculty/staff (f)) and the outside community. Contacts are
separated into classroom (black), dormitory (black dotted), off-campus housing (green), and the outside
community (orange). Thickness of arrows corresponds to the number of contacts. (b) The stages of the
COVID-19 infection, included in the ODE model, that an undergraduate living off-campus would progress
through: susceptible (S), exposed (E), asymptomatically infected (Ia) or symptomatically infected (Is), if
symptomatically infected individuals can choose to self-isolate (at home) (H) or not (N), and finally both
asymptomatically and symptomatically infected recover (R). Note that some percentage of the population
is initially vaccinated and, for simplicity, we consider them to be in the vaccinated compartment from
the beginning of the simulation.

In this section, we describe the ordinary differential equation (ODE) compartment model that50
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we have used to make most of the predictions for the university as presented to the administration
during the Summer and Fall of 2020, see fig. 1(a). This SEIR model is unique as we model the four
subpopulations: (1) undergraduate students living off-campus, u, (2) undergraduate students living
on campus and in dorms, d, (3) graduate students, g, and (4) faculty and staff, f . Individuals are
designated by both population and COVID-19 status. fig. 1(b) presents the phases of the diseases for55

one of the subpopulations, the undergraduate students living off campus (u).
A susceptible (S) individual may become exposed (E) to SARS-CoV-2 (the virus that causes

COVID-19) by coming into contact with any infected individuals (I) in any of the 4 subpopulations or
the outside community (off campus). All exposed individuals become infected, either asymptomatically
(Ia) or symptomatically (Is). Symptomatic individuals may choose to self-isolate and/or report to60

health services for testing (H) or not (N). Finally, as we do not model disease mortality, all infected
individuals eventually recover (R). Vaccinated individuals (V ) are unable to contract the virus nor
pass it to susceptible individuals. We do not dynamically model the vaccinated population, rather they
represent a subset of each subpopulation, which are removed from the susceptible class and put into the
vaccinated class at the start of the simulations. fig. 11 in the Appendix shows all the subpopulations65

and all the phases of the disease for each subpopulation.
The equations for each stage of the infection corresponding to this subpopulation are

dSu
dt

= −βSuF , (1a)

dEu
dt

= βSuF − σEu, (1b)

dIau
dt

= φσEu − γaIau , (1c)

dIsu
dt

= (1− φ)σEu − γsIsu, (1d)

dHu

dt
= αγsIsu − hHu, (1e)

dNu
dt

= (1− α)γsIsu − δHu, (1f)

dRu
dt

= γaIau + hHu + δNu, (1g)

where the Force of Infection, F , includes the contacts between this subpopulation and all subpopula-
tions and the outside community,

F = c11
ζIau + Isu +Nu

nu
+ c12

ζIad + Isd +Nd
nd

+ c13

ζIag + Isg +Ng

ng

+c14

ζIaf + Isf +Nf

nf
+ c15(ζψM +M(1− ψ)),

(2)

where cij = C(i, j) denotes the (i, j)-th entry of the contact matrix C. The equations for all stages70

for all subpopulations are given in Appendix A.
The model has two types of parameters: (i) parameters related to COVID-19 epidemiology and (ii)

parameters related to contact patterns between the 4 subpopulations and the outside community (the
matrix C, described in table 2). Details of the first type of parameters are given in table 1. Details
of contacts are given below in section 3. The critical term in our model is the Force of Infection,75

defined in eq. (2), which governs the spread of COVID-19 and is impacted by interventions such as
mask-use, quarantine of infected individuals, and changes in social connectivity, including class-size
and housing caps through both types of parameters. We account for the effect of masks with our
mask efficiency parameter which, when used in classrooms, reduced the transmission probability β
by a factor (1 −m). We account for a quarantine period with α to represent the probability that a80

symptomatic individual chose to self isolate. Finally, changes in social connectivity - such as changes
in class-sizes, are implemented by modifying the appropriate contact matrix.

Because our goal is to consider sensitivity of COVID-19 dynamics to NPIs in the context of a vac-
cinated campus population, we consider two simplifying assumptions allowing us to include vaccinated
individuals in each of our campus subpopulations. First, our goal is to model COVID-19 in the context85

of a university environment. As such, we followed the requirements of the University of California,
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which requires vaccination before the semester begins and did not consider an on-going vaccination
program. Second, we assume perfect vaccine efficiency by including all vaccinated individuals in the
recovered category at time t = 0.

2.2 Infection Doubling Time90

We are interested in analyzing the effect of intervention strategies and vaccination on the resulting
dynamics of COVID-19 infections on our campus. In our work, the infection doubling time, t∆,
is the characteristic number of days for the cumulative number of COVID-19 infections to double,
C(ti+1) = 2C(ti), where ti+1 = ti + t∆ for i ≥ 0 and t0 is a point in time at the beginning of the
semester, see fig. 2. This quantity is a characteristic of the disease dynamics during the early stages95

of disease spread (beginning of the semester), when the number of on-campus infections remains low
and the susceptible population remains large [27]. This characteristic captures the start of a semester
when students that are allowed back to campus have been tested for COVID-19 (large susceptible
population), and the probability that an infected student returns to campus is low. Infection control
measures aimed at “flattening the curve” means increasing the case doubling time [28]. In this work100

we use the epidemic doubling time as a measure of epidemic dynamics to asses which intervention
strategies are associated with increased variance in the doubling time.

Figure 2: Cumulative Cases and Infection Doubling Times. The figure illustrates the doubling of
the cumulative number of infections with respect to the infection doubling time (t∆). Here, C(ti) is the
number of infections at a time ti since the beginning of the semester.

During this initial period of disease spread, at the beginning a semester, we observe an exponential
growth phase in the number of infections (fig. 2). If the number of infections is growing at a rate r, the
disease doubling time is given by t∆ = log(2)/r [29]. In this early stage of approximately exponential105

growth in the number of cumulative case, C(t), where C ′(t) ≈ rC(t), we can estimate r by using
cumulative cases at two points in time C(t1) and C(t2), where r = log (C(t1)/C(t2)) /(t1 − t2) and
t1 > t2. Then, the doubling time is

t∆ = (t1 − t2)
log(2)

log (C(t1)/C(t2))
.

In this work, we use the average doubling time computed over consecutive days in the first month (four
weeks) of the semester (See fig. 2).110

4



Table 1: System Parameters

Symbol Description Unit Value

β Transmission rate for symptomatic individuals (5.74− 17.21)× 10−4 a

1/σ Expected time in exposed state Day 1− 7.5 [23]
φ Probability that an exposed individual will become

asymptomatic
— 20% − 80% [24, 25]

α Probability that a symptomatic individual will self-
isolate

— 0% − 100%

M Probability that outside (Merced) community individ-
uals are (asymptomatically and symptomatically) in-
fected

— 0% − 1%

ψ Probability that outside (Merced) community individ-
uals with COVID is asymptomatic

— 0.5

c Community contact multiplier that multiplies contacts
between university population and the community

— 1–10

w Weekend multiplier that scales the increase in social
interaction during weekends

1–10

p Number of unscheduled social hours Hour 1–10
1−m Reduction in transmission rate with mask usage — 0% − 40% [26]

1/γa Average duration in asymptomatic infectious state Day 14
1/γs Average duration in symptomatic state before decid-

ing whether to isolate
Day 2

1/h Average duration of symptomatic individuals in self-
isolation

Day 12

1/δ Average duration in symptomatic state if not self-
isolating

Day 12

ζ Fraction of β for asymptomatic individuals — 50%
Vu Percentage of u vaccinated — 0%, 10%, 20%, 30%, 40%,

50%, 60%, 70%, 80%

Vd Percentage of d vaccinated — 0%, 10%, 20%, 30%, 40%,

50%, 60%, 70%, 80%

Vg Percentage of g vaccinated — 0%, 50%, 100%

Vf Percentage of f vaccinated — 0%, 50%, 100%

nd Total number of on-campus undergraduates People 2885
nu Total number of off-campus undergraduates People 5449
ng Total number of graduates People 723
nf Total number of faculty/staff People 424

Iyx(0) Number of y (s = symptomatic, a = asymptomatic)
infectious individuals from population x (u = off-
campus undergrads, d = on-campus undergrads, g =
graduate students, f = faculty & staff) at time t = 0

People 0 - 10

a Our baseline value β = 1.147×10−3 was chosen so that a model of UC Merced, assuming classroom
contacts based on the Fall 2019 schedule and housing contacts based on a proposed housing plan
for Fall 2020 (before UC Merced was moved to fully-online), would propagate with an R0 of 3 as
defined by the next generation matrix model.
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2.3 Global Sensitivity Analysis

In this work we are interested in understanding how particular COVID-19 SEIR epidemic model factors
θ = (θ1, θ2, . . . , θk), table 1, affect a model response Y (the cumulative number of infections, C(t),
and the disease doubling time, t∆). We perform a variance based global sensitivity analysis on these
epidemic dynamics with the Sobol method [30, 31, 32], an approach to decompose the response variance115

by single and combined factor interactions

Var(Y ) =
∑
i=1

Varθi +
∑
i

∑
j>i

Varθi,j + · · ·+ Varθ1,2,...,k .

Under this decomposition, the proportion of variance from a single factor, the first-order index, can
be written as

Si =
Varθi(Eθ∼i(Y |θi))

Var(Y )
, (3)

where E is expectation, Var is the variance, θi is the ith model factor, and θ∼i indicates varying all
factors except θi. In our work, a second quantity of interest is the total-order index, or total-effect index120

[33], which in addition to the first-order index information, accounts for the additional contribution of
a factor to the model variance from interaction effects with other model factors

STi
=
Eθ∼i(Varθi(Y |θ∼i))

Var(Y )
.

It follows that STi
≥ Si, and that a total-order index value of zero indicates that the model factor

is non-influential. In our analysis we estimate the first-order and total-order indices through numerical
model solutions generated by sampling from the input factor parameter space following [30].125

3 Data and Contacts

While the results we present here are specific to UC Merced, we note that any interested bubble-like
communities could calculate their contacts as we outline below and use the model to make predic-
tions. For example, our model can be applied to skilled nursing facilities (where in-patients would be
equivalent to ‘on-campus students’, out-patients would represent ‘off campus students’, doctors might130

correspond to ‘faculty/staff’, and therapists/nurses might translate to ‘graduate students’. ‘Classes’ in
this case would be face-to-face treatments). UC Merced is a public land-grant university set in a rural
community. In these calculations, there were 8,334 undergraduate students, of whom 2,885 live on
campus and 5,449 live off-campus. There were 723 graduate students and 424 faculty and staff. Lec-
turers and postdocs are considered part of the faculty/staff population. We expect our results would135

hold for similarly-sized campuses with similar class structures. Although we are able to get exact data
from the registrar, we provide a template that can be used to estimate the contacts between different
subpopulations.

For our model to be accurate, it is necessary to be able to estimate the number of contacts each of
the subpopulations (off-campus undergraduates, on-campus undergraduates, graduate students, and140

faculty/staff) has with one another. We assume that the majority of these contacts come from in-
class instruction, living/dorm situations, contact with the outside community, and unscheduled social
interactions. For simplicity this information is displayed as a contact matrix in table 2. We do
not dynamically model the outside community and so the contact matrix is of size 4 × 5, since the
interactions of campus population do not influence the outside community.145

In the following subsections, we will discuss how the contact matrix is filled using in-class instruc-
tion, living situation, outside community interaction, and unscheduled social interaction information.
Each of these sections fill out a different part of the contact matrix, as described in table 2.

3.1 In-Class Instruction

The majority of interactions in our model are derived from classroom instruction. We assume that150

lectures are comprised of 3 hours per week, while discussion sections meet for one hour per week. When
a class is listed as a lab, we assume that it meets for 2.5 hours per week. Further, we assume that faculty
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Table 2: The contact matrix C represents the total contacts within and between subpopulations, broken
down by classes, living situations, outside community engagement, and social interactions.

Contacts Off-Campus On-Campus Graduate Faculty & Merced
Under- Under- Students Staff Community

graduates graduates

Off-Campus classroom classroom classroom classroom outside
Under- + living + social

graduates + social

On-Campus classroom classroom classroom classroom outside
Under- + social + living +

graduates + social

Graduate classroom classroom classroom + classroom outside
Students living

Faculty & classroom classroom classroom faculty outside
Staff meetings

and staff only interact with each other during faculty meetings. In particular, we assume a faculty
meeting occurs once every other week for an hour. The ‘average’ department size was calculated using
information from UC Merced School of Natural Sciences, and was roughly 17.5 faculty per department.155

We display the relevant information for calculating classroom contacts in table 3. Classroom
contacts only influence the campus subpopulations (not the outside community) and thus the fifth
column (not displayed in table 3) consists of all zeros. We note that in table 3, the classes graduate
students teach as graduate assistants may be labs or discussion sections, the classes faculty & staff
teach may be lectures, labs, or discussion sections.160

3.1.1 Network Analysis

Although we use the contact matrices to model the connectivity of the campus, we can also use network
analysis since we have access to individual-level data. In particular, we can build a network graph of
every individual on campus and their connectivity to each other via classes only. From this network,
we can determine characteristics of those individuals that have the highest rates of contact. These165

network analyses are presented in Appendix B.
To build the weighted undirected graph, we consider each individual affiliated with the university

as a separate node. Edges are formed between two nodes if those two individuals share a class (either
as students or as student/instructor). For each additional class individuals share, the edge weight is
increased by one. Of course, the graph changes depending on whether all classes meet in person, or170

whether there is a class capacity. fig. 13a displays the resulting network for a full campus in which all
classes meet in person. The network is colored by sub-population (reddish purple corresponds to on-
campus undergraduates, yellow represents off-campus undergraduates, sky blue for graduate students,
and vermilion for faculty), the size of each node represents the weighted degree, and the edge thickness
reflects weights. It is apparent that under normal conditions most of the campus is connected with one175

another. However, as seen in fig. 13d, when classes with more than 25 students enrolled do not meet in
person, much of the network becomes disconnected, i.e., having no contact with any other individuals.

With a resulting graph for the no intervention strategy that has over 9000 nodes and 1.5 million
unique edges, it becomes necessary to use metrics to analyze exactly how the campus is connected. We
report a histogram distribution of the weighted degree, a measurement calculating how many edges180

each node has. Histogram representations of the degree are displayed in fig. 12, where the upper
left panel contains no interventions and the lower right panel assumes classes that are larger than 25
students do not meet in person. It is clear that capping in-person classes has a dramatic effect on
the weighted degree, reducing maximal degree from 1415 to 216. In fact, edges are reduced to ≈0.13
million. Further, approximately 17% of campus individuals have 0 classroom contacts (no edges) when185

implementing a class cap strategy.
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We can gather information about possible ‘super-spreaders’ by examining the individuals that have
the highest degrees. Under the assumption of no interventions, it is clear the individuals with the
highest degree are most often undergraduate students taking many introductory classes. For example,
the individuals with the top 3 degree scores were all undergraduate students taking 4-5 lower level190

introductory class (all living off-campus). When class caps are implemented, the structure of those
with the highest interactions changes. Of the top 3 degree scores when imposing a class cap of 25, we
have one lecturer teaching multiple labs and two graduate students that are taking a full load of classes
and also teaching discussion sections and labs. This highlights how important it is to incorporate these
sub-populations, who may serve as a vector for disease transmission, in our model.195

3.2 Living Situations

In addition to classroom contacts, most members of the community will also interact with other
individuals based on their living situation. We assume that the living contacts are based on living
situation only. Therefore, there is no mixing between subpopulations in our model. For example, on-
campus undergraduate students do not live with off-campus undergraduate students and vice versa.200

This means that in our contact matrix (table 2), living contacts exist only on the diagonals.
We assume that on-campus undergraduate students have contacts for approximately 20 hours/day

with their direct roommate. To simulate the effects of encountering other individuals in their dorm,
we assume that on-campus undergraduate students have 2 hours of contact per day multiplied by the
average number of beds/bathroom. For example, if there are roughly 4 students per bathroom, they205

would experience 8 hours of additional contact per day.
The off-campus undergraduates are assumed to live with, on average, 3 off-campus undergraduate

housemates. Since their living situation is likely larger than a dorm room, we assume less contact, at
10 hours/day contact with each roommate. Graduate students have a similar situation, except that
we assume they live with 1.5 other graduate student housemates. Similarly we assume 10 hours of210

contact per day with each roommate for each graduate student. We assume that faculty and staff to
do not live with other faculty and staff.

3.3 Contact with Outside Community

One of the most important aspects about a bubble-like community, from an infectious disease perspec-
tive, is that some key individuals have contact with the “outside community”. This is often overlooked215

in mathematical models, partly because the populations that interact with the outside world tend to
be outnumbered by those contained fully in the bubble. However, these outside contacts cannot be
ignored because they represent the potential for infection to infiltrate the “closed” community. These
contacts are present in the fifth column of the contact matrix displayed in table 2.

There are varying levels of contact with the surrounding community depending on which subpop-220

ulation a person is part of. We assume that there is little contact with the outside world if you live on
campus (1 hour of contact/day). For off-campus undergraduate students and graduate students, the
number of contacts is higher due to increased shopping, transportation, etc. at 5 hours of contact/day.
We assume that faculty and staff have the highest amount of contact with the outside community since
many faculty live with families that are not affiliated with the university (15 hours of contact/day).225

However, as these numbers are not directly produced from known data, we also include a parameter
c, that is a multiplier in front of the community contact matrix, that we vary.

3.4 Unscheduled Social Interactions

One aspect of contact that has not yet been addressed is contact that occurs outside the classroom
and living situation. In particular, we consider the effect of “unscheduled” social interaction in which230

members of the undergraduate student population meet for gatherings, unmasked, on a daily basis.
Examples of these daily social interactions might include eating dinner with friends in the dining hall
or forming an in-person study group for a course. In our contact matrix (table 2), these are included
in the undergraduate student populations (both on and off campus).

We incorporate unscheduled social interactions in our model in two ways: first the daily week-235

day interactions described above and secondly an increase in social interaction during the weekend.
To calculate the daily social interactions, we assume that all students have, on average, p hours of

9



unscheduled social contact per day, split roughly 75% with their own sub-population (on-campus to
on-campus and off-campus to off-campus) and 25% with the other undergraduate sub-population (on-
campus to off-campus). For the increased social interaction over the weekend, we multiply these daily240

social contacts by the parameter w, to simulate going to a larger gathering. This parameter and larger
number of contacts is active from 5pm Friday until 5pm Sunday.

4 Results: Global Sensitivity Analysis

We are interested in the sensitivity of the cumulative number of infections at a point in time since
the semester began, C(ti), and the sensitivity of the infection doubling time, t∆, to the model pa-245

rameters. We estimated the first-order sensitivity index and the total-order effect through numerical
model solutions generated by sampling from the input factor space, assuming that all parameters were
uniformly distributed in their given range listed in table 1, following [30]. To adequately sample the
multidimensional input factor space, we apply Latin hypercube sampling implemented in [34] and
use N(k + 2) simulations where k is the number of parameters we are varying, k = 17 in this work,250

and N is the number of simulations for each parameter, N = 1, 200 in this work. To estimate the
first-order index, eq. (3), we use the estimator presented in [30] (Table 2, row b in their work). The
total-order index STi is estimated with the estimator presented in [35] and in [30] (Table 2 row f in
their work). All confidence intervals were computed by resampling the N(k+2) simulations 2000 times
with replacement.255

4.1 Variance in Cumulative Infections and Infection Doubling Time

We first study the variance of the following model metrics: the time-varying cumulative infections,
the doubling time and number of the cumulative infections at the end of the fifteen-week term. As
mentioned above, we do this by employing a global sensitivity analysis approach where we vary pa-
rameters independently and uniformly over their ranges. In our analysis we consider the behavior of260

varying three classes of parameters: infection parameters (β, σ, φ, α), contact parameters (M , c, ω,
p, m), and initial conditions (Iyx(0) where y ∈ {s, a} and x ∈ {d, u, g, f}). (See Table 1 for ranges and
details.)

fig. 3 shows the behavior of the cumulative number of infections as a consequence of class caps
(each column represents a different class cap: none, 100 students and 50 students) and vaccination265

status of the campus (each row). For simplicity, we assume that all undergraduates have the same
vaccination fraction Vu = Vd and that graduate students and faculty have the same vaccination fraction
Vf = Vg. We consider the following scenarios, Low: Vu = Vd = 0%, Vf = Vg = 0%; Medium:
Vu = Vd = 40%, Vf = Vv = 50%; and High: Vu = Vd = 80%, Vf = Vg = 100%. The black line signifies
the mean cumulative infections over time, while the pink and blue shadings show one and two standard270

deviations from the mean, respectively. The mean and standard deviations of the doubling time and
total cumulative infections are reported in each subplot.

Without vaccination or class caps (fig. 3(a)), we expect nearly 2200 cases by the end of the semester.
By implementing a class cap of 50 students, the expected cumulative cases drops to 184 (fig. 3(c)).
On the other hand, increasing vaccination rates to 100% of faculty and graduate students and 80% for275

undergraduate students reduce expected cumulative cases to 63 (fig. 3(g)). When implementing both
class caps and increased vaccination, we expect 53 cases by the end of the semester (fig. 3(i)). The
cumulative effect of both strategies is minimal.

In addition to examining the cumulative number of infections, we can also investigate how vaccina-
tion and class schedule impact the doubling times of cases. fig. 4 displays the doubling time in weeks280

(top row) and cumulative cases at the end of the semester (bottom row) as a function of vaccinated
undergraduate students, Vu = Vd. The columns represent increasing faculty and graduate student
vaccination rates ranging from 0% (left), 50% (middle), and 100% (right). Within each panel, the
effects of incorporating class caps are portrayed with no class cap (yellow), 100-person cap (pink),
and 50-person cap (teal). As we increase undergraduate student vaccination rates, we can observe a285

lengthening of doubling time of the disease. Moreover, when paired with increased faculty and gradu-
ate student vaccination rates, we find that doubling times often exceed the length of the semester. At
all levels of vaccination, incorporating class caps results in a modest increase in doubling time.
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Figure 3: Distribution of Cumulative Infections. Figures show the distribution of cumulative infec-
tions over the span of a semester (15 weeks) where all students are allowed back to campus, 5449 students
live off-campus and 2885 students live in the dorms, and we allow the contact, infection parameters, and
initial number of infected individuals to vary (see table 1). The reduced expected cumulative infections
(REC) from Fall 2019 with no vaccination and no class caps is presented in (a).
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It is apparent that the non-pharmaceutical intervention of having large enrollment classes remote
drastically reduces the number of cumulative cases by the end of the semester, especially when the290

campus population is not significantly vaccinated (fig. 4(d)-(f)). In the case when none of the popu-
lation was vaccinated, by capping classes at 50 students, there is a 91.7% reduction in the expected
cumulative infections by the end of the semester (fig. 3(c)). Increasing the percentage of the vaccinated
population also has a large effect in reducing the cumulative cases by the end of the semester. In the
case when there is no class cap, having 80% of undergraduates and 100% of faculty, staff, and graduate295

students vaccinated resulted in a 97.1% reduction in the expected cumulative infections by the end of
the semester (fig. 3(g)).

Figure 4: Expected Infection Doubling Times and Cumulative Infections by Class Capacity
and Percent of Vaccinated Undergraduates. The expected cumulative number of infection (Cumu-
lative Cases) by the end of the semester and the expected doubling time computed during the first four
weeks of the semester. The error bars are a 95% confidence interval.

4.2 Sobol Analysis of the Variance in Cumulative Infections and Infection
Doubling Time

The first-order Sobol sensitivity index Si measures the direct effect that each parameter θi has on the300

variance of the model output. The total-order Sobol sensitivity index STi measures the total effect
(direct and through interactions with other parameters) each parameter θi has on the variance of the
model output. As mentioned above, we consider the sensitivity of two model outputs: the cumulative
number of infections in time and the doubling-time of the infection. We categorize the parameters for
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the sensitivity analysis into three groups: infection parameters (β, σ, φ, α), contact parameters (M ,305

c, ω, p, m), and initial conditions (Isu0, Iau0, Isd0, Iad0, Isg0, Iag0, Isf0, Iaf0). In each sensitivity analysis
figure, we show 9 subfigures illustrating three class cap scenarios—no class cap (the first column), class
cap with 100 students (the second column), and class cap with 50 students (the third column)—along
with three vaccination scenarios—(i) 0% vaccination (the top row); (ii) 50% of faculty, 50% graduate
students, and 40% of undergraduate students vaccinated (the middle row); and (iii) 100% of faculty,310

100% graduate students, and 80% of undergraduate students vaccinated (the bottom row).
We note that the initial conditions do not contribute to the sensitivity of either of our metrics in

a fashion that is dependent on the vaccination or non-pharmaceutical invention. As such, we include
those figures in Appendix C.

4.2.1 Doubling Time315

We now turn to examine the global sensitivity analysis with respect to epidemic doubling time. fig. 5
displays the global sensitivity analysis of the epidemic doubling time for the infection and contact
model parameters, while fig. 14 portrays the global sensitivity analysis of the epidemic doubling time
with respect to the initial conditions. First-order (blue) and total-order (red) are shown as well as
the standard errors. The columns represent class caps (moving right across the columns), while the320

rows signify increasing levels of campus vaccination (moving down the rows). The mean and standard
deviations of the doubling time and total cumulative infections are reported in each subplot.

When examining fig. 5, we can see that with no vaccination and no class caps (fig. 5(a)), the
transmission rate β is the most significant parameter. Thus, anything that can be done to lower the
transmission rate, such as wearing masks or improving HVAC systems, can have a large impact on325

the doubling time. Other parameters that are especially sensitive are 1 −m, the reduction in trans-
mission probability by wearing a mask, and community-related parameters M and c. M represents
the percentage of infected individuals in the outside (Merced) community, while c signifies the amount
we multiply the calculated contact matrices with the community. Two of the parameters, σ (repre-
senting the amount of time spend in the ‘exposed class’) and α, the probability that one self-isolates330

two days after symptom onset, are sensitive in total effect only. This indicates that σ or α alone do
not contribute significantly to the model variance, but the interaction with other parameter(s) have a
significant impact on the model variance.

As we implement the interventions, either by increasing vaccination rates (moving down the rows)
or instilling class caps (moving right across the columns) we begin to see that the transmission prob-335

ability, β, becomes less sensitive. On the other hand, contact with the outside community (c), and
the current infection rate of the community (M) become much more important to controlling spread
of the disease on campus. In fact, for some scenarios, it is clear that the infection rate of the com-
munity is more sensitive than the transmission probability. This analysis highlights the importance of
including community interactions in models of bubble-like communities. Moreover, an effort to reduce340

transmission on campus goes hand-in-hand with increasing vaccination in the surrounding community.
As we increase vaccination rates, we can see that the impact of reduction in transmission probability

while wearing a mask, 1 − m, stays rather consistent in its importance. This indicates that masks
are still crucial for controlling spread of disease even as vaccination rates increase. However, when
decreasing the class caps, we can see that m becomes much less sensitive. Thus, NPIs, such as wearing345

masks and reducing contact by moving courses online, are still paramount to controlling the number
of cases on campus.

fig. 14 displays the sensitivity of doubling time for the number of initially infected individuals on
campus. It is clear that the distribution and number of initially-infected individuals (undergraduate
students, graduate students, and faculty and staff) do not play a large role in determining the doubling350

time. This is intuitive, since doubling time measures the time it takes to double the number of
infections and should be the same whether we start with one infectious individual or 100 infectious
individuals (see fig. 2). The interesting aspect of this analysis is that there does not appear to be a
strong indication that doubling time is sensitive to whether or not those infectious individuals were
asymptomatic or symptomatic. Moreover, it is similarly unimportant from which demographic group355

the initially-infected individuals belong to.
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Figure 5: Global Sensitivity Analysis of Infection and Contact Parameters on Epidemic
Doubling Time. Each column represents three class cap scenarios: none, 100 student, and 50 student
caps. Each row represents one of three vaccination scenarios at the start of the semester. First row:
0% vaccination; second row: 50% of faculty, 50% graduate students, and 40% of undergraduate students
vaccinated; third row: 100% of faculty, 100% graduate students, and 80% of undergraduate students
vaccinated.

4.2.2 Cumulative Infections

Figure 6 displays the global sensitivity analysis for the cumulative infections at the end of the semester
with respect to infection and contact parameters. As vaccination rates increase and class caps are
implemented, the most sensitive parameters begin to change. Under the normal scenario, with no360

vaccinations and no class caps, the most important parameters are the transmission rate, β, reduction in
transmission probability while wearing a mask, 1−m, and the likelihood that a symptomatic individual
decides to self-isolate, α. By incorporating class caps, the landscape of sensitivity starts to change.
Self-isolation and masks become less important, while the parameters governing the outside community
start to play a larger role. The probability that Merced community individuals are infectious, M , and365

the community contact multiplier, c, start to largely influence the cumulative number of infections.
This underscores the importance of educating local communities to help reduce community spread. As
vaccination increases in the absence of class caps, we see a similar shift towards community parameters
being more important, however, in this scenario, mask usage remains essential towards lowering cases
on campus. When both vaccination and class caps are utilized, the community parameters become370
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more important than the transmission rate.

Figure 6: Global Sensitivity Analysis of Infection and Contact Parameters on Cumulative
Infections at the End of the Term. Each column represents three class cap scenarios: none, 100
student, and 50 student caps. Each row represents one of three vaccination scenarios at the start of
the semester. First row: 0% vaccination; second row: 50% of faculty, 50% graduate students, and 40%
of undergraduate students vaccinated; third row: 100% of faculty, 100% graduate students, and 80% of
undergraduate students vaccinated.

We can also examine the sensitivity of cumulative infections to the initial number of infectious
individuals on campus. fig. 15 portrays this sensitivity. It is apparent that under no interventions,
the initial number of infectious individuals has little effect on the spread of the virus. Similarly, when
incorporating class caps, the initial conditions are insensitive. However, under high vaccination rates375

(80% undergraduate students and 100% faculty, staff, and graduate students), it is clear that the cumu-
lative number of infections is slightly sensitive to the initially infectious individuals on campus – with
slightly higher sensitivity to undergraduate student infections, both symptomatic and asymptomatic.

In order to dissect the forces which contribute most strongly to the cumulative infections, we next
consider their time-varying first and total-order Sobol indices. That is, we now look at the total380

contributions to the variance in cumulative infection over time. We separate the impact of infection
parameters (figs. 7 and 9), contact parameters (figs. 8 and 10) and initial conditions (figs. 16 and 17).
(Because the time-varying first and total order indices for initial conditions did not vary between
condition, we include those figures in the Appendix C.)
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Figure 7: Time-Varying Total-Order Effect of Infection Parameters on Cumulative Infections.
Each column represents three class cap scenarios: none, 100 student, and 50 student caps. Each row
represents one of three vaccination scenarios at the start of the semester. First row: 0% vaccination;
second row: 50% of faculty, 50% graduate students, and 40% of undergraduate students vaccinated; third
row: 100% of faculty, 100% graduate students, and 80% of undergraduate students vaccinated.

First, let’s consider the time varying impact of infection parameters on the cumulative infections.385

As shown in fig. 7, regardless of the vaccination status or class cap scenario, the strongest contributor
at all times comes from β. This is consistent with the results from fig. 6. However, we now see that
this effect increases during the early part of the academic term. In addition, we note that in all cases
the contribution from α, the probability that a symptomatic individual self-isolates, also increases
throughout the semester. Interestingly, while the total-order index of σ, which influences the disease390

duration, is not necessarily monotonic. We note that in the case with no vaccination and no course
caps (fig. 7(a)), σ’s strongest contribution is present around week 4 and decreases after.

Next, we move to the role of contact parameters. In fig. 8, we note that importance of contact
parameters depends not only on vaccination and class-cap scenario, but also on time. As we saw in
fig. 6, without a course cap the contact parameter controlling for the impact of mask use m (recall395

(1 − m) ∈ [0, 0.4] is the reduction in transmission rate with mask use) is the most important. Of
course, as expected, the impact of mask-use on cumulative infections deceases with vaccination status
of the campus. The next two most important contact factors are M , the probability that an individual
in Merced, the outside community, is infected, and c, the community contact multiplier. Again, we
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Figure 8: Time-Varying Total-Order Effect of Contact Parameters on Cumulative Infections.
Each column represents three class cap scenarios: none, 100 student, and 50 student caps. Each row
represents one of three vaccination scenarios at the start of the semester. First row: 0% vaccination;
second row: 50% of faculty, 50% graduate students, and 40% of undergraduate students vaccinated; third
row: 100% of faculty, 100% graduate students, and 80% of undergraduate students vaccinated.

see a time dependency. With a modest course cap, and 0% vaccination (fig. 8(b)) we note that the400

total-order effect of M and c increases early in the semester, but then begins to decrease around week
6 as the mask use m increases in variance contribution eventually taking over in importance by the
end of the semester. This suggests that in this simulation, infections are initially coming from off
campus (importance of M and c) but are then becoming dominated by on-campus spread (importance
of m). We note that at the highest levels of vaccination (fig. 8(g)-(i)), the fraction of the variance405

from off community contact parameters M and c continues to increase as the semester goes on. This
is consistent with our earlier results, but demonstrate that these factors become increasingly dominant
as the semester goes on.

Not surprisingly, the importance of initial infections decreases as the term goes on for all vaccination
and class cap strategies (fig. 16). We also note that, at least for the ranges and scenarios we considered,410

the importance of initial infections in terms of the variation in cumulative infections is far lower than
the most significant infection and contact parameters.

For non-linear models, it is not generally true that the first and total order Sobol indices are
consistent. However, in this case we note that the importance of parameters (i.e., the rank of their
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Figure 9: Time-Varying First-Order Effect of Infection Parameters on Cumulative Infections.
Each column represents three class cap scenarios: none, 100 student, and 50 student caps. Each row
represents one of three vaccination scenarios at the start of the semester. First row: 0% vaccination;
second row: 50% of faculty, 50% graduate students, and 40% of undergraduate students vaccinated; third
row: 100% of faculty, 100% graduate students, and 80% of undergraduate students vaccinated.

contribution to the variance) is similar for first order and total order time varying Sobol indices415

(compare fig. 7 to fig. 9; fig. 8 to fig. 10 and fig. 16 to fig. 17). However, there are a few intriguing
differences to point out. Most notably, the first order index for β (fig. 9(a)) may exhibit an internal
peak rather than simply increase to saturation. Our interpretation again would involve a change in the
dynamics from early semester to later semester. For the case with no class cap and no vaccination, the
transmission rate β is the parameter that has the most significant direct effect on the output variance420

(fig. 9(a) and fig. 10(a)). Any intervention that can lower the transmission rate β would significantly
impede the transmission. As shown in fig. 9(a), we observe that the fraction of variance due to β
begins to decreases after week 3 and begins increasing again after week 6. From fig. 7(a) of the time
varying total-order effect, the saturation in β is due to the increasing interaction effects of σ with the
other model parameters during week 3, followed by a decrease in the interaction effects after week425

6. As we decrease the class cap (fig. 9, from left column to right column), the overall magnitude of
the first-order effect of β remains almost the same, but at week 15, class cap 50 corresponds to the
smallest fraction of variance of β. While for other infection parameters we studied, the magnitude of
the first-order effect decreases as the class cap increases.
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Figure 10: Time-Varying First-Order Effect of Contact Parameters on Cumulative Infections.
Each column represents three class cap scenarios: none, 100 student, and 50 student caps. Each row
represents one of three vaccination scenarios at the start of the semester. First row: 0% vaccination;
second row: 50% of faculty, 50% graduate students, and 40% of undergraduate students vaccinated; third
row: 100% of faculty, 100% graduate students, and 80% of undergraduate students vaccinated.

Among the contact parameters we studied, when there is no vaccination or low to medium vacci-430

nation levels (fig. 10(a)-(f)), m (mask effect on transmission rate) has the most significant direct effect
on the variance of model output when there is no class cap, but the magnitude of the direct effect of
M (the percentage of individuals in the outside community are infected) and c (community contact
multiplier that multiplies contacts between university population and the community) exceeds m as
we decrease the class cap size, with M ’s direct effect larger than c.435

Overall, both intervention strategies (class cap and vaccination) impact the direct effect of a single
parameter on the variance of the model output over time. When either or both intervention strate-
gies are implemented on campus population, the direct effect of parameters related to the outside
community warrants attention.

5 Discussion and Conclusion440

In this manuscript, we introduced an ODE-based SEIR model with multiple sub-populations (under-
graduate students living on-campus, undergraduate students living off-campus, graduate students, and
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faculty and staff) on a campus that interacts with the outside community. We discussed how to use
registrar information to estimate contact hours due to classes. We examined the effects of NPIs such
as social distancing in the form of transitioning large classes online and masking as well as vaccinating445

the campus populations. We acknowledge that there are other methods of incorporating heteroge-
neous interactions, such as agent-based modeling and stochastic modeling [36, 37]. Our proposed
model preserves some aspect of heterogeneity while remaining open to traditional methods of analysis
and being computationally inexpensive. This allowed us to obtain rapid results and provide them to
administration for decision making.450

We examined the sensitivity analysis of various model parameters for varying levels of vaccination
rates and class caps. We discovered that, as vaccination rates increase, transmission rates become less
important while mask usage and keeping rates low in the surrounding community most drastically
affect the case rates on campus. This highlights the need for including the non-campus community in
modeling efforts and the necessity of universities to work with their surrounding communities to help455

limit spread.
Many of the parameters, such as the contact matrices, were directly informed from campus data.

Thus, it may be that these results may not hold for other campuses that alter from our own (e.g.,
no large classes, campuses that are more integrated with the surrounding community, campuses in
urban settings). However, our flexible framework allows other universities to alter parameters and460

calculate contact matrices from their registrar data, in order to make conclusions about interventions
and sensitivities for their own campuses.

The parameters that were not directly calculated from data remain a source of uncertainty in the
model. Although many of the parameter values were taken from literature values, the accuracy of
those estimates is unknown. Therefore, model validation with real data remains a future direction465

for exploration. We also plan to replace the surrounding community estimate, which is currently a
constant, with dynamic data from county dashboard reports. We can also study the impact of a surge
in COVID cases in the off-campus community on campus population, by introducing a pulse in the
community parameter.

We note there are several limitations with the current study. In our model it is assumed that470

vaccination makes the recipient immune (e.g., there are no breakthrough cases). A logical future
direction would include waning immunity and booster shots. Another option would be to include
vaccinated sub-populations with decreased transmission rates and shorter convalescence times. As
differing variants have become dominant (e.g., delta, omicron), the parameters would need to be
altered to reflect increased transmission rates and, perhaps, shortened infectious duration. We also475

assumed 100% compliance with interventions, meaning that every member of the community wears
well-fitting masks at all times when they are indoors.

Overall, our model exhibits results consistent with current public health messaging. Our model
predicts that, despite increasing vaccination rates, it remains important to continue to socially distance
and wear masks to reduce transmission. Whether these results will hold for more recent variants, such480

as delta and omicron, remains to be seen.
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A Details of the ODE model

In fig. 11, we show all the subpopulations, the undergraduate students who live off campus (u), the
undergraduate students who live on campus in the dorms (d), the graduate students (g), and the500

faculty and staff (f) as they progress through the stages of the COVID-19 infection. The corresponding
equation are given in eq. (4). Note that all the populations are coupled through the Force of Infection,
eq. (2) in the main text, where an individual in any subpopulation can be infected by any infected
individual in the total population or through a member of the community,

F = c11
ζIau + Isu +Nu

nu
+ c12

ζIad + Isd +Nd
nd

+ c13

ζIag + Isg +Ng

ng

+c14

ζIaf + Isf +Nf

nf
+ c15(ζψM +M(1− ψ)),

where cij = C(i, j) is the (i, j)-th entry of the contact matrix C.505

Figure 11: All subpopulations included in the ODE model, (1) undergraduate students off-campus (u),
(2) undergraduate students in dorms (d), (3) graduate students (g), and (4) faculty and staff (f) and the
phases of the disease that each individual progresses through: susceptible (S), exposed (E), asymptomat-
ically infected (Ia) or symptomatically infected (Is), if symptomatically infected individuals can choose
to self-isolate (at home) (H) or not (N), and finally both asymptomatically or symptomatically infected
recover (R). Note that some percentage of the population is initially vaccinated.
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dSu
dt

= −βSuF (4a)

dSd
dt

= −βSdF (4b)

dSg
dt

= −βSgF (4c)

dSf
dt

= −βSfF (4d)

dEu
dt

= βSuF − σEu (4e)

dEd
dt

= βSdF − σEd (4f)

dEg
dt

= βSgF − σEg (4g)

dEf
dt

= βSfF − σEf (4h)

dIau
dt

= φσEu − γaIau (4i)

dIad
dt

= φσEd − γaIad (4j)

dIag
dt

= φσEg − γaIag (4k)

dIaf
dt

= φσEf − γaIaf (4l)

dIsu
dt

= (1− φ)σEu − γsIsu (4m)

dIsd
dt

= (1− φ)σEd − γsIsd (4n)

dIsg
dt

= (1− φ)σEg − γsIsg (4o)

dIsf
dt

= (1− φ)σEf − γsIsf (4p)

dHu

dt
= αγsIsu − hHu (4q)

dHd

dt
= αγsIsd − hHd (4r)

dHg

dt
= αγsIsg − hHg (4s)

dHf

dt
= αγsIsf − hHf (4t)

dNu
dt

= (1− α)γsIsu − δNu (4u)

dNd
dt

= (1− α)γsIsd − δNd (4v)

dNg
dt

= (1− α)γsIsg − δNg (4w)

dNf
dt

= (1− α)γsIsf − δNf (4x)

dR

dt
= γa

(
Iau + Iad + Iag + Iaf

)
+ h (Hu +Hd +Hg +Hf ) + δ (Nu +Nd +Ng +Nf ) (4y)
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B University Network Visualization

Table 4: University network characteristics under four interventions with different class cap size. For all
four cases, the total number of nodes is 9481, with nu = 5449, nd = 2885, ng = 723, and nf = 424.

No Intervention Class Cap 100 Class Cap 50 Class Cap 25

Total # of isolated nodes 20 32 322 1644
Isolated u 0 2 253 1327
Isolated d 0 0 18 222
Isolated g 11 11 11 17
Isolated f 9 19 40 78

Weighted Degree [0, 1415] [0, 493] [0, 276] [0, 216]
Average Weighted Degree 414.593 152.895 82.583 34.399

# of unique edges 1601427 724798 341194 137084
Edge weights [1, 10] [1, 9] [1, 8] [1, 7]

Figure 12: Histogram of weighted degrees for the university network under four interventions with different
class cap sizes. Bin width are 50, 25, 10 and 5 for No Intervention, class cap 100, class cap 50, and class
cap 25, respectively.
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(a) No Intervention (b) Class Cap 100

(c) Class Cap 50 (d) Class Cap 25

Figure 13: Visualization of university network as a weighted undirected network under four interventions
with different class cap size. Edge thickness reflects weights (minimum 1 and maximum 10). Nodes were
colored according to their roles (reddish purple for u, yellow for d, sky blue for g, and vermillion for f) and
sized according to weighted degree (smaller nodes correspond to smaller weighted degrees). See Table 4
for the breakdown of the networks.
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C Figures of Sensitivity Analysis to Initial Conditions

Figure 14: Global Sensitivity Analysis of Doubling Time to Initial Conditions. Each column
represents three class cap scenarios: none, 100 student, and 50 student caps. Each row represents one
of three vaccination scenarios at the start of the semester. First row: 0% vaccination; second row: 50%
of faculty, 50% graduate students, and 40% of undergraduate students vaccinated; third row: 100% of
faculty, 100% graduate students, and 80% of undergraduate students vaccinated
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Figure 15: Global Sensitivity Analysis of Cumulative Infections at the End of the Term. Each
column represents three class cap scenarios: none, 100 student, and 50 student caps. Each row represents
one of three vaccination scenarios at the start of the semester. First row: 0% vaccination; second row:
50% of faculty, 50% graduate students, and 40% of undergraduate students vaccinated; third row: 100%
of faculty, 100% graduate students, and 80% of undergraduate students vaccinated.
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Figure 16: Time-Varying Total-Order Effect of Initial Conditions on Cumulative Infections.
Each column represents three class cap scenarios: none, 100 student, and 50 student caps. Each row
represents one of three vaccination scenarios at the start of the semester. First row: 0% vaccination;
second row: 50% of faculty, 50% graduate students, and 40% of undergraduate students vaccinated; third
row: 100% of faculty, 100% graduate students, and 80% of undergraduate students vaccinated.
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Figure 17: Time-Varying First-Order Effect of Initial Conditions on Cumulative Infections.
Each column represents three class cap scenarios: none, 100 student, and 50 student caps. Each row
represents one of three vaccination scenarios at the start of the semester. First row: 0% vaccination;
second row: 50% of faculty, 50% graduate students, and 40% of undergraduate students vaccinated; third
row: 100% of faculty, 100% graduate students, and 80% of undergraduate students vaccinated.
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