Metabolic alkalosis and mortality in COVID-19

Dr Zhifeng Jiang (Correspondence author) , Xiaogan Hospital Affiliated to Wuhan University of Science and Technology; No.6, Square street, Xiaonan District, Xiaogan City, Hubei Province, China. email addresses : xjiang292@sina.com.

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
Abstract

Background

As a new infectious disease affecting the world, COVID-19 has caused a huge impact on countries around the world. At present, its specific pathophysiological mechanism has not been fully clarified. We found in the analysis of the arterial blood gas data of critically ill patients that the incidence of metabolic alkalosis in such patients is high.

Method

We retrospectively analyzed the arterial blood gas analysis results of a total of 16 critically ill patients in the intensive ICU area of Xiaogan Central Hospital and 42 severe patients in the intensive isolation ward, and analyzed metabolic acidosis and respiratory acidosis. Metabolic alkalosis and respiratory alkalosis, and the relationship between metabolic alkalosis and death.

Result

Among the 16 critically ill patients, the incidence of metabolic alkalosis was 100%, while the incidence of metabolic alkalosis in severe patients was 50%; the mortality rate in critically ill patients was 81.3%, and 21.4% in severe patients; The mortality of all patients with metabolic alkalosis is 95.5%, and 4.5% in without metabolic alkalosis.

Conclusion

The incidence of metabolic alkalosis in critically ill COVID-19 patients is high, and it is associated with high mortality.

Key words: COVID-19, Metabolic alkalosis, mortality
Introduction

COVID-19 has now swept the world, causing huge challenges and disasters to the global health system. At present, its detailed pathophysiological mechanism has not yet been fully clarified. The current research involves direct virus attack, humoral and cellular immunity, and nervous system damage. Endocrine disorders, respiratory and circulatory disorders, coagulation dysfunction and other aspects(1). There is still a lack of effective treatments. Critically ill patients still have a high mortality rate. Early data from Wuhan showed that the mortality rate of severely ill patients with COVID-19 was 62%, and the mortality rate of patients requiring mechanical ventilation was 81%(2). This manuscript analyzes the blood gas analysis data and deaths of critically ill patients in Xiaogan Central Hospital in March 2020, and finds that the incidence of metabolic alkalosis in critically ill patients is very high, and it is accompanied by a higher mortality rate.

Method

Follow the Helsinki Declaration as revised in 2013, we analyzed 44 patients in the intensive isolation ward of Xiaogan Central Hospital, with an average age of 53 years, 27 males and 15 females. There was no history of Gitelman and Bartter syndrome in all patients, and exclude 2 cases of primary aldosteronism in patients. According to the diagnostic criteria of the fifth edition of China's new coronavirus diagnosis and treatment guidelines (meet any of the following 1. Respiratory distress, RR>30 beats/min; 2. In the resting state, the oxygen saturation is <93%; 3. Arterial partial pressure of oxygen (PaO2)/inhaled oxygen concentration (FiO2) <300mmHg). All 42
patients were diagnosed as severe. Analyzing the arterial blood gas analysis data and
death data of 42 patients; According to the same diagnostic criteria, we analyzed the
arterial blood gas analysis data and death data of a total of 16 critically ill patients, 11
were males and 5 were females, with an average age of 67 years. (meet one of the
following conditions: 1. Respiratory failure occurs and mechanical ventilation is
required; 2. Shock; 3. combined with other organ failure, ICU monitoring and
treatment is required) in the intensive ICU of our hospital.

Analyze the arterial blood gas data of all patients, select the highest bicarbonate value
as the statistical data, including carbon dioxide partial pressure (PaCO2), oxygen
partial pressure (PaO2), bicarbonate (HCO3-), alkali excess (BE), serum potassium
and calculate acid-base imbalance types, including metabolic acidosis, respiratory
acidosis, metabolic alkalosis, respiratory alkalosis, respiratory acidosis combined with
metabolic alkalosis, and analyze the mortality of critical and severe patients, at the
same time, compare the mortality of patients with metabolic alkalosis and
non-metabolic alkalosis. In addition, respiratory acidosis combined with metabolic
alkalosis and metabolic alkalosis were combined as metabolic alkalosis, and the
incidence of alkalosis and mortality were compared again, simultaneously compare
the serum potassium of the two groups of patients. Use spss25.0 statistical software to
analyze this data. The basic description of the count data is expressed by frequency
and composition ratio, and the analysis of the difference between the two groups of
count data uses the χ^2 test, t test is used for measurement data, $P<0.05$ indicates that
the difference is statistically significant.
Result

There were 10 cases of acid-respiratory and metabolic alkalosis in critically ill patients, with an incidence rate of 62.5%, and 11 cases of acid-respiratory and metabolic alkalosis in severe patients, with an incidence of 26.2%, χ^2 was 6.613, $P=0.010$, there was a statistical difference in the incidence of the two groups. The incidence of acid and alkali substitution in critical cases was significantly higher than that in severe cases. There were 6 cases of metabolic alkalosis alone in critically ill patients with an incidence rate of 37.5%, and 10 cases of metabolic alkalosis in severe patients with an incidence rate of 23.8%, χ^2 was 1.087, $P=0.297$, there was no statistical difference in the occurrence of metabolic alkalosis between the two groups.

However, when the number of cases of respiratory acidosis combined with metabolic alkalosis and metabolic alkalosis are combined, the incidence of metabolic alkalosis in critical cases is 100%, and the incidence of metabolic alkalosis in severe patients is 50%. (Table 1)

Comparing the two groups of patients with simple metabolic alkalosis and respiratory acidosis combined with metabolic alkalosis, it was found that among the dead patients, 14 cases of respiratory acidosis combined with metabolic alkalosis accounted for 63.6%, there are no respiratory acidosis combined with metabolic alkalosis in 8 case, accounting for 3.4%, with a χ^2 of 11.546 and a P value of 0.001; When analyzing the death of patients with simple metabolic alkalosis, it was found that the death had nothing to do with simple metabolic alkalosis, χ^2 was 0.318, $P=0.573$, when respiratory acidosis combined with metabolic alkalosis and metabolic alkalosis are
combined as the number of cases of metabolic alkalosis, a total of 21 deaths, a ratio of 95.5%, and no metabolic alkalosis is 1 death, accounting for 4.5%, the χ^2 was 15.383, and the P value is 0.000, the incidence of metabolic alkalosis is higher in deceased patients; Serum potassium in the critically ill was 3.41±0.4mmol/L, and 3.68±0.46mmol/l in severe group, critically ill patients have lower blood potassium than severe patients (Table2).

Discussion

COVID-19 patients experience a variety of acid-base balance disorders during their course of disease. The assessment and research on the acid-base balance disorders of COVID-19 patients is still insufficient (3), which is different from our conventional understanding-the main target of damage due to COVID-19 The organ is the lung, which may cause respiratory acid-base balance disorders. A retrospective blood gas analysis study showed that the most common acid-base balance disorder in patients with COVID-19 is keratogenic alkalosis(3). A report from South Africa has been shown that metabolic alkalosis is more common in COVID-19 virus-positive patients (4). Our research also shows that metabolic alkalosis is the most common acid-base balance disorder in such patients.

The causes of metabolic alkalosis include extrarenal factors and renal factors. Extrarenal factors include gastric acid loss, such as vomiting, nasogastric tube drainage, and loss of intestinal acid, such as villous adenoma, congenital celiac disease, excessive oral or parenteral intake of bicarbonate; Kidney factors such as high mineralocorticoid activity and high distal sodium delivery, persistent

CC-BY 4.0 International license It is made available under a CC-BY 4.0 International license.
mineralocorticoid overdose, potassium deficiency(5). Our severe patients do not have
the above-mentioned extrarenal factors, unintentional excessive intake of bicarbonate,
and a small number of critically ill patients have nasogastric tube drainage, so such a
high incidence of metabolic alkalosis needs to consider renal factors.
The destruction of cells entering the viral receptor, angiotensin-converting enzyme
(ACE-2) II, is considered to be one of the main causes of human pathogenicity of
SARS-CoV-2. ACE-2 is widely expressed in renal tubular epithelial cells, vascular
components and glomerular epithelium (6). Once the SARS-CoV-2 bound ACE-2 is
internalised by the cell, ACE2 is markedly downregulated (7). Theoretically, it
should lead to the excessive renin-angiotensin-aldosterone system mediated by excess
angiotensin II activate (8, 9).
In addition, studies have reported widespread hypokalemia in COVID-19 patients.
The publication of a preprinted retrospective Chinese study initially sparked interest in
hypokalemia, which is a potentially common biochemical disorder in SARS-CoV-2
infection, and serum potassium was present in 108 of 175 patients <3.5 mmol/l (62%),
only 10 patients had serum K >4.0 mmol/l. Of these patients, 22% had severe
hypokalemia (serum potassium <3.0 mmol/l). In total, 11% of all patients and 28% of
patients with severe hypokalemia showed metabolic alkalosis (pH >7.45), compared
with 4% of patients with normal potassium (10) However, the largest SARS-CoV-2
case series to date (including 1,099 patients) did not show any significant difference
in serum potassium between mild and severe patients, in this cohort, serum potassium
was mostly reported as normal (11). Our research shows that there is no significant
difference in serum potassium between critically ill and critically ill patients, but both
are at a low level.

Virtually all forms of metabolic alkalosis are sustained by enhanced collecting duct
hydrogen ion secretion, induced by stimulation of sodium uptake through the
epithelial sodium channel(12). In the renal collecting duct, mineralocorticoids drive
Na+ reabsorption, K+ secretion, and H+ secretion through coordinated actions on
apical and basolateral transporters(13).

Therefore, we speculate that SARS-CoV-2 uses ACE-2 as its cell receptor, leading to
ACE2 degradation and ACE/ACE-2 imbalance, increasing Ang II levels, inducing the
release of aldosterone and increasing mineralocorticoids, which in turn leads to
blood potassium reduction and metabolic alkalosis. In addition, patients with
COVID-19 often have small airway ventilatory disorders, complicated by respiratory
acid. In patients with acute respiratory acidosis, PaCO2 increases by 10 mmHg,
HCO3− increases by 1 mmol/l, while in chronic respiratory acidosis patients, PaCO2
increases by 1 mmol/l. In patients with acidosis, for every 10 mmHg increase in
PaCO2, HCO3− increases by 4 mmol/l. In the post-hypercapnia state, respiratory
acidosis improves (such as receiving mechanical ventilation), but HCO3− continues
to rise, leading to metabolic alkalosis(14). In addition, in this study, the patient intake
data cannot be counted in detail. Whether there is insufficient intake and aggravation
of alkalosis needs further evaluation.

Metabolic alkalosis can lead to a series of serious consequences. First, elevated pH
leads to respiratory depression, and alkalosis is a powerful vasoconstrictor. A large
number of studies have shown that increase in pH leads to a decrease in perfusion of
the heart, brain and peripheral circulation(15).

Metabolic alkalosis is the most common acid-base disorder in hospitalized patients,
and it is associated with increased mortality. An earlier study by Wilson et al. in critically ill surgical patients showed that 177 (12%) developed severe metabolic
alkalosis defined as arterial pH >7.54 (15). More severe metabolic alkalosis was
associated with higher mortality. Mortality was 41% in patients with pH 7.55-7.56, 47%
in patients with pH 7.57-7.59, 65% in patients with pH 7.60-7.64, and 80% in patients
with pH 7.65-7.70. A prospective study by Anderson et al. in a group of 409 medical
and surgical patients showed that mortality was 48.5% in patients with pH >7.60 (16).
This study shows that among critically ill patients, the incidence of metabolic
alkalosis is 100% and the mortality rate is 81.25%, and the mortality rate of severe
and critically ill patients with metabolic alkalosis is as high as 95.5%.

However, the amount of data in this study is still small, and there may be therapeutic
factors that interfere with the acid-base balance during the treatment of patients. If a
large sample, a more detailed stratified design, and dynamic detection of patient
ACE-2/renin-angiotensin-aldosterone levels can reveal more secrets.

In conclusion, in severe and critically ill patients, the proportion of metabolic
alkalosis has increased significantly, and the mortality rate in patients with metabolic
alkalosis has increased significantly. In COVID-19 patients, we need to pay attention
to kidney damage as much as the lungs.
Conflicts of interest: The authors declare that they have no competing interests.

Funding: There are no funding.

Consent statement: Written consent was obtained from the patient/guardian.

Acknowledgments: We thank Dr. Aiqiao Feng, Dr. Zhibin Xie, Dr. Tao Li, Dr. Sai Xie, and Dr. Xiaofei Hu for contributions to the diagnosis and treatment of patients and writing suggestions.
Reference

<table>
<thead>
<tr>
<th>group</th>
<th>case</th>
<th>critically ill</th>
<th>Severe</th>
<th>χ^2/t</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC & MA</td>
<td>58</td>
<td>21</td>
<td>10(62.5%)</td>
<td>11(26.2%)</td>
<td>6.613</td>
</tr>
<tr>
<td>Yes</td>
<td>21</td>
<td>10(62.5%)</td>
<td>11(26.2%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>37</td>
<td>6(37.5%)</td>
<td>31(73.8%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metabolic alkalosis</td>
<td>58</td>
<td>16</td>
<td>6(37.5%)</td>
<td>10(23.8%)</td>
<td>1.087</td>
</tr>
<tr>
<td>Yes</td>
<td>16</td>
<td>6(37.5%)</td>
<td>10(23.8%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>42</td>
<td>10(62.5%)</td>
<td>32(76.2%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Death</td>
<td>58</td>
<td>22</td>
<td>13(81.3%)</td>
<td>9(21.4%)</td>
<td>17.611</td>
</tr>
<tr>
<td>Yes</td>
<td>22</td>
<td>13(81.3%)</td>
<td>9(21.4%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>36</td>
<td>3(18.8%)</td>
<td>33(78.6%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Combined metabolic alkalosis</td>
<td>58</td>
<td>21</td>
<td>16(100.0%)</td>
<td>21(50.0%)</td>
<td>12.541</td>
</tr>
<tr>
<td>Yes</td>
<td>21</td>
<td>16(100.0%)</td>
<td>21(50.0%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>21</td>
<td>0(0.0%)</td>
<td>21(50.0%)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 1 Comparison of the incidence of acid-base balance disorders in critically ill and critically ill patients. (AC & MA: Respiratory acidosis combined with metabolic alkalosis)
Table 2 Number of deaths in acid-base imbalance. (AC & MA: Respiratory acidosis combined with metabolic alkalosis)

<table>
<thead>
<tr>
<th>Group</th>
<th>Case</th>
<th>No Death</th>
<th>Death</th>
<th>(\chi^2)</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC & MA</td>
<td></td>
<td></td>
<td></td>
<td>11.546</td>
<td>0.001</td>
</tr>
<tr>
<td>Yes</td>
<td>21</td>
<td>7(19.4%)</td>
<td>14(63.6%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>37</td>
<td>29(80.6%)</td>
<td>8(36.4%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metabolic alkalosis</td>
<td></td>
<td></td>
<td></td>
<td>0.318</td>
<td>0.573</td>
</tr>
<tr>
<td>Yes</td>
<td>16</td>
<td>9(25.0%)</td>
<td>7(31.8%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>42</td>
<td>27(75.0%)</td>
<td>15(68.2%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Combined metabolic alkalosis</td>
<td></td>
<td></td>
<td></td>
<td>15.383</td>
<td>0.000</td>
</tr>
<tr>
<td>Yes</td>
<td>37</td>
<td>16(44.4%)</td>
<td>21(95.5%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>21</td>
<td>20(55.6%)</td>
<td>1(4.5%)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>