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Abstract

Deep Learning has a large impact on medical image analysis and lately has been
adopted for clinical use at the point of care. However, there is only a small number of
reports of long-term studies that show the performance of deep neural networks (DNNs)
in such a clinical environment. In this study, we measured the long-term performance of
a clinically optimized DNN for laryngeal glottis segmentation. We have collected the
video footage for two years from an AI-powered laryngeal high-speed videoendoscopy
imaging system and found that the footage image quality is stable across time. Next, we
determined the DNN segmentation performance on lossy and lossless compressed data
revealing that only 9% of recordings contain segmentation artefacts. We found that
lossy and lossless compression are on par for glottis segmentation, however, lossless
compression provides significantly superior image quality. Lastly, we employed continual
learning strategies to continuously incorporate new data to the DNN to remove
aforementioned segmentation artefacts. With modest manual intervention, we were able
to largely alleviate these segmentation artefacts by up to 81%. We believe that our
suggested deep learning-enhanced laryngeal imaging platform consistently provides
clinically sound results, and together with our proposed continual learning scheme will
have a long-lasting impact in the future of laryngeal imaging.

Introduction 1

Laryngeal videoendoscopy is a major assessment tool to evaluate voice physiology 2

qualitatively and quantitatively (Fig. 1). Especially for quantifying voice physiology, 3

high-speed videoendoscopy (HSV) [1, 2] is an emerging technique that is able to 4

visualize each glottal cycle with high spatial and temporal resolution. As the vocal folds, 5

the main source of our voice, are vibrating hundreds of times each second, high-speed 6

recordings with at least 4,000 frames per second (fps) are needed to accurately record 7

this motion [1, 3]. 8

The glottal area, the opening between the two vocal folds, is a good proxy for 9

assessing the oscillation behavior [1, 4]. Therefore, many works have focused on the 10

segmentation of the glottal area (Fig. 1), especially avoiding any manual 11

intervention [4, 5]. This critical step is one of the main bottlenecks of the data analysis 12
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Fig 1. Data acquisition and analysis workflow. Each examination yields video
and audio data, where the video data is stored either lossy or lossless compressed. In
this study, we evaluate which data source and if cropping the video data to an ROI is
sufficient for reliable glottis segmentation using previously proposed clinically optimized
segmentation networks. The glottal area is computed for each video frame and plotted
across time yielding the glottal area waveform (GAW), which is crucial for computing
clinical relevant parameters. We investigate in this study how collected data can be
used to allow constant fine-tuning of the segmentation network using continual learning
schemes.

pipeline and has been the reason why HSV is barely applied in the clinic, because fully 13

automatic data analysis solutions have not been around [1]. Lately, it has been shown 14

that deep neural networks (DNNs) are highly suitable for solving this task [6–9]. These 15

glottis segmentation DNNs could be further optimized towards clinical applicability 16

with barely sacrificing segmentation accuracy [6]. Together with the recent development 17

of an open source HSV system, namely OpenHSV, latest hardware and software 18

components were introduced to the clinic [10] that features these optimized DNNs for 19

clinical use. However, there is no record how these DNNs perform actually in a clinical 20

environment, as they have been validated on limited and selected data. 21

In this work, we report the performance of the AI-powered OpenHSV system 22

together with the DNN in a two-year clinical environment. Our main contributions are 23

summarized as follows: (1) we describe for the first time the overall image quality 24

distribution during a two-year period of clinical use, and if lossy data compression is 25

suitable for data storage and subsequent data analysis, (2) give an unbiased 26

performance evaluation of previously proposed optimized DNNs for clinical use for 27

different data origins and (3) employ a continual learning and fine-tuning strategy to 28

allow continuous integration of novel data into the DNN. Taken together, we strongly 29

believe that our study provides trust and shows reliability for the OpenHSV system 30

positively impacting future clinical adaptation. 31

Methods 32

OpenHSV system 33

We are using the OpenHSV platform introduced in [10]. Patients are routinely 34

examined using a rigid endoscope equipped with a high-speed camera (IDT 35

CCmini-1540) running at 4,000 fps. Illumination is granted by a high-power LED light 36

source (Storz 300 W LED). Each recording is at least 1,000 frames long and contains 37

synchronously acquired video and audio data. We further record patient metadata 38

consisting of the patient’s age, gender, and condition. For each video, we save two files 39

encoded with the h.264 codec: (1) lossy compression using common settings for video 40

and (2) lossless compressed data to recover the original recorded raw data. For lossy 41

compression, we use the libx264 codec, the yuv420p pixel format and set the quality to 42
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5 resulting in a varying bitrate. For lossless compression, we used the libx264rgb codec, 43

the rgb24 pixel format, set the ‘-crf‘ flag to 0 and used the ultrafast preset. 44

Patients 45

We assessed a total of 583 recordings acquired between November 2019 and November 46

2021. All recordings are done routinely in the clinic and are performed according to local 47

regulations (Ethikkommission FAU Erlangen-Nürnberg, #290 15). We first selected 48

only those recordings that featured a complete set of data, such that 295 recordings 49

remained. Next, we manually investigated the data quality. We ranked each video on an 50

ordinary scale: 0 (insufficient), 1 (okay), 2 (excellent). Videos ranked 0 were showing 51

insufficient data quality, such as non-visible glottis or foggy videos, and were discarded. 52

Finally, 267 recordings from 202 unique patients remained and were subjected to further 53

analyses (Fig. 2A). We report the frequency of recordings across the last two years in 54

Fig. 2B. Additionally, COVID-19 cases for Germany were provided as a reference how 55

data generation was affected by lock-downs. The number of recordings were higher 56

before the first lock-down, but their fluctuation remained constant when the general 57

clinical activity was restored. The age distribution of the patients is largely spread (Fig 58

2C), where the mean age is 47.2 ± 20.2 (std) years. The reported gender for the 59

analyzed subjects is 31.2% male, 66.8% female and 2.0% had no further specified gender. 60

The average file size for lossless and lossy recordings was 2.06 ± 1.27 GB and 8.97 ± 61

5.16 MB, respectively (see Fig. 2D). As the lossy files have an around 235-times lower 62

file size than the lossless compressed counterparts, we investigated in this study if the 63

lossy compression has an impact on the segmentation performance. 64
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Fig 2. Acquired OpenHSV data overview. A: From initial 583 recordings, we
excluded datasets that are missing any kind of data. From these, we excluded ones with
insufficient data quality, such as occluded glottis. B: Frequency of recordings across the
two year time frame is shown in black. The Germany COVID-19 cases are shown as a
7-day-average in gray. C: Age distribution across selected recordings from A. D:
Comparison of file size between lossy and lossless compression.

Image quality assessment 65

As we saved the data in two different compression modes, namely lossy and lossless, we 66

evaluated if there are any compression artefacts. First, we investigated the dynamic 67

range of the image, where 0 is no dynamic range and 1 is full dynamic range by 68
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computing the normalized absolute difference of the minimum and maximum pixel 69

value. We determined the no-reference, completely blind image quality score ”Natural 70

Image Quality Evaluator” (NIQE) [11] to provide an unbiased score for objective image 71

quality assessment. We further assessed full reference metrics, such as peak signal to 72

noise ratio (PSNR) and structural similarity index metric (SSIM) [12] to compare lossy 73

compression against the lossless stored data. We use respective implementations of the 74

metrics in scikit-video (NIQE) and scikit-image (PSNR, SSIM). 75

Deep Neural Network 76

The OpenHSV system is shipped with a deep neural network (DNN) based on the 77

U-Net architecture [13], that was optimized for clinical use as described previously [6]. 78

The used DNN is openly available on the OpenHSV Github account at 79

https://github.com/anki-xyz/openhsv. The training process is described in [10]. 80

Briefly, the DNN is setup in TensorFlow 2.2 and the high-level Keras package. The 81

DNN was pretrained in a supervised fashion on the full training dataset (55,750 images) 82

of the open benchmark for automatic glottis segmentation (BAGLS, [7]). The 83

pretrained network has never been exposed to OpenHSV data during training. 84

Region of interest 85

A rectangular region of interest (ROI) was drawn manually for each recording. We 86

saved the ROI coordinates for further use in JSON format. Each ROI was adjusted as 87

such that the width and height is divisible by 32 to ensure proper DNN propagation. 88

Segmentation 89

Lossy or lossless compressed endoscopic frames were first converted to grayscale by 90

extracting the luminance channel using standard procedures, as it has been shown that 91

color information is not essential for glottis segmentation [7]. In some experiments, only 92

an ROI around the vocal folds was used for inference. The input image intensity was 93

normalized between -1 and 1. The segmentation mask gained from the DNN provides 94

values in the range of 0 (background) and 1 (glottis) by a sigmoid function in the 95

output layer. For further use and due to memory limitations, we multiplied the 96

predicted segmentation masks by 255 in order to save the data in uint8 data format. 97

The glottal area waveform (GAW) is computed by summing the segmented pixels in 98

each frame for every timepoint of a given recording (see Fig. 1). 99

Continual training 100

We performed retrospective continual training on the original OpenHSV segmentation 101

DNN. We preprocessed new images as described above and used two continual learning 102

strategies: We either selected a fixed time period for data collection (7, 14, 30 days) or a 103

fixed video quantity (every 10, 20 or 40 videos, see also Fig. 5A). At each continual 104

learning point, we trained the model for ten epochs using the previously predicted 105

segmentation masks as ground truth for the training process. We chose a low learning 106

rate of 10−6 combined with the Adam optimizer to fine-tune the model. After each 107

continual training step, we evaluated the occurrence of artefacts by visual assessment 108

(number of artefacts, shown in Fig. 5B and S3 Fig) and computed the achieved 109

Intersection over Union (IoU, [14]) score (Fig. 5C,D). The IoU score is a measure how 110

well the prediction segmentation mask overlaps with the ground-truth segmentation 111

mask and ranges between 0 (no overlap) and 1 (perfect overlap). 112
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Results 113

Recording quality is consistent across time 114

To evaluate the performance of the segmentation DNN, we first assessed the overall 115

image quality for both, lossless and lossy recordings, as this is a major confounding 116

source for segmentation success. First, we determined the maximum dynamic range of 117

each given image. We found that the maximum dynamic range is constantly high for 118

both, lossless and lossy recordings (Fig. 3A, left panel), however, the dynamic range is 119

significantly lower for lossy recordings as for lossless recordings (paired Student’s t-test, 120

p <0.01, Fig. 3A, right panel). Using a complete blind, non-reference metric, the NIQE 121

score [11], we could show that lossless recordings have lower, therefore better NIQE 122

scores until beginning of 2021 (Fig. 3B), afterwards the NIQE scores were highly 123

overlapping. In [10], a mean NIQE for the OpenHSV system of 13.19 was reported, 124

showing that image quality has been consistent since the clinical introduction of the 125

system. 126
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Fig 3. Image quality is relatively stable across time. A: Dynamic range per
recording. Lossless compressed data in blue, lossy in orange. Boxplots show the
95-percentile of the data. B: NIQE score for lossy (orange) and lossless (blue)
compressed videos across time. C: Peak-Signal-To-Noise-Ratio (PSNR) across time. D:
Structural Similarity Index Measure (SSIM) across time.

To compare images retrieved from lossy recordings to their lossless counterparts, we 127

relied on two reference metrics, peak-signal-to-noise-ratio (PSNR) and structural 128

similarity index measure (SSIM). PSNR has a constant high value above 90 dB, 129

suggesting a high-quality compression (Fig. 3C). In contrast to PSNR, SSIM also takes 130

the perceptual change in structural information into account. In Fig. 3D we show that 131

the lossy compressed videos nevertheless are in almost perfect agreement with the 132

lossless reference. 133

In summary, we found that the image quality has single outliers, but overall is highly 134

consistent across time. Further, high PSNR and SSIM values indicate an overall 135

accurate conversion from lossless to lossy image content and high quality in lossy 136

compressed video. 137
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Segmentation performance is not affected by lossy data 138

compression 139

To further evaluate the performance of the segmentation DNN, we manually annotated 140

the glottal area in the first 100 frames of 20 randomly selected videos, half of which were 141

rated as quality 1 (okay) and the other half as quality 2 (excellent). Using this ground 142

truth and the predicted segmentation masks by the DNN, we computed the Intersection 143

over Union (IoU) for each frame across all videos. We found that lossy and lossless saved 144

videos achieve a similar performance with a median IoU of 0.756/0.742 and 0.770/0.768 145

for segmentation masks computed with and without ROI, respectively (Fig. 4B). These 146

IoU values are comparable to other works [6], where IoU scores between 0.741 and 0.769 147

were achieved, and are sufficient for clinical reliability.The use of an ROI enhances the 148

segmentation speed as smaller images are used, however, this leads to worse results. We 149

hypothesize that this is caused due to the loss of global spatial information. We further 150

mined the computed IoU scores to determine why very low IoU scores are obtained. Fig. 151

4C shows that the low IoU scores emerge with a small segmented area, i.e. when the 152

glottis is closed. This is in line with previous reports [7], and has a negligible effect on 153

the data analysis. We next investigated if any configuration has an impact on the 154

clinically relevant glottal area waveform (GAW) signal. We were able to confirm that all 155

combinations despite their deviation in the IoU score have little to no affect on the 156

GAW, as they do not deviate (S1 Fig A), and almost perfectly correlate (S1 Fig B), 157

important for downstream computation of quantitative parameters. 158
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Fig 4. Lossy compression does not affect segmentation performance. A: Input
data for DNN inference. Either full frame (magenta) or ROI-constrained (green) image
data were used for inference. Image data were stored either lossless or lossy compressed
as .mp4-files (see Methods). B: Intersection over Union (IoU) score per configuration
shown in A. C: Dependency of IoU scores on the segmented glottal area. D: Exemplary
glottal area waveform for full frame (w/o ROI) and ROI-based (w/ ROI) segmentations.
Lossy and lossless compressed data are plotted in orange and blue, respectively.

Continual training for DNN fine-tuning improves performance 159

Despite the fact that we gained mostly successful and accurate segmentations, we found 160

for a minority of videos (9%) two common issues: artefacts in the segmentation masks 161

and empty segmentation masks (S2 FigA). We hypothesized that continuous integration 162
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of new, system-specific data using continual training [15,16] is increasing the DNN 163

performance. Here, we evaluated two strategies for integrating new data (Fig. 5A). We 164

either used a fixed time period or fixed quantities of videos. We used artefact-free, 165

full-frame, lossy compressed videos for continual training, as full frames resulted in 166

higher IoU scores (Fig. 4A). We found that all strategies were able to reduce the 167

number of artefacts after only the first iteration of continual training and removed 168

artefacts on average by 38-48% (Fig. 5B). Additionally, the more data is used for each 169

training step, the higher the impact on artefact removal, and that a fixed quantity is 170

preferable to a fixed time period (Fig 5B). In particular, when determining the median, 171

i.e. what is the reduction in 50% of all cases, we found that the fixed amount of 40 172

videos has the best overall performance of reducing the artefacts of by 48%. In general, 173

we can confirm that a fixed data amount seems to be preferable to a fixed time frame, 174

as the latter also shows an unstable performance behavior across continual learning 175

epochs (S3 Fig). To further quantify this effect more objectively, we annotated the first 176

30 frames of each artefact video to compute IoU scores after each continual learning 177

step (Fig 5C-D). Each strategy was able to increase the IoU score already after the first 178

continual learning iteration, whereas a fixed data amount has a more stable and 179

constant performance (Fig 5C) compared to a fixed time interval (Fig 5D), similar to 180

our observations with manually scored artefacts (S3 Fig). Looking at the strategy of 181

using fixed time periods, it is clear that the IoUs do not change significantly during the 182

first COVID-19 wave, which again shows that the use of fixed quantities is preferable to 183

fixed time periods. Taken together, our data shows that the segmentation DNN is not 184

only able to quickly adapt to new data, but also that continual learning is an important 185

feature in using DNNs in a clinical context. 186
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Discussion 187

Laryngeal high-speed videoendoscopy is a major tool in quantifying laryngeal 188

physiology. In this study, we show that clinically optimized DNNs have an overall high 189

performance due to a constantly high data quality and a well pre-trained, generalized 190

DNN. Although the DNN has never be trained on this system’s data, we still gain in 191

most (91%) cases satisfactory results. We further show that lossy compressed videos are 192

on par with lossless compressed videos in terms of segmentation performance (Fig. 4). 193

Using continuous integration of novel data, we can also show that the DNN is able to 194

adapt such that previously identified artefacts are reduced and ensure a constantly 195

improving segmentation environment (Fig. 5). 196

Acquisition circumstances as potential confounders 197

We could show that the analyzed data has a relatively high image quality throughout 198

the analyzed time frame (Fig. 3). However, other systems have been shown to suffer 199

from low lighting, which can be rescued with Deep Learning methods [17]. As the data 200

acquisition is a manual procedure, motion of the patient or the examiner can be a 201

confounder. Motion correction techniques were proposed [18,19] that can be used as a 202

pre-processing step that have not been employed in this analysis. 203

Comparison to other glottis segmentation platforms 204

In this study, we investigated the performance of a single DNN. Offline image analysis 205

platforms, such as the Glottis Analysis Tools [19] (GAT), can further serve as a 206

reference for segmentation performance and may allow segmentations of higher quality. 207

In comparison, the analyzed OpenHSV DNN has similar performance as the smallest 208

GAT neural network, however, larger and more elaborate networks have superior 209

performance (S1 Table). Notably, this effect is largely compensated by our continual 210

training scheme (Fig. 5). Nevertheless, the average IoUs obtained in this study are in 211

an acceptable range (0.742-0.770) that do not impact the clinical soundness of 212

downstream quantitative parameter computation as shown previously [6, 10]. 213

Continual learning strategies 214

Our proposed continuous integration of more data is straightforward and effortless. We 215

have seen that using a fixed data mount is beneficial to a fixed time interval, which is 216

maybe due to the irregular patient stream (Fig. 2). We further observe a decline in IoU 217

scores across data and time (Fig. 5C-D) and a tendency to more artefacts after 218

integrating a large amount of data (Fig. 5B, S3 Fig). To counteract catastrophic 219

forgetting [15], a common problem in continual learning schemes, additional precautions 220

can be introduced, such as integrating the BAGLS dataset [7] in the continual learning 221

training dataset or testing on previous artefact-free images if the current model 222

performs better than before. Combining both aforementioned examples would 223

incorporate external and internal regularization factors that are maybe beneficial in a 224

more elaborate continual learning paradigm. In addition, we have not investigated how 225

more sophisticated human-in-the-loop strategies [20], such as manual segmentation and 226

retraining, perform. With a wider adoption of OpenHSV, we also believe that federated 227

learning techniques [21] will further boost the DNN segmentation performance. 228
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Supporting information 229

S1 Fig. GAWs are highly correlated across compression methods. A: 230

Distribution of mean absolute error (MAE) across compression modes segmented w/ 231

ROI (green) or w/o ROI (magenta). B: Distribution of the Pearson’s correlation 232

coefficient across compression modes segmented w/ ROI (green) or w/o ROI (magenta). 233

S2 Fig. Continual learning has an effect on erroneous segmentations 234

(upper panels) and on failed segmentations (lower panels). 235

S3 Fig. Artefacts decay with continual learning. A. Videos with artefacts 236

according to rating (0=large artefacts, failed segmentations, 1=small artefacts, 237

erroneous segmentations) for continual learning with a fixed amount of videos, namely 238

10 (yellow), 20 (green) or 40 (magenta). B. Same as panel A, but with fixed time 239

interval of 7 (yellow), 14 (green) or 30 (magenta) days. 240

S1 Table. Larger pre-trained DNNs perform slightly better in glottal 241

segmentation before fine-tuning our model. Number of Artefacts and Intersection 242

over Union (IoU) for several deep neural networks. 243
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17. Gómez P, Semmler M, Schützenberger A, Bohr C, Döllinger M. Low-light image
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