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Abstract

We describe an experimental setup and a currently running experiment for evaluating
how physical interactions over time and between individuals affect the spread of
epidemics. Our experiment involves the voluntary use of the Safe Blues Android app by
participants at The University of Auckland (UoA) City Campus in New Zealand. The
app spreads multiple virtual safe virus strands via Bluetooth depending on the social
and physical proximity of the subjects. The evolution of the virtual epidemics is
recorded as they spread through the population. The data is presented as a real-time
(and historical) dashboard. A simulation model is applied to calibrate strand
parameters. Participants’ locations are not recorded, but participants are rewarded
based on the duration of participation within a geofenced area, and aggregate
participation numbers serve as part of the data. Once the experiment is complete, the
data will be made available as an open-source anonymized dataset.

This paper outlines the experimental setup, software, subject-recruitment practices,
ethical considerations, and dataset description. The paper also highlights current
experimental results in view of the lockdown that started in New Zealand at 23:59 on
August 17, 2021. The experiment was initially planned in the New Zealand environment,
expected to be free of COVID and lockdowns after 2020. However, a COVID Delta
strain lockdown shuffled the cards and the experiment is currently extended into 2022.
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Author summary

In this paper, we describe the Safe Blues Android app experimental setup and a
currently running experiment at the University of Auckland City Campus. This
experiment is designed to evaluate how physical interactions over time and between
individuals affect the spread of epidemics.

The Safe Blues app spreads multiple virtual safe virus strands via Bluetooth based
on the subjects’ unobserved social and physical proximity. The app does not record the
participants’ locations, but participants are rewarded based on the duration of
participation within a geofenced area, and aggregate participation numbers serve as part
of the data. When the experiment is finished, the data will be released as an
open-source anonymized dataset.

The experimental setup, software, subject recruitment practices, ethical
considerations, and dataset description are all described in this paper. In addition, we
present our current experimental results in view of the lockdown that started in New
Zealand at 23:59 on August 17, 2021. The information we provide here may be useful to
other teams planning similar experiments in the future.

Introduction

The COVID-19 pandemic is the most significant global event of the 21st century to date.

In response to the pandemic, multiple solutions have been and are still being developed
and deployed, including vaccines and contact tracing technologies. As part of this effort,
various initiatives that integrate digital health and “Al systems” (artificial intelligence
for pandemics) are being thought out. A key initiative includes measuring the spread of
pathogens as well as the level of physical human contact. The Safe Blues project is one
such idea, where virtual safe virus-like tokens are spread between cellular phones in an
attempt to mimic biological virus spread for purposes of measurement and analysis,
while respecting the privacy and safety of the population.

Much COVID-19 data is being gathered by contact-tracing apps to aid in identifying
infected people or their contacts. However, there can be a time lag of 1 to 2 weeks
between being infected and being diagnosed as positive with the result that data
obtained in this way is always lagging and biased. Also, asymptomatic cases who may
have already spread the virus to others are frequently missed by such methods. Data
delays and bias make it difficult for public health officials and others who want to use
the data to implement timely mitigation measures. Our approach, on the other hand, is
specifically designed to make inferences about the global characteristics of an epidemic
in real-time, allowing governments to implement relevant mitigation measures in a
timely fashion.

Safe Blues, introduced in [1,/2], works by spreading virtual ‘virus-like’ tokens, which
we call strands. The strands can be of Susceptible-Exposed-Infectious-Removed (SEIR),
Susceptible-Infectious-Removed (SIR), Susceptible-Exposed-Infectious (SEI), or
Susceptible-Infectious (SI) type. Each strand is artificially seeded into the system at
chosen times and can then spread between phones of users. At any given time, a phone
can be infected with many strands, and the phone reports its strand infections to the
server periodically. Individuals’ identities and social contacts are not recorded in this
reporting, ensuring anonymity. A key aim of the Safe Blues idea is to give policymakers
another tool that they can use in their effort to visualize the real-time spread of an
epidemic. In contrast to those systems that model population contact and implement
agent-based simulations, Safe Blues is an emulation of a group of epidemics based upon
a contact process that takes place in the population itself.

We devised a campus-wide experiment at The University of Auckland City Campus.
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Table 1. The timeline of the experiment at The University of Auckland.

Phase Dates Stu'dy Comments
period
1 May 1 - Jun. 10, 2021 S1, 2021 Used for debugging
2 Jul. 18 - Sep. 16, 2021 S2, 2021 Lockdown on Aug. 17, 2021
3 Sep. 17 - Nov. 4, 2021 S2, 2021 Cancelled due to lockdown
4 Jun. 10 - Sep. 8, 2022 S2, 2022 Currently planned
5 Sep. 9 - Nov. 3, 2022 S2, 2022 Currently planned

This is the first attempt to implement such a system. An outcome of this experiment is
an open-source (virtual) epidemic spread dataset which can be used for further
modeling, training, and analysis. Our initial plan was to conclude the experiment
during November 2021, with the release of data afterwards. However, due to an
extensive lockdown in Auckland, the experiment will now run through the second half of
2022. In this paper, our primary focus is on the experiment’s methods and the
experience gained. Also, we illustrate general outcomes and results to date. The details
we present may be valuable to other teams planning similar experiments in the future.
Table [1| describes the phases of the experiment, their timelines, and the period at the
University of Auckland during which these phases run.

As an illustration of the experiment and some of the collected results, consider Fig
where we depict the timeline July 28 — September 9, 2021. Phones of participants were
“infected” with strands on July 29 and the figure presents the trajectories of the ensuing
epidemics along with the number of participants who attended the campus during that
period. There are multiple Safe Blues strand trajectories, the (artificial) infection on
July 29 included multiple repeats of the same type of strand and multiple types of
strands. In fact, not displayed in this figure, about 600 strands were seeded into the
participating population. The black trajectory depicts the daily count of campus
participants. The weekly attendance pattern, with lower attendance at weekends, can
be seen clearly. The green and red trajectories represent the hourly counts of
participants whose phones were in the states of ezposed (infected but not infectious) and
infected, respectively. As is apparent from the plot, Safe Blues infections continued until
the week of August 17 at which point the campus was closed due to a (real) government
lockdown. At that point, the number of participants who attended the campus
immediately dropped to fewer than 5 per day. As a result, the number of new infections
(exposed participants) immediately decreased and within several weeks the number of
infected participants also decreased to zero.

The Safe Blues experiment was not intended to interact with actual COVID
numbers or lockdowns. In fact, we chose New Zealand as a destination because it was
essentially COVID free for the second half of 2020 and the first half of 2021 and we
believed that a university campus could serve as a good first testbed for Safe Blues. In
making this decision, we were aware that the university campus did not directly mimic
the population dynamics in all of New Zealand. For instance, during the Auckland
lockdown in Phase 2, the campus was completely shut down, while in contrast, people in
greater New Zealand still interacted, for example, to go shopping. We did not foresee
this lockdown in planning the experiment. Nevertheless, the closure of the campus due
to the actual physical lockdown served to illustrate the key point of Safe Blues: safe
virtual virus strands that are measured in real-time can give an indication of how actual
viruses are spreading, and with enough data and proper machine learning techniques,
prediction can take place as well. The Safe Blues system could thus be applied to
predict the spread of viral diseases within a subgroup of the population.

This paper outlines the experimental setup, software, subject recruitment practices,
ethical considerations, and dataset description of the experiment. It also presents our
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Fig 1. The effect of campus closure, due to actual lockdown in New Zealand on August 17, on
the virtual Safe Blues epidemic. Red and green trajectories show the daily counts of
participants whose phones were infected (red) and exposed (green) respectively. The black
trajectory shows the daily count of participants who attended the campus.

current experimental results. Our goal in doing so is to showcase the methodologies and
experience gained from the experiment. The source code for the project is freely and
openly available at . Further, at the conclusion of the experiment, data will be made
available via [4].

Background

We now present an overview of current practices and specific non-clinical experimental
studies that share similar concepts with Safe Blues. Most COVID-19 data are gathered
by public health authorities from testing, hospitalizations, and deaths. Various
non-government organizations, such as the World Health Organization (WHO) , the
Center for Systems Science and Engineering at Johns Hopkins University @, and
nCOV2019 [7], collect this data on a global scale and provide daily trend updates.
However, such data are prone to lags, biases and inconsistencies, and may not reveal the
true characteristics of the disease in real-time. Hence, alternative surveillance methods
are needed.

Participatory syndromic-surveillance is one such approach that collects self-reported
data on COVID-19 symptoms, test results, and other risk factors for COVID-19 via
mobile applications or web-based surveys. Examples of such web surveys include
InfluenzaNet , FluTracking ﬂgﬂ, Outbreaks Near Me , CoronaSurveys , and the
Global COVID Trends and Impact Survey . Among the most recent mobile apps are
the COVID Symptom Study and Beat COVID-19 Now .

To identify potential COVID-19 hot spots, artificial intelligence is being used in
conjunction with information obtained from informal sources, such as Google News,
eyewitness reports, social media, and validated official alerts. HealthMap [L5/[16],
BlueDot , and Metabiota are such tools. Early detection of outbreak regions
through wastewater examination is also used in some countries . Remote patient
monitoring devices, such as continuous wearable sensors (e.g. smartwatches, Fitbit,
Oura Ring, WHOOP strap) and smart thermometers, are also being tested as potential
tools for tracking COVID-19 [20H25]. These tools measure some of the physiological
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indicators of an individual’s health, such as temperature, heart rate, blood oxygen level,
pulse rate, sleep performance, and step counts, on a daily basis. The device can identify
deviations from an individual’s baseline level which may indicate the possibility of an
illness developing.

Contact tracing is a popular method for identifying infected but asymptomatic
individuals. Under this approach, people who have a history of exposure to a positive
case are identified and tested as soon as possible. Various mobile applications and
web-based surveys are used for contact tracing [11,/12,/26-33]. Many Bluetooth-based
apps, however, were abandoned after their initial release in 2020 [34.(35]. Many
jurisdictions have QR code scanning systems in place to track and manage COVID-19.
However, data from such apps are typically useless when prevalence increases. For
example the Check In Qld app [36] in the Australian state of Queensland was
successfully applied to trace contacts of positive cases during 2020 to mid-December
2021 when the Queensland state border was closed and case numbers were single or
double digit at most. However, once the border opened and daily new cases grew to
three or four digits, the Check In Qld app was generally abandoned.

Moving on to experimental studies, we mention two major non-clinical citizen
science experiments conducted prior to the pandemic for disease surveillance purposes.
The first is the FluPhone experiment which took place in the United Kingdom between
2009 and 2011 [37]. In this experiment, participants reported their influenza like illness
symptoms using the FluPhone app, which also recorded the proximity of participants’
devices via Bluetooth and their location via GPS. The number of people encountered by
each participant was then estimated and published on the study website [38]. The
FluPhone app, like the Safe Blues app, modeled the spread of virtual SEIR type
diseases, allowing participants to see real-time profiles of disease propagation in their
contact network [39]. However, unlike the Safe Blues app, which is designed to simulate
hundreds or thousands of strands, the FluPhone software was designed specifically to
mimic the spread of SARS, flu, and the common cold. FluPhone was a unique
experiment at that time, but in contrast to Safe Blues, it was designed with less of a
focus on capturing physical social interactions in a privacy preserving manner, and more
of a focus on mimicking real disease. The second study is “Contagion! The BBC Four
Pandemic experiment”, which also took place in the UK, but this time in 2018-2019.
The BBC Pandemic mobile phone app was used in the experiment to record
participants’ locations and self-reported contacts. A subset of this dataset was used to
simulate various non-pharmaceutical intervention (NPI) strategies, such as case
isolation, tracing, contact quarantining, and social distancing, to investigate their
effectiveness in limiting the spread of COVID-19 [40].

Since the middle of 2020, many countries have been investigating the risk factors
involved in opening their society through mass-gathering experiments. Two well-known
examples are the RESTART-19 [41] experiment, which took place in Germany in August
2020, and a study which took place in Spain in December 2020 [42]. Both assessed the
risk of COVID transmission during an indoor live concert, using a variety of seating,
standing, and hygiene measures, as well as maintaining optimal air ventilation inside the
venue. In both studies, contact tracing devices were used to measure contacts made
during the event, and PCR tests were performed a few days later. The RESTART-19
study showed that when moderate physical distancing was applied in conjunction with
mask-wearing and the conditions for good ventilation were met, indoor mass-gathering
events could be held safely. Also, the trial in Spain demonstrated that with
comprehensive safety measures, such as face masks and adequate ventilation, indoor
mass events could be held without the need for physical distancing.

Some experiments have included a series of mass-gathering events with a variety of
indoor and outdoor settings, seated and standing audience styles, structured and
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unstructured audience styles, and participant numbers. Two such examples are the
Fieldlab Events [43] which took place in the Netherlands in February and March 2021,
and the Events Research Program [44], which took place in the United Kingdom from
April to July 2021. In both experiments, comprehensive public health measures, such as
face mask use, hand sanitizing, social distancing, and adequate ventilation at indoor
events were observed. Following the events, contact tracing and PCR testing were
carried out. According to the Fieldlab Events, outdoor events with 50-75% of the
normal visitor capacity could be held provided that strict non-pharmaceutical
intervention measures are followed. A robust result from the Events Research Program
is yet to be published

Other relevant experiments include a health workers protest [45] in South Korea in
August 2020 and a martial arts competition [46] in the UAE in July 2020. During both
events, participants were required to wear face masks, practice hand hygiene, and
maintain physical distance. COVID-19 symptoms were self-reported by protesters in
South Korea after the rally. All PCR tests performed on a subset of rally participants
returned negative results. PCR tests were conducted twice weekly during the UAE
event, and none of the contestants had positive results, indicating that mass-gathering
events with restrictive measures could be held safely.

Materials and methods

We now describe the experimental setup, ethics, software, participant management, and
data collection aspects of the experiment as well as supporting tools such as a
simulation model.

Experimental setup and the Safe Blues system

As stated in the introduction, the overarching purpose of the campus experiment is to
test the performance of the Safe Blues system. In doing so, we are interested in
assessing the ability to use virtual safe virus-like tokens to predict the spread of
pathogens. However, an experiment involving actual biological pathogens, or relying on
the actual spread of disease is infeasible and hence our experiment uses measurements
from the digital domain. The key question is then to test if the spread of some Safe
Blues strands can be detected and predicted by measuring the spread of other strands.

In its most basic form, our purpose is to treat a single strand as a red strand which is
assumed not to be measurable in real time. Further, we treat all other Safe Blues
strands as real-time measurable virtual viruses, namely blue strands. The statistical goal
is then to benchmark predictions of the future evolution of the red strand based on
either,

(I) only past measurements of the red strand (a proxy for estimation in the absence
of blue strands), or

(IT) the combination of past measurements of the red strand, past measurements of
blue strands, and current measurements of blue strands.

For example, Fig[2| which also appeared in [1], presents a simulation run where blue
strands are measured in real time, but the red strand is only measurable with a
two-week delay. Here the Safe Blues machine learning framework was used to predict
the current unobserved state of the red strand. Similarly, it can be used for near future
predictions. However, this figure is taken from Monte Carlo simulations of physical
contact processes, and not from actual experimental measurements. The Safe Blues
experiment attempts to improve upon this by using the actual physical mobility of
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Fig 2. Estimation via simulated epidemics. At day 115, we only have red strand information
up to day 100. Nevertheless, current blue strand measurements allow us to estimate the current

state of the epidemic during days 101-115.

individuals. The experiment aims to test whether (II) can yield much better predictions
than (I).

An additional salient feature of Safe Blues is the interaction with social distancing
measures. For this, we would ideally like to ask participants to group together or stay
apart similarly to the way that government social distancing measures work. However,
this is clearly not feasible with real-life participants and hence the experiment creates
virtual social distancing to mimic social-distancing measures. The details of how this is
done are described below in the subsection |Virtual social distancing}

As a first attempt for such an experiment, we chose the University of Auckland City
Campus due to the fact that the campus was open to students and staff during 2021
(up until the unexpected lockdown of Aug 17, 2021). The experiment consists of 5
phases. Table |1 provides the timeline of the experiment including the time period of the
year, the study period and a brief description of each phase. The target population of
the experiment is the student body, but participation is open to any regular attendee or
visitor of the UoA City Campus who is at least 16 years of age and uses an Android
mobile phone. All participation is voluntary, and at any time, participants could opt-out
of the experiment and uninstall the Safe Blues app. By default, participants are invited
to join prize draws which we carefully designed to maximize participation (see details in
subsection [Participant management and ethical considerations below). However,

participants are allowed to take part in the experiment without joining the prize draws.

The Safe Blues system is made out of four components: (1) the Safe Blues app, (2)
the campus simulation dashboard, (3) the campus experiment leader dashboard, and (4)
the Safe Blues data dashboard. All four components are available online at [47], [4], [48],
and [49] respectively. Fig 3| displays a snapshot of these four components.

Strand and device management

Participants run the Safe Blues app [47] (see also Fig[3| (top left) for an illustration of
the app) as they go about their normal day to day activities on campus while enabling
Bluetooth and location services. Location services are only needed for prize based
rewards as described below. A participant’s app then communicates with the apps of
other participants via Bluetooth to pass on digital ‘virus-like’ tokens, namely Safe Blues
‘strands’. This simulates an epidemic spreading through the community. There are
many types of strands of such virtual safe epidemics, and the live emulation of all of the
epidemics happens in parallel driven by the actual physical contact processes of
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Fig 3. The Safe Blues system: the Safe Blues app (top left), the simulation dashboard (top
right), the campus experiment (campus hours leader board on bottom left), and the data
dashboard (bottom right).

participants.

The app is not malicious and does not interact with any other app that users may be
running on their phone. Open-source code is available on GitHub via the Safe Blues
website . Nevertheless, the app, like any other mobile app, consumes the battery of
the phone. It is the participants’ responsibility to manage their phone battery usage,
and our experience has shown that some participants turn off the app while away from
the campus. The app is only available for Android due to the fact that iOS phones
cannot run such an app in the background. This clearly limits the participating
population. We discuss the technical details of the app software in

With the exception of participant reward information, described in
subsection |[Participant management and ethical considerations| below, information
recorded by the Safe Blues system is limited to the aggregated counts of each strand.
Every 15 minutes a phone uploads the status of its infections in terms of ‘exposed’,
‘infected’, and ‘recovered’ for each strand. The total number of ‘susceptibles’ is then
inferred based on the total number of phones participating at any given time. This
uploading occurs via a temporary anonymous 256 bit ID which changes every 24 hours
on the phone. Thus the Safe Blues server does not keep track of the individual infections
of phones and it cannot uniquely identify a phone beyond a 24 hour period. The
temporary ID is still useful for correct counting of infections on the server side, since
juessages are sometimes lost or not sent if the phone is without connectivity (see
where we describe the algorithm for interpolation and imputation of counts to
handle this). The individual phone strand information is never cross-referenced with
private participant information, further preserving the anonymity of participants.

March 29, 2022

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

261

262

263


https://doi.org/10.1101/2022.03.31.22273262
http://creativecommons.org/licenses/by-nc-nd/4.0/

medRxiv preprint doi: https://doi.org/10.1101/2022.03.31.22273262; this version posted April 1, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.

It is made available under a CC-BY-NC-ND 4.0 International license .

The injection of new infections into the participating phone population is carried out
via an API (Application Program Interface) available to the phones. In each phase of
the experiment we inject multiple strands with each batch containing a collection of
individual strands. For example, in phase 1, where we focused on testing and tweaking
the system, there were 7 batches in total labeled 1.01 to 1.07. Similarly, in phase 3
there were 22 batches in total, labeled 3.01 to 3.22. We discuss the number of strands
in each batch, their parameters, and their purposes in the experiment in
When a batch of strands is ‘injected’, all participating phones become aware of the
strands of the batch and each strand has a pre-specified seeding probability which is
typically set to 0.05, 0.1, or 0.2. Then at a specified start time, each phone is
independently infected by the new strand in accordance with the seeding probability.
This ‘seeding’ of new strands thus emulates the arrival of new outbreaks of the epidemic
into the population.

We applied four types of epidemic models for the phone population: SEIR, SIR, SEI,
and SI. In both SEIR and SEI models, when a susceptible phone receives a strand, it
first becomes exposed and remains in this state for a random time period known as the
incubation period. During the incubation period, the phone is unable to infect other
phones. After the incubation period, the phone becomes infected and remains in this
state for a random time period known as the infection period. During this time, the
phone has the ability to infect nearby phones by exchanging a Bluetooth token. The
distribution of the incubation and infection periods is explained further below. The
infection period in the SEIR type epidemic is finite, and the phone stops infecting other
phones at the end of this period. Consequently, its state is labeled as recovered. The
infection period in the SEI epidemic is infinite, and the phone cannot recover. There is
no incubation period in the SIR and SI epidemics, and a susceptible phone becomes
infected immediately after receiving the strand. The SIR epidemic has a finite infection
period and the phone recovers at the end of it. The infection period of the SI epidemic
is infinite, and the phone remains in the infected state throughout the epidemic.

During phases 1-3, and including the intervening period between phase 3 and
phase 4, we injected 4155 strands in total into the system. Of these, 28% are of the SI
or SEI type (not involving removal/recovery) and the remaining 72% are of the SIR or
SEIR type (allowing recovery). Fig 4] depicts the cumulative counts of strands released
over time during phases 1-3.

Beyond the classification of SI, SEI, SIR, and SEIR, each strand, uniquely identified
by a strand_id, which has specific parameters that influence its spread. A full
specification of the protocol for these parameters is in Appendix Al of [2]. However, the
protocol there does not deal with specific distributional information and the infection
probability mechanism. Hence we now outline these details.

We use gamma distributions for both the incubation and infection times and
parameterize them by a mean p and a shape parameter k. That is, for each = € (0, 00),
the probability density function is

f(x;p’vli):inm e (1)

where T'(+) is the gamma function. In this case, the ratio between the variance and the
square of the mean is 1/k. In many cases we used k = 3; in other cases to create
(nearly) deterministic times we set k = 10, 000.

The other important strand information deals with the probability of infections of
nearby phones. At every time where two participating phones are near each other,
Bluetooth messages are exchanged during a session and throughout this session,
distance measurements are carried out. In principle using individual Bluetooth messages
may appear to be preferable to creating sessions. However the nature of the Bluetooth
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Fig 4. The cumulative number of strands over time broken up into SI, SEI, SIR, and
SIER types and phases of the experiment.

protocol and the underlying software implies that sessions are the preferable technique;

At the end of the session (capped at 30 minutes), the median distance from all
messages is computed and denoted by d. The duration of the session is denoted by ¢.
We expect that with closer distances and longer duration, infection is more likely. We
chose the probability of infection parameterized by the strand’s strength, o, and the
maximal infection distance, p, to be

1— e—oiﬁ(l—d/p)7 d < P

0 d>p. @

p(d7t§ g, p) = {

In general, we expect strands with higher p or higher ¢ to be more infectious.

In setting the strand parameters o and p we initially used a simulation model (see
subsection [A campus simulation model| for details). Subsequently, we adjusted the
parameters based on field experience (see section [Results and discussion| section for
details).

Participant management and ethical considerations

Our goal in participant management is to motivate participants to run the Safe Blues
app while on campus. A first decision was whether to couple participation data with
strand data (number of virtual infections). We chose not to do so. While such coupled
data could be useful, our primary goal is the strand-count time series for which coupling
is not needed.

A second decision was whether to pay participants a ‘flat rate’ for participation, for
example with coffee vouchers proportional to their participation hours or to use prizes.
As the total budget was limited, and in accordance with other experimental
research [5152], we opted for prizes. As this is a digital experiment we chose iPad,
Android phone, and Fitbit prizes, with 9 prizes per prize draw. See for
details of the prize draw rules.

Participants were recruited directly via online flyers, posters and videos. To take
part in the experiment, participants first needed to install the Safe Blues Android app
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on their mobile phones. This gave them a random 10 digit ID which identifies them
only for purposes of experiment participation and prizes but is not associated with their
strand infections. With this ID, participants can then register their email address which
is used for communicating experiment messages and prize winners.

As participants enter the city campus, an Android geofencing mechanism spawns an
event on the app, and then when they leave the campus (leave the geofence) an
additional event is spawned. A message of participation hours is recorded on a server.
The participation hours contribute to the chance of winning a prize. In general, the
more hours a participant runs the app on campus, the higher the chance of winning a
prize (see . The app does not track the location of participants with the
exception of indicating whether or not the participant is within the campus geofence
area. Fig 5| (left) displays a snapshot map of the UoA City Campus with the geofenced
area marked on it.

Fig 5. The University of Auckland City campus with the geofenced area supporting the
experiment marked as a circle (left). A heatmap representation of buildings used in the
simulation prior to the experiment (right).

As an additional side-benefit of the experiment, we provide the aggregated visits to
campus and duration statistics as part of the dataset. The left side plot in Fig [6] depicts
the daily number of participants who were registered, reporting, and attending the
campus in the experiment during phases 1-3. The right side plot in this figure displays
the distribution of the means for the daily campus hours collected by participants, over
weekdays and weekends, during phases 1-3. As per the prize draw rules
the maximum daily campus hours that each participant can collect is capped at 10.

By the end of phase 2, about 20% of the registered participants were not running the
app. In an attempt to enroll more participants in the experiment, we upgraded the
reward scheme during phase 2. This included an ‘invite-a-friend’ option, which
increased a participant’s chance to win a prize if new participants joined the experiment
through their invitation. Those who joined the experiment through the invite-a-friend
mechanism were also rewarded with bonus eligible hours. See for further
details about rules and the invite-a-friend mechanism. Joining the prize draws was not
compulsory for those taking part in the experiment.
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Fig 6. Evolution of the daily number of participants who were on campus (Attending),

reporting, and the cumulative number of participants who were registered in the experiment,

during phases 1 to 3 (left). Box plot of the means from the 5 number summaries for daily

campus hours (right).

Although we were not conducting any clinical or health research including human

data, we required approval from the University of Auckland Human Participants Ethical

Committee (UAHPEC) before doing any form of research involving university

volunteers. The study was approved by UAHPEC under ethics number 22143 in March

2021. In this application we addressed ethics considerations, including naming all
researchers, description of the study, location of study, methodology, participants and

recruitment process, data management, funding, Maori-focused consultation and
engagement, and consistency with the principles of Te Tiriti o Waitangi.

We also provided the ethics committee with a copy of all the Safe Blues website
pages, a permission letter from course directors (for big statistics courses where the

project was advertised) and head of the Department of Statistics, participant
information sheet, poster, the consent form, the data management plan, and the
observation schedule.

Data management

The experiment is managed through two distinct databases. A Participant Management
System (PMS) is used to store the email addresses and consent agreements, as well as a

record of the campus hours. The PMS is hosted at the UoA, and data are used only for

the purposes of managing the prize draws and the list of participants. Data in the PMS
is completely disconnected from the experiment data and will not be publicized in any
way, with the exception of analysis of aggregated participation counts over time (for

example, see Fig@.

The second database, called the Anonymous Data Server (ADS), is managed in the
cloud and contains an aggregate, anonymized, time-stamped record of the number of

phones with each strand. For each strand, we record this data on an hourly and
basis, and indicate the aggregate number of phones in each epidemiological state

daily

(susceptible, exposed, infected, recovered) over time. As this database follows the Safe
Blues protocol, phone (app) identities are not revealed during communication, and
phones (apps) only have temporary IDs that are replaced on a daily basis. We spell out
the technical details of how we record data in the PMS and ADS in

We record aggregated participation counts from the PMS as daily and hourly

measurements, along with the daily and hourly means and five number summaries—that
is, the minimum, first quartile, second quartile, third quartile, and maximum-of campus
hours in a CSV file. On days where there are fewer than 5 participants these numbers
are omitted for privacy reasons. Similarly, the aggregate Safe Blues data from the ADS
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are also stored in several CSV files, one for each strand. See for specific
details of the Safe Blues data repository. The Safe Blues data will be made publicly
available in the Safe Blues data repository after the experiment concludes. Plots of the
data are currently available as a web-based dashboard at [49]. See Fig |3 bottom right,
for a snapshot of the dashboard.

By agreeing to take part in the experiment, a participant agrees to share the Safe
Blues data of their Safe Blues app. At any point in time, a participant may choose to
withdraw from the experiment and this will result in deletion of their personal
information from the PMS. However, their aggregated anonymized data already
recorded on the ADS will remain in the database and will potentially contribute to the
scientific findings of the experiment.

A campus simulation model

We used a simple simulation model to approximately capture the expected behavior of
the participants, and to aid with our initial choice of strand parameters to be used in
the experiment. This discrete-time stochastic spatial compartmental SEIR model was
used as an initial guide for ranges of the maximal infection distance and infection
strength parameters in Eq .

A Safe Blues strand is characterized by its seeding probability, w, infection strength,
0, maximal infection distance, p, incubation time distribution, and infection time
distribution. In the simulation, the initial infections were determined by Bernoulli
random variables with each simulated participant independently having a chance 7 of
becoming infected when the strand was activated. The remaining participants could
only become infected by being a ‘close contact’ of an already infectious person. After
each time step, the positions of participants were independently drawn from a heat map
designed to resemble likely locations attended by participants in the real-world
experiment; see Fig [5| (right). The time step considered here was 1 hour, which
corresponds to the duration of a lecture. Each susceptible individual who was d meters
away from an infectious individual for ¢ minutes was infected with the probability given
by Eq .

After a strand was successfully transmitted to a susceptible individual, they became
exposed and remained in this compartment for a random amount of time (incubation
time) drawn from a gamma distribution with mean ug and shape kg as in Eq .
Subsequently, once their exposure time elapsed, they became infected and were able to
infect further individuals with this strand. The duration of their infection (infection
time) was again gamma distributed with mean p; and shape k7. A strand without
incubation (SI or SIR) can be described by setting pup ~ 0 and i ~ 0 and a strand
without recovery (SI or SEI) can be described by settlng 4 = O and = = 0. Further
details are in the code repository within the Safe Blues GltHub repomtory 13]-

We developed a web-based interactive simulation dashboard; see Fig 3| (top right)
and [48]. The interactive dashboard has a variety of control features that enable a user
to set the model and its parameters. We used the simulation to focus on exploring
parameters for a strand’s infection strength ¢ and maximal infection distance p. In
particular, we explored o in the range [0, 0.1] and p in the range [0, 20], and fixed the
remaining parameters at a specific values. We chose 7 = 0.1, ug = 24 hours (or a single
day), kg = 5, uy = 168 hours (or a single week), Ky = 5.

The simulation indicated that with a population of 50 or more participants, some
level of Safe Blues spread is possible. Further we simulated epidemics on population
sizes 100, 200, and 500. Based on 1000 simulation runs of the model, we observed that,

1. there existed a minimum value for p for sustained transmission, which decreased
as population size increased, and
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2. there existed a region of transitional parameters, which narrowed as population
size increased.

These observations allowed us to conclude that o € [0,0.05] and p € [10,20] were the
ideal parameter ranges for a population size of 100, o € [0,0.05] and p € [5, 15] the ideal
parameter ranges for a population size of 200, and o € [0,0.04] and p € [2,12] the
optimal parameter ranges for a population size of 500. These observations then guided
our initial strand parameter choices.

Virtual social distancing

Apart from using Safe Blues as a tool for collecting data on virtual epidemic spread, we
also tested it as a means to explore how ‘virtual social distancing’ affects these
epidemics. Our goal in implementing ‘virtual social distancing’ was to provide a rich
dataset which could be used by researchers or public health bodies to explore future
intervention strategies through social distancing.

In order to implement the ‘virtual social distancing’, we tweaked the measured
(observed) distance, d, in Eq by a ‘social distancing factor’. Thus, if the measured
distance was 4m and the social distancing factor was 1.5, then the distance, d, for
infection computation was 4 * 1.5 = 6m. See the [Results and discussion| section below
for results of this testing mechanism.

Results and discussion

Calibration of the maximal infection distance parameter

At the start of the experiment we used the parameter ranges determined from the
campus simulation study as an initial guide for choosing strand parameters, o and p as
in . Our initial purpose was to find dynamic ranges of both the infection strength, o,
and maximal infection distance, p, that affect the spread of strands. Initial results from
the campus experiment immediately confirmed the effect of the maximal infection
distance, while the effect of infection strength was not apparent in the dynamic range of
values that we used. We then further explored the range for the maximal infection
distance parameter using the strands released in batches 1.05 and 1.06, during phase 1
trials. In particular, we experimented with the maximal infection distance parameter
within the range [7.5,500] while choosing the strength parameter within the range
[0.1,.24].

In batch 1.05, we released 30 SI type strands with the strength parameter fixed at
0.16 for all strands and the maximal infection distance parameter chosen from the set
{7.5, 15, 30, 60, 120, 500}. We observed that, in general, there were 3 ranges for the
distance parameter that produced distinct epidemics. Specifically, the epidemics
established when the maximal infection distance parameter was greater than 30.
Increasing the maximal distance parameter beyond 120 did not necessarily produce
more severe epidemics. Further, the epidemics did not propagate for most of the strands
when the maximal distance parameter was less than 30. With this observation in mind,
we fine tuned the search grid for the maximal distance parameter using the strands
released in batch 1.06. We released 90 SI type strands in that batch, with the maximal
distance parameter chosen from the set {20, 26, 34, 44, 57, 74, 97, 125, 163, 212} and
the strength parameter chosen from the set {0.1, 0.16, 0.24}.

The plots in Fig[7] depict the effect of varying the maximal infection distance
parameter on the propagation of epidemics. The left side plot shows the daily infection
trends of strands in batch 1.06 over 5 days categorized by 3 maximal infection distance
ranges. The right side plot displays the difference in infection count between the 1st day
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and 5th day for the strands in both batches as the distance parameter varies. In both
these plots we ignored the effect of infection strength since its confounding effect was
negligible.
We fitted a two parameter scaled, and shifted sigmoidal curve to the data, plotted in
red. The curve clearly indicates an upward infection effect of the maximal infection
distance with saturation at distances over 80 meters, and less than 30 meters. This is
not unexpected based on our design of the infection formula , yet we initially found
the magnitude of the distances puzzling. One may expect Bluetooth transmission to be
effective at distances that are significantly shorter. Towards that end, we believe the
observed distance, d in , may be skewed in our app measurements which are based on

averaging of RSSI Bluetooth signal strengths. Such bias between the actual distance of

devices and the observed distance, d, may be further investigated via direct phone to
phone measurements of the app. We have yet to carry out such measurements to

completion, but initial tests indicated of a mismatch of the order of 30 meters, meaning

that phones that are z meters apart perceive a distance in the order of d = = 4 30.

o
3

Maximal Inf. Distance: < 30.0
Maximal Inf. Distance: 30.0 to 80.0
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Fig 7.
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Infection trends over 5 days for strands in batch 1.06, categorized by 3

10 120

maximal infection distance ranges (left). Effect of varying maximal infection distance on

the difference of infection (day 5 - day 1) for strands in batches 1.05 and 1.06 (right).

The red curve on the right side plot is a fitted sigmoid function.

Herd immunity

Herd immunity occurs when a significant proportion of a population become immune to
an infectious disease through either vaccination or previous infection, making the
disease unlikely to spread within the population. The ‘herd immunity threshold’ is the
minimum proportion of the population that must be immune in order to achieve herd
immunity. In the simplest SIR model, this quantity can be calculated as 1 — 1/Rq,
where Ry is the basic reproduction number of the disease . The basic reproduction
number is the expected number of secondary infections caused by a single infectious
person in an otherwise susceptible population . The basic reproduction number

for the delta variant of COVID-19 is estimated as 5.1 , and thus the herd immunity

threshold for the delta variant is approximately 80%.
In our experiment, we observed the herd immunity phenomenon from some of the
strand’s epidemics. For example, Fig[§] displays the epidemics of two SEIR type Safe
Blues strands with different mean infection periods. It is evident from the two plots
that about 80% of the participating population recovered and about 20% remained
susceptible after the disease died off, depicting the herd immunity phenomenon.
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Fig 8. Epidemic trajectories of an SEIR type Safe Blues strand with mean infection
period 10 days (left), and 5 days (right). The remaining strand parameters are common

to both strands.

Testing the virtual social distancing mechanism

Social distancing is intended to increase spatial separation. It could be implemented by
putting a lower bound on d or scaling d up. As mentioned previously, we implemented
virtual social distancing by multiplying the observed distance parameter, d, in Eq[2| by a
given social distancing factor. We considered 4 social distancing factors; 1 (no social

distancing) 1.25 (low), 1.5 (medium), and 3.0 (high). We tested virtual social distancing

for the strands released in batch 1.07, starting from the 3rd day of their release.
batch comprised 60 SI type strands.

This

We compared each strand’s infection counts on the days prior to and after virtual
social distancing was imposed. Fig[9] displays the effect of social distancing and the

maximal infection distance on infection counts of three strands. Each data point

is

comprised of number of infections one day before the virtual lockdown and number of

infections one day after the virtual lockdown. We saw three distinct patterns for
counts one day prior to implementing virtual social distancing. When maximum

the

distance was 40, the counts were less than 2, when it was 60, the counts were between 2

and 6, and when it was above 80, the counts had similar values. This distinction
not visible for the infection counts after imposing virtual social distancing.

was

In terms of the effect of the social distance factor, we can observe that infections on
the day after the virtual lockdown were, in general, lower for the high (3.0 SD) and
medium (1.25 SD) factors. This result highlights the fact that our initial trials on
virtual social distancing had an impact in reducing the severity of the epidemics. Higher

participant numbers and using more strands would probably strengthen this calculation.

We intend to explore virtual social distancing in our future trials once the experiment

restarts in 2022.

The effect of an actual lockdown on the experiment

In the previous section we highlighted that we were able to observe reduction of strand
infection counts based on artificially imposed social distancing. However, we were able

to observe the same phenomena after the actual lockdown that occurred in New
Zealand during phase 2 trial of our experiment.
The actual lockdown in Auckland, took place on August 17, 2021 at the time

when

we released batch 2.01 strands, and the lockdown was later extended until the end of

2021. There were 600 strands in total in this batch. These were the first set of

experimental strands that were released after we determined the maximal infection

distance parameter ranges and tested virtual social distancing. The campus was
down due to the lockdown, and the number of attendees on campus immediately

shut
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Fig 9. Infection counts of three Safe blues strands on the day prior to and after implementing
virtual social distancing, categorized by their maximal infection distance. Each point is the
centroid of the triangle formed from the infection counts of the three strands. Social Distancing
(SD) is categorized as; 1.0 (no SD), 1.25 (low SD), 1.5 (medium SD), and 3.0 (high SD).

dropped. Consequently, we saw an immediate reduction in the number of exposed
participants, and within weeks the number of infected participants reduced to zero.
Thus, our data showcased the effectiveness of the actual lockdown.

In Fig [I0] we depict the infection trajectories of all strands in batch 2.01,
categorized into their model type (SEIR, SIR, SEI, SI). For all model types we can see a
clear effect of the actual lockdown on their strand’s trajectories. As expected, for both
the SEIR and SIR models (top two plots in Fig , the infection trends gradually
reduced or remained close to zero within weeks after the lockdown, and for both the SEI
and SI models (bottom two plots in Fig , the infection trends stabilized. We also see
that the effect of the lockdown was immediate, showcasing the real-time nature of Safe
Blues information.

Conclusion

We have described the design of a Safe Blues experiment in Auckland, New Zealand.
The experiment was interrupted by a lockdown in August 2021, so we have extended
the experiment to include two more phases once the second semester begins in June
2022. The partial data we collected while calibrating the experiment in early phases,
especially after the lockdown, suggests that Safe Blues data will be a valuable tool in
the fight against pandemics. In particular, we saw the effect of the lockdown
immediately in the strand data, even though in reality the effect of the lockdown would
not be observed for several days, since infection counts lag true infections by the
incubation period together with the time it takes to get tested and recorded the test
result which can be several days. The value of Safe Blues real-time data is even greater
in the presence of under-reporting of cases, which arises in the presence of
asymptomatic infections, or skepticism or ignorance of the value of reporting or where
the efficiency of other methods (contact-tracing, wastewater monitoring or even PCR
with group testing) is reduced when prevalence is high.

Our focus in this paper was on the design of the experiment. We discussed the
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Fig 10. Infection trajectories for all strands in batch 2.01, categorized into SEIR (top left),

SIR (top right), SEI (bottom left), and SI (bottom right).

databases, strand management, measures taken to ensure participant privacy, and

participation incentives that are essential in such an effort. A simulation tool was useful
in initially calibrating strand parameters, but data from initial phases became more
valuable than simulation for full calibration. In the early stages of the experiment we

were able to approximately model the effect of social-distancing mandates and the
results suggest the potential for the full experiment to showcase the potential

effectiveness of such measures, as did the data from the true lockdown. As part of the
experiment we have built a number of visualizations and these, along with all necessary
source code, are available on an open repository. We look forward to providing data

from Phases 4 and 5 of the experiment once these are complete.

Supporting information
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Appendix 1: Prize draw rules

As participants run the Safe Blues app within the geofence area (See Fig 5), they collect hours which increase
their chance of winning prizes. This is done by accumulating campus hours which are then translated into eligible
hours via the rules described below. During Phase 1 we used a simpler set of rules, and introduced the ‘invite
a friend” mechanism from Phase 2 onward intending to increase participant numbers. See also the prizes web
page, https://safeblues.org/prizes/.

This is an overview of the rules:

For every hour running the app on campus, one campus hour is collected.

Campus hours are accumulated since joining, or since the start of the current phase (campus hours are
not collected during paused periods (see Table 1).

A participant may collect up to 200 campus hours per phase.

A maximum of 10 campus hours per day can be collected.

Campus hours are converted to eligible hours as follows:

— Each of the first 20 campus hours counts for 2 eligible hours.

— After the first 20 campus hours, each additional campus hour counts as 1 eligible hour.

Participants may obtain more eligible hours via the ‘invite a friend’” mechanism.

— After accumulating 20 campus hours, participants may invite up to 10 friends to join the experiment
and thereby receive bonus eligible hours.

For every friend they invite, after the friend collected 20 campus hours, the inviting participant
receives 5 additional eligible hours.

— The mechanism for inviting a friend is by generating a 6 digit invite code and asking the friend to
enter that code.

— Invited friends will receive 5 eligible hours when they sign up.

e FEach phase with the exception of phase 3, has a prize draw at the end of the phase. Additionally, in place
of the phase 3 prize draw, which was voided due to lockdown, there is a special prize draw (see below)

e In each prize draw (for phases 1, 2, 4, and 5), prizes are drawn as follows:

— The chance of winning a prize is based on the eligible hours divided by the total number of eligible
hours of all participants.

— There are 9 prizes in each draw. A single top prize (iPad Pro), 3 second-tier prizes (Android mobile
phones), and 5 third-tier prizes (FitBit tracker).

— A participant may win at most one prize in a draw and this works as follows. First, everyone competes
for the top prize and the winner is removed from the pool. Then all remaining participants compete
for the second-tier prizes, each time removing the winner. Similarly for the third-tier.

— A participant is eligible to win at most a single prize from each tier over the course of the experiment.
For instance, a winner of the top prize in the first draw will be excluded from winning the top prize
in draws that follow (but may still win other prizes).

e Participants can track both their collected campus hours and eligible hours per phase and see how many
hours they have collected relative to the distribution of hours collected by other participants (see Fig 3,
bottom left plot for a snapshot of the participants leader board showing this distribution).

e All participants are emailed a full report from the prize draw and winners collect directly from experiment
staff.
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e There is a special prize draw in place of phase 3 during the period between phase 3 and phase 4. In this
prize draw 10 participants have a chance to win a Fitbit tracker. The prize draw is performed by uniformly
selecting 10 winners among all those participants who have accumulated 5 or more campus hours during
the period of phase 2.
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Appendix 2: App software

The Safe Blues Android app is based on the Trace Together Android App (Open Trace) [I] and was forked
from the Open Trace Android version in April, 2020. The Open Trace software is designed for contact tracing,
however we modified it to support the Safe Blues protocols. The app is written in the Kotlin language and has
been made available on Google Play since March 2021.

The app is now specifically tailored for the Safe Blues campus experiment and includes on—boarding screens
that assign the app instance a unique 10 digit ID. There is no email or other authentication information queried
in the app. With the exception of the basic on-boarding screens, there is no user engagement in the app as
it runs in the background. The app requires the user to enable location services and Bluetooth. Bluetooth is
clearly needed for strand propagation. Location services are not directly part of the Safe Blues system but are
needed to recognize that participants are in the geofenced area for the purpose of allocating prizes.

The initial phase of the experiment (see Table 1 in Appendix 6) included the release of several versions of
the app that were automatically updated by participants. The sequence of these versions fixed several initial
bugs. The most notable bug was a non-random initialization of the random number generator in the app,
which caused all participating phones to seed Safe Blues strands in unison. Specifically, in strand batch 1.01
all participating phones decided together whether to seed a strand or not. Once this bug was fixed, a new
app version was deployed. This deployment process included the strand batch 1.02 which did not include any
strands per-se.

Due to limitations on control over the underlying Bluetooth hardware, the app transfers information between
two phones by pairing them together for a brief period of time. We call each such Bluetooth interaction a “ping”.
Each time two phones ping each other, they transmit their set of infectious strands as well as the strength of their
transmitter. While the app is running, it continuously tries to ping other phones that are part of the experiment,
including phones that have been pinged recently. These pings are then combined together into longer Safe Blues
sessions (capped at 30 minutes) after which the Safe Blues simulation step runs. The original rationale for the
session concept was to allow more flexibility in setting the infection mechanics of the simulation: our system
could, for instance, be used to investigate the effect of a perfect contact tracing regime in tandem with these
virtual pandemics (where a contact is traced if they spend a minimum duration at a minimum distance with
a contact). Furthermore, the underlying Bluetooth systems are far from ideal for this, exhibiting congestion
in large groups of participants and being unreliable even when there are few participants. The session system
accommodates for some of this unreliability while also giving more accurate estimates of distance.
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Appendix 3: ADS and PMS servers technical details

The Safe Blues experiment system separates the anonymous data server (ADS) and the participant manage-
ment system (PMS). The ADS is part of the operational Safe Blues system and is used to push new strands to
the client apps and record phone strand information through anonymized client IDs generated within the app.
The PMS is a system designed specifically for the experiment and is primarily aimed at participant management
and prizes. It records how long the app was running in the background while the participant was within the
experiment geofence. The PMS accomplishes this by using a separate “experiment ID” that is Completely
isolated from the client ID in the ADS. Both systems run in parallel on the phone: the ADS is part of the
experiment, while the PMS simply checks whether the participant is on campus with the required permissions
and Bluetooth turned on, and relays summary counts to the PMS server.

We chose to physically separate these two servers in order to provide an extra layer of privacy protection for
participants as well as to enable future Safe Blues deployments (perhaps operational) to use the ADS while not
the PMS. In this separation, the PMS is hosted on a Nectar Research Cloud server managed by The University
of Auckland, whilst the ADS is hosted on the commercial Amazon Web Services (AWS) Cloud.

The ADS uses a PostgreSQL database and exposes a gRPC API for phones indicating strand (and virtual
social distancing) information, as well as a RESTful admin API. Phones running the app send messages to the
ADS every 15 minutes, informing it of the status of the strands. The following are the protocol buffer messages
about strands:

message Strand {
string name = 13;
int64 strand_id = 1;
google.protobuf.Timestamp start_time =
google.protobuf.Timestamp end_time = 3;
double seeding_probability = 4;
// the two parameters of the infection probability map
double infection_probability_map_p = 5; // strength
double infection_probability_map_k = 6; // radius
double infection_probability_map_l = 7; // unused
// mean and shape of the gamma distribution for incubation period
double incubation_period_mean_sec = 8;
double incubation_period_shape = 9;
// mean and shape of the gamma distribution for infectious period

2;

double infectious_period_mean_sec = 10;
double infectious_period_shape = 11;

uint32 minimum_app_version = 12;

Messages from phones to the ADS are encoded as follows:

message InfectionReport {
string client_id = 1;
int32 version_code = 5;

repeated int64 current_incubating_strands = 2;

repeated int64 current_infected_strands = 3;

repeated int64 current_removed_strands = 4;

All such incoming messages are stored on the ADS Postgres database. Phones are only identified by a
temporary 256-bit client ID that changes every 24 hours. Appendix 4 describes the algorithm running on the
ADS for interpolation and imputation. Note that the ADS is not aware of the 10 digit participant ID which
was only created for the purposes of the experiment.
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information). The PMS receives messages from the phones via a restful JSON API indicating time spent
on campus. An example of such a message is below (where duration and count_active are in units of 15
minute intervals, and the truncated_entry_time is the UNIX timestamp of the entry into campus. As can be
seen, these messages indicate the time on campus. The phone generates such a message whenever leaving the
geofenced area.

{
"participant_id": 1234567890,
"version_code": 60,
"statuses": [
{
"status_id": 112,
"truncated_entry_time": 18731,
"duration": 12,
"count_active": 11
},
{
"status_id": 113,
"truncated_entry_time": 18944,
"duration": 17,
"count_active": 17
},
]
}

As shown in the bottom left image of Fig 3, the PMS aggregates these messages in a MySQL database,
which is then queried for prize information and for presenting users with their current leader-board standings.
The PMS also acts as a web server for a React-based website used for experiment registration, the ‘invite a
friend” mechanism, and the aforementioned leader-board.

Some specific PMS information is made available in accordance with the ethics approval. This is the total
number of participants on campus and the total number of registered participants, as shown in Fig 6 (left plot),
as well as summary of the distribution of daily campus hours of participants using the mean and a 5-number
summary (see the right plot in Fig 6).
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Appendix 4: Interpolation and imputation algorithm

The epidemiological status of strands is stored in the ADS as a collection of reports received from participants’
smartphones. The interpolation and imputation problem is to use these reports to reconstruct each participant’s
infection status at arbitrary times throughout the entire day. Specifically, the way in which the experimental
data is collected and stored results in two issues that must be resolved: (a) a participant’s status before any
reports were received and (b) a participant’s status during the time between reports.

Here, in describing the method used to solve the aforementioned problems, we fix a 24-hour UTC interval,
an active strand, and a 256-bit ID. Note that, because a participant’s anonymity 256-bit ID changes every
24 hours, our procedure cannot make use of any information before this window. We collect from the ADS
database the following information: the time at which the participant sends their first report, Tx; the time at
which the participant first reported a state of “exposed”, Tg; the time at which the participant first reported
a state of “infected”, T7; and the time at which the participant first reported a state of “recovered”, Tr. We
choose Tr = o0 if a “recovered” report is never received, 17 = Tx if an “infected” report is never received, and
Tr = Ty if an “exposed” report is never received. Moreover, given any T' € {Tg,T;,Tr} with T = Tk, we set
T = 0. The participant’s state at an arbitrary time ¢ during the day is given by

“susceptible”, t < Tpg,

“expected”, Te <t<1Ty, (1)
“infected”, T <t < Tk,
“recovered”, Tr <'t.
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Appendix 5: Strand details

Here we overview the main purpose of the batches of experiment strands at different stages of the experiment.
Specific strands in each batch can be identified from the strand_id parameter listed in the strand.csv file in
the Safe Blues Experiment Data repository (see also Appendix 6). Table [1| details the total number of strands
released for each batch during phases 1-3 of the experiment, as well as the strand IDs associated with them.

Phase | Batch No. of | Strand IDs | Type Main Purpose
strands
0 0.01 50 1-50 SEIR, SIR, SEI The debug version, which is the first
test of system in a workshop involving
10 users.
1 1.01 162 51-212 SEIR, SEI, SI First time testing the system on the

experiment population. A bug (“same
seed”) was detected.

1 1.02 1 213 SI To test the system after fixing the
“same seed” bug.
1 1.03 10 214-223 SEI After the “same seed” bug, this was an

intermediate debug batch while waiting
for Google Play app update.

1 1.04 162 224-385 SEIR, SEI, SI Same structure of strands as 1.01 re-
leased after fixing the “same seed” bug.
1 1.05 30 386415 SI Experimentation of the effect of

strength and maximal infection dis-
tance on infection via SI strands.

1 1.06 90 416-505 SI Further experimentation of the effect of
maximal infection distance on infection
via SI strands.

1 1.07 60 506-565 SI Testing the virtual social distancing
feature.
2 2.01 600 566-1165 SEIR, SIR, SEI, SI | Main release of all types of strands to

begin Phase 2 of the experiment. These
strands were planned to live until the
end of Phase 3.

2 2.02-2.06 | 600 1166-4023 | SEIR, SIR, SEI, SI | Weekly releases identical to 2.01 dur-

(per ing the first month of the lockdown.
batch)

3 3.01-3.22 | 6 (per | 40244155 | SI As Auckland is still in lockdown, releas-
batch) ing 6 strands per week until the planned

start of Phase 4 in case of any changes
in behavior over this period

4 &5 |- - - - Strands for phases 4 and 5 will be sim-
ilar to 2.01, currently planned with a
release of new strands every two weeks
during those phases.

Table 1: Batches of strands and their main purpose in the campus experiment.

We now overview the batches of Table [I] starting with the debug batch, 0.01, and up to the Phase 3 final
batch, 3.22. Batch 0.01 or the debug batch was used as an initial test of the app prior to deploying it to
the experimental population. This test trial involved 10 people who attended a Julia language meetup at The
University of Queensland on April 21, 2021. This batch contains 50 strands in total, with a combination of SEIR,
SIR, and SEI types. Following this, batch 1.01 was the first experimental test of the system as part of The
University of Auckland experiment. Immediately after release of this batch, we observed that all participating
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caused all phones to make the'ts'él?fédc?e%‘@i@ﬁI%H'&chr 8CGiBE NGNES &P&tﬁ@?}foﬂﬂﬂ'cﬁ% bug was fixed and a single
SI type strand was released as batch 1.02 to test this. While waiting for a Google Play update for the new app
version, strands from batch 1.03 were released as an intermediate step for further testing. These were 10 SEI
type strands. Once the bulk of the experiment participants updated their app to the new version, batch 1.04
was released with the same composition of strands initially intended in 1.01. This batch, 1.04, constitutes the
main experimental batch within Phase 1.

The remaining batches of Phase 1, 1.05 — 1.07, were aimed at further calibration of the strength and
maximal infection distance parameters (as described in Eq (2)), as well as testing the virtual social distancing
feature (see Materials and methods section in the main document). Specifically, 1.05 tested a range of distance
and strength parameters and their effects on virtual viral spread, and 1.06 refined the search grid in the maximal
distance parameters. We were able to see a clear effect of the maximal infection distance parameter on viral
spread in both cases (see Fig 9). However, we were unable to detect a significant effect of the strength parameter
within this parameter search. We released strands in batch 1.07 at the beginning of the week (Monday morning
New Zealand time), and by Wednesday we had inflicted various levels of virtual social distancing, with factors
ranging from 1.25 to 3.0. Measurements from this batch clearly indicated that the virtual social distancing
mechanism has a significant impact on strand transmission (see Fig 9).

Moving onto the batches of phases 2 and Phase 3, the major batch providing data to date is 2.01. This
batch was released one week into Phase 2 (on Thursday, July 29) and included an extensive variety of strand
types based on experience gained in Phase 1. Three weeks after the release, the major New Zealand lockdown
took place and this immediately affected strand propagation (see Fig 10 presenting all strands from this batch).
With anticipation of the lockdown potentially lifting, we released batches 2.02 — 2.06 weekly where each such
batch contains the same types of strands as 2.01. These batches have not yielded meaningful infections due to
the continued lockdown. Finally, throughout Phase 3, and the interim period between Phase 3 and Phase 4,
we released the weekly batches 3.01 — 3.22. These batches, each with only 6 SI strands, are intended to “keep
alive” the Safe Blues system.
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Appendix 6: Data structure

The Safe Blues dataset is organized in the data repository as shown in Fig [[l The strand parameters
determine the epidemiological behavior of each virtual virus—like token, including its transmissibility, incubation
duration, and infection duration. A table of these parameters is stored in data/strands.csv. This table
contains a row for each strand circulated during the campus experiment and contains columns described in
Table The transmission data provides aggregate measurements of the spread of strands throughout their

data
daily
strands
strand1.csv
strand2.csv
participants.csv
— hourly

strands
strand1.csv

strand2.csv

participants.csv

strands.csv

Figure 1: Safe Blues Data Structure.

reporting periods. We store the progression of the i*® strand (strand_id = i) as a daily and hourly time
series in strand(i).csv file. These tables have a row for each time point (either daily or hourly) and have
the columns described in Table 2] The participant data presents aggregate information on the engagement of
participants throughout the course of the experiment. This is also available as either a daily or hourly time
series in participants.csv files. Again, these tables contain a row for each time point (either daily or hourly)
and contain the columns described in Table Bl
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Name Description

strand_id The unique numerical identifier given to each strand

batch The release batch or group of strands within which each strand

model The epidemiological model used by each strand (either SI, SEI,
SIR, or SEIR)

start_utc The time at which each strand’s reporting begins in UTC timezone

start nzt The time at which each strand’s reporting begins in NZST/NZDT
timezone

seed_utc The time at which each strand’s initial infections occur in UTC
timezone

seed nzt The time at which each strand’s initial infections occur in
NZST/NZDT timezone

stop_utc The time at which each strand’s reporting ends in UTC timezone

stop_nzt The time at which each strand’s reporting ends in NZST/NZDT
timezone

initial A participant’s probability of initial infection for each strand

strength The strength of transmission for each strand

radius The maximal infection distance of transmission for each strand

incubation mean The mean parameter for each strand’s gamma distributed incu-
bation duration

incubation_shape | The shape parameter for each strand’s gamma distributed incu-
bation duration

infection mean The mean parameters of each strand’s gamma distributed infec-
tion duration

infection_shape The shape parameters of each strand’s gamma distributed infec-
tion duration

Table 1: Description of the columns in strands.csv. The incubation mean and incubation_shape values
are missing when the model is either SI or SIR type. The infection mean and infection_shape values are
missing when the model is either SI or SEI type.

Name Description

strand_id The unique numerical identifier given to each strand

time_utc The time of each measurement in UTC timezone

time nzt The time of each measurement in NZST/NZDT timezone

susceptible The current number of participants who are susceptible to the strand
exposed The current number of participants who are incubating the strand
infected The current number of participants who are infected with the strand
recovered The current number of participants who have recovered from the strand
distance_factor | The artificial distance multiplier used to emulate social distancing

Table 2: Description of the columns in the strand_i.csv file, where i is the i*" strand. The values for exposed
column are missing when the model is either SI or SIR type. The values for recovered column are missing
when the model is either SI or SEI type.
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Name Description

time_utc The time of each measurement in UTC timezone

time nzt The time of each measurement in NZST/NZDT timezone

count_campus The number of participants on campus during the current day

count_reporting The number of participants whose phones are sending reports
during the current UTC day

count_registered | The number of participants who have registered for the experiment
by the current day

hours_mean The mean number of campus hours

hours_min The minimum number of campus hours collected

hours_q1 The lower quartile number of campus hours collected

hours_q2 The median number of campus hours collected

hours_q3 The upper quartile number of campus hours collected

hours_max The maximum number of campus hours collected

Table 3: Description of the columns in the participants.csv files. All statistics reported in the two
participants.csv files are in reference to NZST/NZDT days except for count_reporting, which is in reference
to UTC days. The mean and 5 number summary correspond to the campus hours collected by participants
who attended campus on the current day. Values for the mean and 5 number summary are missing when
count_campus is less than or equal to 5.
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