Predicting the future development of diabetic retinopathy using a deep learning algorithm for the analysis of non-invasive retinal imaging

Yovel Rom,1 Rachelle Aviv,1 Sean Ianchulev,1,2 Zack Dvey-Aharon1

1 AEYE Health Inc.
2 New York Eye and Ear, Mount Sinai Hospital, NY

Abstract

Diabetic retinopathy (DR) is the most common cause of vision loss in the working age. While over 90% of sight-threatening cases may be treated if detected early, prevalence of yearly detective screening is low until advanced presentation of the disease. We developed a machine learning algorithm for the prediction of future DR development using fundus photography of otherwise healthy eyes. The algorithm achieved 0.81 Area Under Receiver Operating Curve (AUC) when averaging scores from multiple images on the task of predicting development of referrable DR, and 0.76 AUC when using a single image. Our results suggest that risk of DR may be predicted from fundus photography alone. Prediction of personalized risk of DR may become key in treatment and contribute to patient compliance across the board, particularly when supported by further prospective research.

Introduction

Diabetic retinopathy (DR) is a common retinal vascular complication of diabetes mellitus, which is characterized by retinal micro-aneurisms, hemorrhages, neovascularization, and edema in the retina.1 Diabetic retinopathy can advance to blindness, and is the leading cause of vision-loss at the working age. While over 80% of diabetics develop retinopathy of some degree after 20 years of the disease,2 more than 90% of the sight-threatening cases can be treated, if found early, in time to prevent loss of sight.3

Current public health guidelines for individuals with diabetes prescribe annual or bi-annual screening for the presence of DR.4,5 Clinical studies have demonstrated that screening can lead to early detection and timely treatment which ultimately can prevent serious visual impairment and blindness.6,7 While retinal screening is essential for patients with diabetes, it requires a specialized eye exam which is often inaccessible for patients. A large percentages of individuals with diabetes forego screening retinal exams and present late in the course of the disease.8–11 Early intervention is the key to mitigation of DR risk factors and damage. As such, early detection is the most promising way of mitigating the damages of DR.

AI and machine learning have recently been successfully applied to the autonomous diagnosis of referable (more than mild) DR. One FDA-approved AI system reported sensitivity of 87% and specificity of 90%.12 More recently, we reported results of a Pivotal FDA study with 93% sensitivity and 91% specificity for referable DR on images obtained by a desktop device and 92% and 94% sensitivity and specificity, respectively, on images obtained by a portable camera.13 Additionally, we presented strong efficacy for DR detection using a portable camera on a separate dataset.14

While diabetic retinopathy can be diagnosed by physicians and machine learning systems, there have been no reliable prognostic models to predict DR conversion to date. Some work has been done on finding risk factors for DR, using patient data such as age, HbA1c levels, gender, duration of disease, and the like.15,16

Recent work has shown that otherwise “normal” fundus images can be informative and predictive when presented to a machine learning algorithm.17–19 AI algorithms can interpret subclinical information of the retinal anatomy and make predictions about diseases, even those unrelated to the eye - such as chronic kidney disease (CKD),17 diabetes,18 and cardiac arrest.19 Furthermore, machine learning algorithms have
been trained to predict gender information with high accuracy from mere fundus photography – something previously unattainable with the standard clinical exam.

In this study we present a first-in-class machine learning algorithm which predicts the development of future DR from otherwise normal retinal anatomy.

Methods

Dataset

We utilized a dataset compiled and provided by EyePACS (http://www.eyepacs.org), comprised of fundus retinal images and expert readings of said images. The data consisted of 156,363 images from 21,730 patients who visited the clinics at least twice between 2016 and 2021. 19.6% of visit pairs were ≤ 12 months apart, 55% were 12-24 months apart, 19.8% were 24-36 months apart, and 5.5% of visits were ≥ 36 months apart (Appendix A). Of the patients, 37% were male and 63% were female or other; mean age was 55 years old (Table 1). All images and data were de-identified according to the Health Insurance Portability and Accountability Act “Safe Harbor” before they were transferred to the researchers. Institutional Review Board exemption was obtained from the Sterling Independent Review Board under a Category 4 exemption.

The dataset contained up to 6 images per patient visit: one macula centered image, one disk centered image, and one centered image, per eye. Each eye was graded individually by an expert ophthalmologist for the presence and severity of diabetic retinopathy (DR). DR severity (none, mild, moderate, severe, or proliferative) was graded according to the International Clinical Diabetic Retinopathy scale.20,21

The image categorization in the current research was simplified to three severity categories by combining categories 3 to 5 into “more-than-mild DR”, as only these levels usually necessitate referral to an ophthalmologist and/or medical and surgical management.22,23

In order to prepare the dataset for model training and validation, each image was labeled by the maximal DR rating the patient was diagnosed with in a time period following the visit. Towards this purpose each patient visit was rated twice on the DR scale, once for each of the patient’s two eyes. Pairs were then created consisting of all possible pairings of each patient’s visits in a given time period. Values of the pairings were calculated by measuring the difference in DR ratings, and then taking the maximum value. Each time point (visit) was then assigned the highest value from the pairings in which that timepoint was the first, and each image was labeled by that value. Negative differences were disregarded, as the regression cause was unknown: true disease regression, clinical intervention, or misdiagnosis. Models were created for each of the chosen time periods.

For instance, a given patient has visited a clinic n times, once a year: v1, v2, ..., vn. The cutoff for the given time period is set at two years, resulting in the following n-1 data points: v1 compared to v2 and v3 (taking the maximal difference), v2 compared to v3 and v4 (taking the maximal difference), etc. Further models using this patient’s data are also created, set at different time periods (three years, four years, and so on).

There were two reasons for choosing the maximal difference as the label. First, the main clinical value is in predicting whether a patient will develop DR, not in which eye it will be. Second, correlation found between the maximal right and left eye differences was relatively high (0.5), which indicates that difference between the eyes may well be incidental.

Algorithm development

To evaluate the models’ performance, a random 10% of the patients were designated as the validation set and not used for the training of models. Given that this same 10% were used as the validation set across tasks, this choice made the fair comparison of different models and timeframes easier.

In order to train the model, all the datapoints representing a progression were included, and a subset of the negative datapoints were included at a ratio of 2:1.
Models were trained on four different tasks:
- Progression amongst DR patients (mild to more-than-mild).
- Prediction of DR development (normal to any DR).
- Prediction of clinically significant DR (from non-referrable to referrable DR).
- General progression (progress): any change for the worse in the DR condition.

The hyper-parameters for the model training were chosen beforehand, and not changed, to prevent over-fitting.

Risk factor predictive value
For 80% of the patients in the dataset, HbA1c level was recorded by the clinic, and disease duration was recorded for 98% of patients. HbA1c level and disease duration were treated as risk level scores. AUC was then calculated in order to rate predictive value for each of the scores, which were then compared to the predictive value of the model on each task (table 3).

Results
Transitional Retinopathy Results
The calculated baseline transition odds between different DR levels are displayed in Table 2 (for a more detailed table see appendix B). This is observational data, as regression- and progression-related factors are unknown; regression may have been caused by clinical intervention, and progression may be understated due to patients who experienced vision loss and therefore did not return for subsequent visits.

Prediction Results
The model’s performance in determining the risk of mild DR becoming more-than-mild DR is comparable to risk factor-based prediction (area under the receiver operating curve (AUC) 0.65 vs. 0.66, respectively). For the other tasks more images were available, (appendix J) and performance improved significantly. The results improved still by using multiple images per patient and averaging the resulting score. The model scored best on the task of prediction of clinically significant DR, with the aggregated score resulting in AUC 0.81 (CI 95% 0.77-0.84) (Table 3. Additional timeframes and ROC curves available in appendix G and H). As the HbA1c levels and disease duration was not available for all patients, model scores were also calculated for the subsets of patients who had those scores, resulting in effectively the same scores (appendix M). The Pearson correlation between our model’s score and HbA1c levels was 0.12 (CI 95% 0.06-0.21). Correlation with disease duration was 0.21 (CI 95% 0.22-0.30).

To further analyze the model’s prediction value in that task, the empirical risk as a function of the model’s score was investigated (Figure 1). When the model was trained to predict the transition to more-than-mild DR, the top 5% patients highest scored by the model were at 54% risk of getting DR, while the baseline odds in the validation set were 10% - almost a 5-fold increase.

In order to analyze the relation between the model’s assigned scores and the severity of developed DR, the scores assigned by the model were averaged and compared across different subgroups; normal patients who were diagnosed with DR up to two years after initial images were taken were sorted into subgroups based on DR severity. The groups of mild, moderate, and severe DR were score averaged at 0.36, 0.43, and 0.46 respectively (Figure 4).

Additionally, the model’s predictive effectiveness regarding the more rapid development of DR was analyzed. Assigned scores were averaged and compared across subgroups organized by time elapsed between initial imaging and diagnosis: one, two, three, and four or more years. It was hypothesized that
the healthier the eye appeared the more time would elapse between initial imaging and diagnosis. As expected, the model’s score declined in congruence with time passed before diagnosis (see Figure 3).

Discussion

The aim of this research was to develop a method of predicting the chances of future development of DR, before detection methods can even be applied. Given the relatively high prevalence of DR, the difficulty in permanently reversing retinal damage, and current patient non-compliance, prevention and not only treatment of DR is crucial to health outcomes. As such, prediction of individual DR risk may become a key element. Currently, to the best of our knowledge, the only methods of doing so are risk factor based and are of limited predictive clinical utility.

The current research was conducted using convolutional neural networks, a standard state of the art computer vision algorithm. Such algorithms have been reliably incorporated in multiple medical fields, such as ophthalmology, radiology, endocrinology, and others. The algorithms presented in this work, which are easily implemented and display promising performance, may carry widespread implications related to better DR prediction. For instance, given the knowledge that some patients are at very low risk of developing DR, screening may be able to be feasibly reduced according to individual risk levels, reducing strain placed on both patients and medical staff. Furthermore, in high-risk cases which have not yet manifested, patients may be forewarned of impending risk, increasing chances of mitigation and prevention through diabetes management.

A lack of patient education regarding the risks of diabetes, and DR specifically, has been cited as a contributing factor in patient non-compliance. Furthermore, patients may not attend screenings due to belief that they do not require retinal examinations or treatment as their vision is too good, or their diabetes is too mild to be relevant. The ability to concretely discuss personal risk levels with the patient may do much to mitigate these beliefs, contributing to higher compliance. Improved patient compliance in terms of DR may also improve compliance in terms of general diabetes management, bettering patient outcomes across the board.

One limitation of the current research is that the transition odds are observational, rather than experimental. As such, there is the possibility of an under-statement of risk, given that blinded people likely did not continue to return for checkups. Odds of regression may similarly be over-stated, as regression factors are unknown and regression may have been caused by surgical or medical intervention.

Recommendations for future research include studies on how to incorporate the model into usual diabetes standards of care, in order to better mitigate and prevent DR. As the model’s score was not strongly correlated to risk factor score, there may be added value in including metadata on levels of previously recognized risk factors among patients in order to improve predictive value. Additionally, there is great value in examining whether use of this algorithm does, in fact, improve patient compliance. This model may also contribute to future research of DR risk factors and prevention, as at-risk patients with previously unknown risk factors may become recognizable, allowing for a more holistic understanding of contributing influences, both biological and behavioral.
References

Tables

<table>
<thead>
<tr>
<th></th>
<th>Training set</th>
<th>Validation set</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of patients</td>
<td>19,531</td>
<td>2,199</td>
</tr>
<tr>
<td>Number of images</td>
<td>140,614</td>
<td>15,749</td>
</tr>
<tr>
<td>Age: mean, years (s.d.)</td>
<td>55.15 (10.68), n=19495</td>
<td>55.34 (10.40), n=2195</td>
</tr>
<tr>
<td>Gender (% male)</td>
<td>0.37, n=19102</td>
<td>0.37, n=2155</td>
</tr>
<tr>
<td>HbA1c: mean, % (s.d.)</td>
<td>7.98 (2.26), n=15672</td>
<td>7.99 (2.75), n=1756</td>
</tr>
<tr>
<td>Disease duration: mean, years (s.d.)</td>
<td>7.46 (6.44), n=18803</td>
<td>7.21 (6.20), n=2108</td>
</tr>
<tr>
<td>Ethnicity</td>
<td>62.1% Latin American, 11.4% ethnicity not specified, 9.1% African Descent, 7.4% Caucasian, 5.4% Asian, 2.8% Indian subcontinent origin, 1.1% Other, n=19076</td>
<td>61.4% Latin American, 10.7% ethnicity not specified, 9.7% African Descent, 7.8% Caucasian, 5.6% Asian, 3.1% Indian subcontinent origin, 1.1% Other, n=2147</td>
</tr>
</tbody>
</table>

Table 1: Key characteristics of the dataset.

<table>
<thead>
<tr>
<th>Initial DR level</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Year 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Regression</td>
<td>-</td>
<td>0.413</td>
<td>0.328</td>
<td>0.35</td>
<td>0.119</td>
</tr>
<tr>
<td>No Change</td>
<td>0.921</td>
<td>0.38</td>
<td>0.613</td>
<td>0.567</td>
<td>0.881</td>
</tr>
<tr>
<td>Progression</td>
<td>0.079</td>
<td>0.208</td>
<td>0.059</td>
<td>0.084</td>
<td>-</td>
</tr>
<tr>
<td>Year 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Regression</td>
<td>-</td>
<td>0.383</td>
<td>0.307</td>
<td>0.461</td>
<td>0.159</td>
</tr>
<tr>
<td>No Change</td>
<td>0.895</td>
<td>0.328</td>
<td>0.596</td>
<td>0.34</td>
<td>0.841</td>
</tr>
<tr>
<td>Progression</td>
<td>0.105</td>
<td>0.288</td>
<td>0.097</td>
<td>0.198</td>
<td>-</td>
</tr>
<tr>
<td>Year 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Regression</td>
<td>-</td>
<td>0.423</td>
<td>0.285</td>
<td>0.424</td>
<td>0.105</td>
</tr>
<tr>
<td>No Change</td>
<td>0.872</td>
<td>0.303</td>
<td>0.624</td>
<td>0.364</td>
<td>0.895</td>
</tr>
<tr>
<td>Progression</td>
<td>0.128</td>
<td>0.274</td>
<td>0.091</td>
<td>0.212</td>
<td>-</td>
</tr>
</tbody>
</table>

Table 2: Disease progression was calculated between any given visit and the visit immediately following. “Regression” is defined as the patient’s recorded DR level being lower on the second visit, “No change” is defined as recorded DR levels being the same between visits, and “Progression” is defined as DR levels being higher.
<table>
<thead>
<tr>
<th></th>
<th>Image Prediction (by algorithm)</th>
<th>Patient Prediction (by algorithm)</th>
<th>HbA1c-based prediction</th>
<th>Disease Duration-based prediction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mild DR to mtmDR</td>
<td>0.63 (0.59, 0.67)</td>
<td>0.65 (0.57, 0.73)</td>
<td>0.66 (0.62, 0.71)</td>
<td>0.50 (0.46, 0.54)</td>
</tr>
<tr>
<td>No DR to mtmDR</td>
<td>0.67 (0.65, 0.68)</td>
<td>0.71 (0.68, 0.74)</td>
<td>0.65 (0.63, 0.67)</td>
<td>0.60 (0.59, 0.62)</td>
</tr>
<tr>
<td>mtmDR- to mtmDR+</td>
<td>0.75 (0.73, 0.76)</td>
<td>0.81 (0.77, 0.84)</td>
<td>0.70 (0.68, 0.72)</td>
<td>0.63 (0.62, 0.65)</td>
</tr>
<tr>
<td>Any DR Progression</td>
<td>0.70 (0.69, 0.72)</td>
<td>0.75 (0.72, 0.78)</td>
<td>0.67 (0.66, 0.69)</td>
<td>0.61 (0.60, 0.62)</td>
</tr>
</tbody>
</table>

Table 3: The models’ score, in AUC, in predicting DR within two years. In the parentheses 95% CI. See supplemental for additional timeframes.
Figures

Figure 2: Left: the right eye at the first timepoint, rated healthy by a human expert. Right: the same eye one year later, with severe DR. The model score for both healthy eyes was in the top 2% of severity, implying more than fivefold the baseline risk of developing more than mild DR in the following two years. One year later, the patient was diagnosed with severe and proliferative DR in the right and left eyes respectively.

Figure 1: the odds of the patient from a representative sample being diagnosed with clinically significant DR in two years, as a function of the model's score. Each dot represents 5% of the patients. Additional figures in appendix K.
Figure 3: The model's mean score as a function of how many years after the visit DR was diagnosed. As expected, model average score decreases in accordance with time elapsed between first visit and diagnosis.

Figure 4: The model's score as a function of the final diagnosed severity of the DR. The model is more confident of the future occurrence of DR if it's more severe.