Predicting the time course of replacements of SARS-CoV-2 variants using relative reproduction numbers
View ORCID ProfileChayada Piantham, View ORCID ProfileKimihito Ito
doi: https://doi.org/10.1101/2022.03.30.22273218
Chayada Piantham
1Graduate School of Infectious Diseases, Hokkaido University
Kimihito Ito
2International Institute for Zoonosis Control, Hokkaido University

- Supplemental Table 1[supplements/273218_file02.xlsx]
- Supplementary Information[supplements/273218_file03.pdf]
Posted March 31, 2022.
Predicting the time course of replacements of SARS-CoV-2 variants using relative reproduction numbers
Chayada Piantham, Kimihito Ito
medRxiv 2022.03.30.22273218; doi: https://doi.org/10.1101/2022.03.30.22273218
Subject Area
Subject Areas
- Addiction Medicine (430)
- Allergy and Immunology (756)
- Anesthesia (221)
- Cardiovascular Medicine (3294)
- Dermatology (279)
- Emergency Medicine (479)
- Epidemiology (13376)
- Forensic Medicine (19)
- Gastroenterology (899)
- Genetic and Genomic Medicine (5153)
- Geriatric Medicine (482)
- Health Economics (783)
- Health Informatics (3268)
- Health Policy (1140)
- Hematology (431)
- HIV/AIDS (1017)
- Medical Education (477)
- Medical Ethics (127)
- Nephrology (523)
- Neurology (4925)
- Nursing (262)
- Nutrition (730)
- Oncology (2524)
- Ophthalmology (724)
- Orthopedics (281)
- Otolaryngology (347)
- Pain Medicine (323)
- Palliative Medicine (90)
- Pathology (543)
- Pediatrics (1302)
- Primary Care Research (557)
- Public and Global Health (7504)
- Radiology and Imaging (1706)
- Respiratory Medicine (980)
- Rheumatology (480)
- Sports Medicine (424)
- Surgery (548)
- Toxicology (72)
- Transplantation (236)
- Urology (205)