Predicting the time course of replacements of SARS-CoV-2 variants using relative reproduction numbers
View ORCID ProfileChayada Piantham, View ORCID ProfileKimihito Ito
doi: https://doi.org/10.1101/2022.03.30.22273218
Chayada Piantham
1Graduate School of Infectious Diseases, Hokkaido University
Kimihito Ito
2International Institute for Zoonosis Control, Hokkaido University

Article usage
Posted March 31, 2022.
Predicting the time course of replacements of SARS-CoV-2 variants using relative reproduction numbers
Chayada Piantham, Kimihito Ito
medRxiv 2022.03.30.22273218; doi: https://doi.org/10.1101/2022.03.30.22273218
Subject Area
Subject Areas
- Addiction Medicine (430)
- Allergy and Immunology (756)
- Anesthesia (221)
- Cardiovascular Medicine (3294)
- Dermatology (279)
- Emergency Medicine (479)
- Epidemiology (13376)
- Forensic Medicine (19)
- Gastroenterology (899)
- Genetic and Genomic Medicine (5153)
- Geriatric Medicine (482)
- Health Economics (783)
- Health Informatics (3268)
- Health Policy (1140)
- Hematology (431)
- HIV/AIDS (1017)
- Medical Education (477)
- Medical Ethics (127)
- Nephrology (523)
- Neurology (4925)
- Nursing (262)
- Nutrition (730)
- Oncology (2524)
- Ophthalmology (724)
- Orthopedics (281)
- Otolaryngology (347)
- Pain Medicine (323)
- Palliative Medicine (90)
- Pathology (543)
- Pediatrics (1302)
- Primary Care Research (557)
- Public and Global Health (7504)
- Radiology and Imaging (1705)
- Respiratory Medicine (980)
- Rheumatology (480)
- Sports Medicine (424)
- Surgery (548)
- Toxicology (72)
- Transplantation (236)
- Urology (205)