COVID-19 vaccination coverage by company size and the effects of socioeconomic factors and workplace vaccination in Japan: a cohort study

Koji Mori^{1*}, Takahiro Mori¹, Tomohisa Nagata¹, Hajime Ando², Ayako Hino³, Seiichiro Tateishi⁴, Mayumi Tsuji⁵, Keiji Muramatsu⁶, Yoshihisa Fujino⁷ for the CORoNa Work Project

¹Department of Occupational Health Practice and Management, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu 807-8555, Japan

²Department of Work Systems and Health, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, Japan

³Department of Mental Health, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu 807-8555, Japan ⁴Department of Occupational Medicine, School of Medicine, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu 807-8555, Japan

⁵Department of Environmental Health, School of Medicine, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu 807-8555, Japan

⁶Department of Preventive Medicine and Community Health, School of Medicine, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu 807-8555, Japan

⁷Department of Environmental Epidemiology, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu 807-8555, Japan

* Corresponding author: Koji Mori, kmori@med.uoeh-u.ac.jp

Short title: COVID-19 vaccination coverage by company size

Total word count: 3369 (6400 max)

1 Abstract

2	Background: Vaccination is considered the most effective control measure against
3	COVID-19. Vaccine hesitancy and equitable vaccine allocation are important challenges to
4	disseminating developed vaccines. To promote COVID-19 vaccination coverage, the
5	government of Japan established the workplace vaccination program. However, while it
6	appears that the program was effective in overcoming vaccine hesitancy, the program may
7	have hindered the equitable allocation of vaccines because it mainly focused on employees of
8	large companies. We investigated the relationship between company size and COVID-19
9	vaccination completion status of employees and the impact of the workplace vaccination
10	program on this relationship.
11	Methods: We conducted an internet-based prospective cohort study from December 2020
12	(baseline) to December 2021. The data were collected using a self-administered questionnaire
13	survey. Briefly, 27,036 workers completed the questionnaire at baseline and 18,560 at
14	follow-up. After excluding ineligible respondents, we finally analyzed the data from 15,829
15	participants. At baseline, the participants were asked about the size of the company they
16	worked for, and at follow-up they were asked about the month in which they received their
17	second COVID-19 vaccine dose and the availability of a company-arranged vaccination
18	opportunity.

19 Results: In each month throughout the observation period, the odds of having received a

20	second COVID-19 vaccine dose were significantly lower for small-company employees than
21	for large-company employees in the sex- and age-adjusted model. This difference decreased
22	after adjusting for socioeconomic factors, and there was no significant difference after
23	adjusting for the availability of a company-arranged vaccination opportunity.
24	Conclusions: The workplace vaccination program implemented in Japan to control the
25	COVID-19 pandemic may have been effective in overcoming vaccine hesitancy in workers;
26	however, it may have caused an inequitable allocation of vaccines between companies of
27	different sizes. Because people who worked for small companies were less likely to be
28	vaccinated, it will be necessary to enhance support of vaccination for this population in the
29	event of future infectious disease outbreaks.
30	Trial registration: Not applicable.
31	
32	Keywords: COVID-19, Vaccine hesitancy, Equitable allocation, Workplace vaccination,
33	Company size, Socioeconomic factors

35 Introduction

36	Vaccination programs are underway worldwide because vaccination is the most effective
37	measure to control the coronavirus disease 2019 (COVID-19) pandemic, which was declared
38	by the World Health Organization (WHO) in March 2020. Since the outbreak of COVID-19
39	in China in December 2019 [1], various types of vaccines have been developed in a short
40	period of time [2]. Some of these are mRNA vaccines, representing a new type of vaccine
41	technology [3].
42	Disseminating vaccines presents many challenges, among which vaccine hesitancy
43	and equitable allocation are prominent. Vaccine hesitancy, defined as the "delay in
44	acceptance or refusal of vaccination despite the availability of vaccination services" is
45	considered a major public health challenge in infectious disease control because it delays
46	vaccination of the population and inhibits the acquisition of herd immunity [4]. Various
47	factors, including socioeconomic [5] and psychological factors [4], have been found to
48	contribute to people's vaccine hesitancy. Such factors have also been examined in the context
49	of COVID-19 vaccination [6.7]. The equitable allocation of vaccines is based on maintaining
50	equity in the order of vaccination according to risk regardless of social status, for example by
51	starting with healthcare workers and those at higher risk of serious illness [8].
52	In Japan, the majority of the population had some level of initial vaccine hesitancy to

53 receive a COVID-19 vaccine [9,10]. Nevertheless, by the end of December 2021,

54	approximately 80% of the population had received two vaccine doses [11]. In Japan,
55	COVID-19 vaccination efforts began on February 17, 2021 using two mRNA vaccines: one
56	from Pfizer Inc. and one from Moderna Inc. In consideration of equitable vaccine allocation,
57	the vaccination of healthcare workers was followed by the vaccination of older adults [12].
58	Thereafter, vaccination progressed through the general population in stages according to age.
59	An aspect of COVID-19 vaccination in Japan has been the availability of vaccination
60	at workplaces in addition to community settings provided by municipalities and clinics [12].
61	Compared with other developed countries, the start of the vaccination program was delayed
62	in Japan. To make up for this delay, the government appointed a minister to be in charge and
63	set a goal of administering one million vaccinations per day. Part of the vaccination strategy
64	was to implement the opportunity for workplace vaccination, which was conducted mainly by
65	occupational health professionals such as occupational physicians and occupational health
66	nurses. As a result, 9,654,000 people received their second vaccine dose through the
67	workplace vaccination program, which started on June 21, 2021 [13]. Workplace vaccination,
68	which provides a convenient vaccination opportunity, may have reduced vaccine hesitancy
69	because several psychological and social factors can positively influence a person's
70	vaccination decision.

The workplace COVID-19 vaccination program in Japan, however, may have
 negatively affected the equitable allocation of vaccine doses. This program primarily targeted

73	large companies, with a minimum of 2,000 doses to be delivered to a single location (i.e., an
74	expected vaccination coverage of at least 1,000 persons [13]). Thus, there were barriers to its
75	implementation in small and medium-sized companies. Therefore, company size may have
76	affected the timing and coverage of employees receiving the second COVID-19 vaccine dose.
77	We hypothesized that while the workplace vaccination program facilitated
78	COVID-19 vaccination, there was a size-dependent difference among companies in the
79	timing of employees receiving the second vaccine dose and that this difference was
80	influenced by the availability of a company-arranged vaccination opportunity. In a survey
81	conducted in Japan during the COVID-19 pandemic, there were differences in the
82	implementation of infection control measures and the opportunity to work remotely
83	depending on the size of the company [14,15]. Disparities in occupational health measures,
84	such as workplace environmental and health measures, have arisen and depend on the size of
85	the company. Such disparities have also been found in the establishment of COVID-19
86	countermeasures. Therefore, rather than the government's workplace vaccination program
87	ensuring vaccine equity, this program may have increased disparities in infection risk because
88	of differences in the completion of COVID-19 vaccination based on company size.
89	We conducted a prospective cohort study to examine the relationship between
90	company size and COVID-19 vaccination completion and the impact of the workplace

91 vaccination program on this relationship, focusing on the period between July and December

92 2021, when the general population in Japan was receiving the second vaccine dose.

93

94 Methods

95 Study design and participants

96	This study was a part of the Collaborative Online Research on Novel-coronavirus Work
97	Study (the CORoNa Work Study) and was conducted using a prospective cohort study design
98	The survey was commissioned to the internet survey company Cross Marketing Inc. (Tokyo
99	Japan), and the data were collected using a self-administered online questionnaire. All
100	participants gave informed consent, and the study was approved by the ethics committee of
101	the University of Occupational and Environmental Health, Japan (approval number: R2-079
102	and R3-006).

The baseline survey was conducted from December 22 to 25, 2020. The protocol for the baseline survey has been previously reported in detail [16]. The participants were aged 20–65 years and were employed at the time of the baseline survey (N=33,087). Participants were included using cluster sampling by sex, age, region, and occupation. A total of 27,036 participants were included after excluding ineligible individuals: those for which no data on company size was available, who worked in the medical or welfare sectors, or who were older than 65 at the time of the follow-up survey.

110

The follow-up survey was conducted from December 15 to 22, 2021, 1 year after

111	baseline. A total of 18,560 participants responded to the survey. Among them, respondents
112	were excluded if they were unemployed, over 65 years of age, or employed in the health or
113	welfare sector and thus eligible for priority vaccination at the time of the follow-up survey.
114	Finally, 15,829 participants were included in the analysis. Figure 1 shows the flow diagram
115	for this study.
116	
117	Second COVID-19 vaccination dose status
118	In the follow-up survey, we asked participants, "In what month did you receive the second
119	COVID-19 vaccination?" Participants were requested to choose one of 12 options: the
120	months of February 2021 through December 2021, or "have not received." We then created a
121	variable for completion status for each month after July. For example, completion by the end
122	of September was defined as having received a second COVID-19 vaccine dose in any of the
123	months from February through September. If a participant received the second vaccine dose
124	in September, completion by July or August would be coded "no" but completion by
125	September, October, November, and December would be coded "yes".

126

127 Company size

In the baseline survey, we asked participants, "How many employees are there at your company?" The participants could choose one of 10 options: 1 person (self-employed) or 2–4,

130	5-9, 10-29, 30-49, 50-99, 100-499, 500-999, 1000-9999, or 10,000 or more persons. We
131	classified the responses into three categories: those who worked for small (1-49),
132	medium-sized (50-999), or large (1,000 or more) companies. This classification was made
133	because under the Industrial Safety and Health Act, the obligation to establish an
134	occupational health management system differs depending on the size of the worksite [17].
135	Furthermore, the government-provided workplace vaccination program was eligible for
136	locations that could vaccinate at least 1,000 people [13].
137	
138	Company-arranged vaccination opportunity
139	In the follow-up survey, we asked participants, "Has your company arranged an opportunity
140	to receive the COVID-19 vaccine at the workplace, whether or not you took advantage of the
141	opportunity?" Participants could choose one of three response options: yes, no, or unknown.
142	We regarded "yes" to indicate that the vaccination opportunity was arranged, and the other
143	answers to indicate that this was not arranged.
144	
145	Assessment of covariates
146	Participant characteristics were collected at baseline. The covariates included socioeconomic
147	factors, occupation, and industry. Age was classified into five groups: 20-29, 30-39, 40-49,

148 50–59, and 60–65 years. Annual household income was classified into five categories: <2.00

149	million Japanese yen (JPY), 2.00–3.99 million JPY, 4.00–5.99 million JPY, 6.00–7.99 million
150	JPY, and 8.00 million JPY or greater. Educational background was classified into three
151	categories: junior high or high school, vocational school or college, and university or
152	graduate school. Marital status was classified into three categories: married, divorced or
153	widowed, and unmarried. Occupation was classified into 10 categories: general employee;
154	manager; executive manager; public employee, faculty member, or non-profit organization
155	employee; temporary or contract employee; self-employed; small office/home office;
156	agriculture, forestry, or fishing; professional occupation (e.g., lawyer, tax accountant); and
157	other occupations. Participants could choose one of 22 options for their work industry, which
158	was then classified into nine categories based on the International Standard Industrial
159	Classification of All Economic Activities: manufacturing, public service, information and
160	communication, wholesale and retail, food service, education and religion, finance and
161	insurance, construction, and others.

162

163 Statistical analysis

The odds ratios (ORs) for the association between company size and completion of the second COVID-19 vaccine dose were estimated using a multilevel logistic model nested in the prefecture of residence to account for regional variability. The multivariate model was adjusted for sex and age (Model 1) and additionally adjusted for annual household income,

168	educational background, marital status, occupation, and industry (Model 2). Finally, the
169	model was adjusted for company-arranged vaccination opportunity (Model 3).
170	A <i>p</i> -value of less than 0.05 was considered statistically significant. All analyses were
171	conducted using Stata (Stata Statistical Software: Release 16; StataCorp LLC, College
172	Station, TX, USA).
173	
174	Results
175	Table 1 shows the participant characteristics by company size. Of the 15,829 participants,
176	4,272 (27%) worked for a large company, 5,117 (32%) for a medium-sized company, and
177	6,440 (41%) for a small company. As the company size increased, the percentage of
178	participants with a high annual household income and a high educational background level
179	increased. Furthermore, as the company size increased, the opportunity for
180	company-arranged vaccination increased: 56% for large companies, 35% for medium-sized
181	companies, and 14% for small companies.
182	<insert 1="" table=""></insert>
183	Table 2 shows the ORs for the association between company size and completion of
184	the second COVID-19 dose by month. In the model adjusted only for age and sex (Model 1),
185	participants who worked for a medium-sized company were significantly less likely to
186	complete the second dose by August (OR=0.87, 95% CI: 0.79–0.94, p=0.001) and September

187	(OR=0.86, 95% CI: 0.78–0.93, p<0.001) than those who worked for a large company. For
188	small companies, the ORs decreased throughout the entire observation period, from July to
189	December. In the model adjusted for the main socioeconomic factors (Model 2), the ORs for
190	medium-sized and small companies tended to approach 1. For August and September, this
191	tendency remained, but no significant difference was observed for the medium-sized
192	companies. After adjusting for company-arranged vaccination opportunity (Model 3), the
193	significant difference between small and large companies disappeared for the entire period
194	analyzed. However, after October, participants who worked for medium-sized companies
195	were significantly more likely to have received the second vaccine dose than those who
196	worked for large companies (OR=1.14, 95% CI: 1.01-1.28, p=<0.029). In each month
197	throughout the observation period, those who had a company-arranged vaccination
198	opportunity were significantly more likely to have received the second vaccine dose.
199	<insert 2="" table=""></insert>
200	
201	Discussion
202	This study showed that employees of smaller companies were less likely to have received a

second COVID-19 vaccine dose. In the months after the start of the workplace vaccination program, the second dose completion rate of participants who worked for medium-sized companies was lower than that of those who worked for large companies, but this difference

206	disappeared later in the observation period. The significant difference in completion rate
207	between small company employees and large company employees remained throughout the
208	observation period. The difference between large and medium-sized company employees
209	could mostly be explained by differences in socioeconomic factors. However, the difference
210	between the small and large company employees could not be explained by those factors
211	alone, although adjusting for the socioeconomic factors reduced the difference. After
212	adjusting for company-arranged vaccination opportunity, the difference in employee second
213	dose completion rate between large and small companies disappeared. Furthermore,
214	medium-size companies had higher vaccine completion coverage than large companies in the
215	latter half of the observation period.
216	The presence of vaccine hesitancy owing to a lack of trust in vaccination and other

217 factors has been a challenge to achieving herd immunity through vaccination. Socioeconomic 218 factors have been found to affect vaccination intention and uptake of other vaccines, such as 219 the seasonal influenza vaccine [18] and the H1N1 vaccine [19]. The effects of socioeconomic factors on vaccination intention for the COVID-19 vaccine have also been examined [6,7]. 220 221 Studies have generally found a positive association between vaccine uptake and annual 222 income and educational background, although some studies have shown inverse associations 223 [20, 21]. Several studies have found differences in willingness to vaccinate depending on 224 one's occupation and industry [22-24]. In the current study, after adjusting for socioeconomic

225 factors, the difference in vaccination completion rate among employees of medium and large 226 companies disappeared. After these adjustments, the difference between employees of small 227 and large companies also became smaller. These findings suggest that socioeconomic factors 228 affect the association between COVID-19 vaccination and company size in Japan. 229 In the present study, it was observed that participants who had a company-arranged 230 vaccination opportunity were significantly more likely to have received the second vaccine 231 dose, and after adjusting the model for the presence of a company-arranged vaccination 232 opportunity, no significant difference in the second dose completion rate was found between 233 employees of small and large companies for all months. These results suggests that the 234 government's implementation of the workplace vaccination program had a positive impact on 235the vaccination acceptance of employees who worked for companies that participated in the 236 program. The company-arranged vaccination opportunities may have decreased vaccine 237 hesitancy and increased vaccination coverage. To evaluate the psychosocial factors 238 influencing vaccine hesitancy, in 2011, the WHO Strategic Advisory Group of Experts proposed the "3C" model [4], which stands for "Confidence", "Convenience", and 239 240 "Complacency." German researchers subsequently proposed the "5C" model, substituting 241 "Constraints" for "Convenience" and adding "Calculation" and "Collective responsibility" 242 [25]. Company-arranged vaccination opportunities are thought to increase people's 243 confidence in a vaccine, and the availability of the vaccine at or near their workplace

244	increases its convenience. In addition, social environmental factors, such as social norms and
245	herding effects, have been suggested to affect one's vaccine intention [26,27]. The workplace
246	vaccination program facilitated employees' vaccination behavior to be shared among
247	coworkers and supervisors, which may have had a direct impact on the social norms and
248	herding effect. Previous studies on seasonal influenza vaccination in the U.S. have reported
249	that workplace vaccination practices and recommendations are associated with higher
250	vaccination coverage [28].
251	The influence of socioeconomic factors and company-arranged vaccination
252	opportunities on vaccination coverage has implications for the equitable allocation of
253	vaccines. In the workplace vaccination program, the government invited companies that

vaccines. In the workplace vaccination program, the government invited companies that 254wished to implement the program on the premise that at least 1,000 people could be 255vaccinated at a single location [13]. Multiple small companies could apply if they could 256jointly secure more than 1,000 people willing to be vaccinated. However, because it was 257 necessary to arrange venues and medical personnel for the vaccination event and to 258 coordinate costs, program utilization may vary greatly depending on company size. In Japan, 259employers with less than 50 full-time staff are not obligated to appoint an occupational health 260 physician or health supervisor or to establish a health committee. This lack of obligation 261 means that workers in small companies often do not have occupational health services available to them [17]. In addition, during the COVID-19 pandemic in Japan, there were 262

263	marked differences among companies of different sizes in the implementation of remote work
264	and infection control measures [14,15]. The Japanese government's workplace vaccination
265	program may have contributed to health disparities. Therefore, the pros and cons of a
266	workplace vaccination program and the methods used to realize it warrant further discussion
267	to ensure a more equitable implementation in future infectious disease outbreaks.
268	It is unclear why there was significantly higher vaccination completion among
269	participants who worked for medium-sized companies compared with those who worked for
270	large companies after October 2021 in the model adjusted for both socioeconomic factors and
271	company-arranged vaccination opportunity. One possible explanation is that many employees
272	of large companies were located in offices other than the headquarters and therefore had
273	difficulty accessing the company-arranged vaccination opportunity. Another possibility is that,
274	although COVID-19 vaccination was voluntary, medium-sized companies are often in a
275	weaker business position than larger companies, and therefore they may have been more
276	influenced by pressure from clients to vaccinate their employees in order to continue doing
277	business.
278	This study had several limitations. First, the survey was conducted via the internet,
279	so generalizations should be made with caution. However, we attempted to reduce any bias
280	by using cluster sampling with stratification by sex, region, and job type. Second, the study
281	was likely affected by recall bias. The earlier vaccination was completed, the more time had

282	elapsed by the time of the survey, which may have caused recall bias. Third, the timing of the
283	follow-up survey might have affected the responses to the question of vaccination status in
284	the last month, December. If a person received their second vaccine dose in the last week of
285	December (after filling out the follow-up survey), they may have answered "unvaccinated"
286	when asked about their vaccination status in the follow-up survey. However, the impact of
287	this situation was likely small because second-dose vaccination was nearly complete in both
288	the community and workplace programs by the end of November, and less than 1% of the
289	respondents received their second vaccine dose in December.
290	
291	Conclusion
291 292	Conclusion During the period when COVID-19 vaccinations were being administered to the general
291 292 293	Conclusion During the period when COVID-19 vaccinations were being administered to the general population in Japan, the coverage of receiving a second COVID-19 vaccine dose was
291 292 293 294	Conclusion During the period when COVID-19 vaccinations were being administered to the general population in Japan, the coverage of receiving a second COVID-19 vaccine dose was significantly lower for those who worked for small companies than for those who worked for
291 292 293 294 295	Conclusion During the period when COVID-19 vaccinations were being administered to the general population in Japan, the coverage of receiving a second COVID-19 vaccine dose was significantly lower for those who worked for small companies than for those who worked for large companies. This difference could mostly be explained by socioeconomic factors and the
 291 292 293 294 295 296 	Conclusion During the period when COVID-19 vaccinations were being administered to the general population in Japan, the coverage of receiving a second COVID-19 vaccine dose was significantly lower for those who worked for small companies than for those who worked for large companies. This difference could mostly be explained by socioeconomic factors and the availability of a vaccination opportunity arranged by the employer. In the event of future
291 292 293 294 295 296 296	Conclusion During the period when COVID-19 vaccinations were being administered to the general population in Japan, the coverage of receiving a second COVID-19 vaccine dose was significantly lower for those who worked for small companies than for those who worked for large companies. This difference could mostly be explained by socioeconomic factors and the availability of a vaccination opportunity arranged by the employer. In the event of future infectious disease outbreaks, it will be necessary to enhance support of vaccination for the
291 292 293 294 295 296 297 298	Conclusion During the period when COVID-19 vaccinations were being administered to the general population in Japan, the coverage of receiving a second COVID-19 vaccine dose was significantly lower for those who worked for small companies than for those who worked for large companies. This difference could mostly be explained by socioeconomic factors and the availability of a vaccination opportunity arranged by the employer. In the event of future infectious disease outbreaks, it will be necessary to enhance support of vaccination for the employees of small companies.

300 List of Abbreviations

301	CC	OVID-19: coronavirus diseases 2019; mRNA: messenger RNA; WHO: World Health
302	Or	ganization; JPN: Japanese yen; OR: odds ratio; CI: confidence interval.
303		
304		
305		References
306	1.	Lu R, Zhao X, Li J, Niu P, Yang B, Peihua N, et al. Genomic characterisation and
307		epidemiology of 2019 novel coronavirus: implications for virus origins and receptor
308		binding. Lancet. 2020;395:565-74. https://doi.org/10.1016/S0140-6736(20)30251-83-16.
309	2.	Conte C, Sogni F, Affanni P, Veronesi L, Argentiero A, Esposito S. Vaccines against
310		Coronaviruses: The State of the Art. Vaccines. 2020;8:309.
311		https://doi.org/10.3390/vaccines8020309
312	3.	Jin Y, Hou C, Li Y, Zheng K, Wan C. mRNA Vaccine: How to Meet the Challenge of
313		SARS-CoV-2. Front Immunol. 2022;12:821538.
314		https://doi.org/10.3389/fimmu.2021.821538.
315	4.	MacDonald NE, SAGE Working Group on Vaccine Hesitancy Vaccine. Vaccine
316		hesitancy: Definition, scope and determinants. Vaccine. 2015;33(34):4161-64.
317		https://doi.org/10.1016/j.vaccine.2015.04.036.
318	5.	Larson JH, Jarrett C, Eckersberger E, Smith DMD, Paterson P. Understanding vaccine
319		hesitancy around vaccines and vaccination from a global perspective: a systematic review

320	of	published	literature,	2007-2012.	Vaccine.	17;32(19):2150-59.
321	<u>https</u>	://doi.org/10.10	16/j.vaccine.20	<u>14.01.081</u> .		

- 322 6. Lazarus JV, Ratzan SC, Adam Palayew A et al. A global survey of potential acceptance of
- a COVID-19 vaccine. 2021; 27(2):225-228. <u>https://doi.org/10.1038/s41591-020-1124-9</u>.
- 324 7. Sallam M. COVID-19 vaccine hesitancy worldwide: A concise systematic review of
- 325 vaccine acceptance rates. Vaccines (Basel) 2021; 9(2):160.
- 326 <u>https://doi.org/10.3390/vaccines9020160</u>.
- 8. National Academies of Sciences, Engineering, and Medicine; Health and Medicine
- 328 Division; Board on Population Health and Public Health Practice; Board on Health
- 329 Sciences Policy; Committee on Equitable Allocation of Vaccine for the Novel
- 330 Coronavirus. Framework for Equitable Allocation of COVID-19 Vaccine. National
- 331 Academies Press (US); 2020. <u>https://doi.org/10.17226/25917</u>
- 332 9. Okubo R, Yoshioka T, Ohfuji S, Matsuo T, Tabuchi T. COVID-19 Vaccine Hesitancy and
- Its Associated Factors in Japan. Vaccines (Basel) 2021;9(6):662. https://doi.org/
 10.3390/vaccines9060662.
- 10. Ishimaru T, Okawara M, Ando H, Hino A, Nagata T, Tateishi S, et al. Gender differences
- in the determinants of willingness to get the COVID-19 vaccine among the working-age
- 337 population in Japan. Hum Vaccin Immunother. 2021;17(11): 3975-81.
- 338 https://doi.org/10.1080/21645515.2021.1947098.

339	11. Prime Minister's Office of Japan. About inoculation schedule of COVID-19 vaccine [In
340	Japanese].https://www.kantei.go.jp/jp/headline/kansensho/vaccine_supply.html. Accessed
341	31 March, 2022.
342	12. Ministry of Health, Labour and Welfare. About inoculation to medical staff etc. [In
343	Japanese]. https://www.mhlw.go.jp/stf/seisakunitsuite/bunya/vaccine_iryoujuujisha.html.
344	Accessed 31 March, 2022.
345	13. Ministry of Health, Labour and Welfare. Notice of inoculation at the workplace [In
346	Japanese]. https://www.mhlw.go.jp/stf/seisakunitsuite/bunya/vaccine_shokuiki.html.
347	Accessed 31 March, 2022.
348	14. Ishimaru T, Nagata M, Hino A, Yamashita S, Tateishi S, Tsuji M. Workplace measures
349	against COVID-19 during the winter third wave in Japan: Company size-based
350	differences. J Occup Health. 2021;63(1):e12224.
351	Hpps://doi.org/10.1002/1348-9585.12224.
352	15. Sasaki N, Imamura K, Kataoka M, Kuroda R, Tsuno K, Sawada U, et al. COVID-19
353	measurements at the workplace in various industries and company sizes: a 2-month
354	follow-up cohort study of full-time employees in Japan. Environ Occup Health Practice.
355	2021:3. https://doi.org/10.1539/eohp.2020-0017-OA.
356	16. Fujino Y, Ishimaru T, Eguchi H, Tsuji M, Tateishi S, Ogami A, et al. Protocol for a
357	nationwide Internet-based health survey in workers during the COVID-19 pandemic in

358 2020. J UOEH 2021;43(2):217-25. <u>https://doi.org/10.7888/juoeh.43.217</u>.

359	17. Mori K. Current Status and Issues for the Role of Occupational Health Physicians in
360	Japan. 2018 JMA Journal. 1(1)15-21. https://doi.org/10.31662/jmaj.2018-0011
361	18. Schmid P, Rauber D, Betsch C, Lidolt G, Denker M-L. Barriers of Influenza Vaccination
362	Intention and Behavior - A Systematic Review of Influenza Vaccine Hesitancy, 2005 -
363	2016. PLoS One. 2017;12:e0170550. https://doi.org/10.1371/journal.pone.0170550.
364	19. Gargano LM, Painter JE, Sales JM, Morfaw C, Jones LM, Murray D, et al. Seasonal and
365	2009 H1N1 influenza vaccine uptake, predictors of vaccination and self-reported barriers
366	to vaccination among secondary school teachers and staff. Hum Vaccin. 2011; 7(1):89-95.
367	https://doi.org/10.4161/hv.7.1.13460.
368	20. Hak E, Schönbeck Y, De Melker H, Van Essen GA, Sanders EA. Negative attitude of
369	highly educated parents and health care workers towards future vaccinations in the Dutch
370	childhood vaccination program. Vaccine 2005; 23 (24): 3103-7. https://doi.org/
371	10.1016/j.vaccine.2005.01.074.
372	21. Wei F, Mullooly JP, Goodman M, McCarty MC, Hanson AM, Crane B, et al.
373	Identification and characteristics of vaccine refusers. BMC Pediatr 2009; 9: 18.
374	https://doi: 10.1186/1471-2431-9-18.
375	22. King WC, Rubinstein M, Reinhart A, Mejia R. COVID-19 vaccine hesitancy

January-May 2021 among 18-64 year old US adults by employment and occupation. Prev

377 Med Rep. 2021;24:101569. <u>https://doi.org/10.1016/j.pmedr.2021.101569</u>.

378	23. Wang K, Wong EL, Ho K, Cheung AW, Yau PS, Dong D, et al. Change of willingness to
379	accept COVID-19 vaccine and reasons of vaccine hesitancy of working people at
380	different waves of local epidemic in Hong Kong, China: Repeated cross-sectional surveys.
381	Vaccines (Basel). 2021;9(1):62. https://doi.org/10.3390/vaccines9010062.
382	24. Dorman C, Perera A, Condon C, Chau C, Qian J, Kalk K, et al. Factors associated with
383	willingness to be vaccinated against COVID-19 in a large convenience sample. J
384	Community Health. 2021;46(5):1013-19. <u>https://doi.org/10.1007/s10900-021-00987-0</u> .
385	25. Betsch C, Schmid P, Heinemeier D, Korn L, Holtmann C, Böhm R. Beyond confidence:
386	Development of a measure assessing the 5C psychological antecedents of vaccination.
387	PLos One. 2018;13(12):e0208601. https://doi.org/10.1371/journal.pone.0208601.
388	26. Kang GJ, Culp RK, Abbas KM. Facilitators and barriers of parental attitudes and beliefs
389	toward school-located influenza vaccination in the United States: Systematic review.
390	Vaccine 2017;35(16):1987-95. https://doi.org/10.1016/j.vaccine.2017.03.014.
391	27. Agranov M, Elliott M, Ortoleva P. The importance of Social Norms against Strategic
392	Effects: The case of Covid-19 vaccine uptake. Econ Lett 2021;206:109979.
393	https://doi.org/ 10.1016/j.econlet.2021.109979.
394	28. Luz PM, Johnson RE, Brown HE. Workplace availability, risk group and perceived
395	barriers predictive of 2016-17 influenza vaccine uptake in the United States: A

396	cross-sectional	study.	Vaccine.	2017;35(43):5890-5896.
397	https://doi.org/10.101	6/j.vaccine.2017.	08.078.	
398				
399	Figure title			
400	Figure 1. Flow diagra	m of the study j	participants	

402 **Declarations**

- 403 Ethical approval and consent to participate
- 404 This study was approved by the ethics committee of the University of Occupational and
- 405 Environmental Health, Japan (reference nos. R2-079 and R3-006). Informed consent was
- 406 obtained from all participants via the survey website.

407

- 408 Consent for publication
- 409 Not applicable.

410

- 411 Availability of data and material
- 412 Data available on request from authors.
- 413 Competing interests
- 414 The authors declare that they have no competing interests.

415

416 Funding

- 417 The study was supported and partly funded by research grants from the University of
- 418 Occupational and Environmental Health, Japan (no grant number), the Japanese Ministry of
- 419 Health, Labour and Welfare (H30-josei-ippan-002, H30-roudou-ippan-007, 19JA1004,
- 420 20JA1006, 210301-1, and 20HB1004), Anshin Zaidan (no grant number), the Collabo-Health

421	Study Group (no grant number), Hitachi Systems, Ltd. (no grant number), and scholarship
422	donations from Chugai Pharmaceutical Co., Ltd. (no grant number). The funders were not
423	involved in the study design, collection, analysis, or interpretation of data, the writing of this
424	article, or the decision to submit it for publication.
425	
426	Authors' contributions
427	KM designed the analysis, analyzed the data, and wrote the manuscript. TM designed the
428	analysis and reviewed the manuscript. TM created the questionnaire, advised on the study
429	design and data interpretation, and reviewed the manuscript. HA, AH, ST, MT, and SM
430	reviewed the manuscript and advised on the data interpretation. YF was chairperson of the
431	study group, created the questionnaire, advised on the data interpretation, and reviewed the
432	manuscript.
433	
434	Acknowledgments
435	The current members of the CORoNa Work Study, in alphabetical order, are as follows: Dr. Hajime Ando,
436	Dr. Hisashi Eguchi, Dr. Yoshihisa Fujino (present chairperson of the study group), Dr. Arisa Harada, Dr.
437	Ayako Hino, Dr. Kazunori Ikegami, Dr. Tomohiro Ishimaru, Dr. Kyoko Kitagawa, Ms. Ning Liu, Dr.
438	Kosuke Mafune, Dr. Shinya Matsuda, Dr. Ryutaro Matsugaki, Dr. Koji Mori, Dr. Keiji Muramatsu, Dr.
439	Masako Nagata, Dr. Tomohisa Nagata, Dr. Akira Ogami, Dr. Makoto Okawara, Dr. Rie Tanaka, Dr.

- 440 Seiichiro Tateishi, Dr. Shinya Matsuda, Dr. Tomohiro Ishimaru, and Dr. Tomohisa Nagata. All members are
- 441 affiliated with the University of Occupational and Environmental Health, Japan. We also thank Katherine
- 442 Thieltges from Edanz (<u>https://jp.edanz.com/ac</u>) for editing a draft of this manuscript.

444	Table 1. Participant characteristics according to company st	ize

	Size of belor Large (1000 or more)	nging company (Number of Medium (50-999)	Small (1-49)
Total	4272	5117	6440
	,_	0117	0110
Age 20.20	195 (4 20()	250 (5.10())	172 (2 70()
20-29	185 (4.3%)	259 (5.1%)	1/3(2.7%)
30-39	611 (14.3%)	/64 (14.9%)	/69 (11.9%)
40-49	1222 (28.6%)	1601 (31.3%)	1898 (29.5%)
50-59	1/55 (41.1%)	1929 (35.7%)	2511 (39.0%)
00-03 Sam	499 (11.7%)	664 (13.0%)	1089 (16.9%)
Sex	2791(65,10)	2172 (62.00/)	2795 (59.90/)
Wenner	2/81 (65.1%)	5172 (62.0%) 1045 (28.0%)	3/83(38.8%)
women	1491 (34.9%)	1945 (38.0%)	2665 (41.2%)
Annual nousenoid income (million JP Y)	128 (2.0)	226(4.40/)	660 (10 20/)
<2 >2 and 44	128 (3.0)	220(4.4%)	1504(24.8%)
≥ 2 and ≤ 4	514 (12.0%) 828 (10.4%)	990(19.5%)	1594 (24.8%)
≤ 4 and ≤ 6	828 (19.4%)	1316 (25.7%)	1610 (25.0%)
≤ 6 and ≤ 8	997 (23.3%)	1068 (20.9%)	1105 (17.2%)
<i>≦</i> 8	1805 (42.3%)	1517 (29.6%)	14/1 (22.8%)
Educational background			
Junior high or high school	1018 (23.8%)	1426 (27.9%)	2117 (32.9%)
Vocational school, junior college	613 (14.4%)	1003 (19.6%)	1575 (24.5%)
or technical school			
University or graduate school	2641 (61.8%)	2688 (52.5%)	2748 (42.7%)
Marital status			
Married	1244 (29.1%)	1704 (33.3%)	2296 (35.7%)
Widowed/divorced	339 (7.9%)	432 (8.4%)	755 (11.7%)
Never married	2689 (62.9%)	2981 (58.3%)	3389 (58.3%)
Occupation			
General employee	2104 (49.3%)	2773 (54.2%)	2423 (37.6%)
Manager	691 (16.2%)	753 (14.7%)	382 (5.9%)
Executive manager	31 (0.7%)	107 (2.1%)	494 (7.7%)
Public employee, faculty member, or	806 (18.9%)	606 (11.8%)	354 (5.5%)
non-profit organization employee			
Temporary/contract employee	603 (14.1%)	810 (15.8%)	340 (5.3%)
Independent business	9 (0.2%)	15 (0.3%)	1548 (24.0%)
(commercial and industrial services)			
Small office/home office	3 (0.1%)	3 (0.1%)	270 (4.2%)
Agricultural, forestry, and fishing industries	2 (0.0%)	3 (0.1%)	135 (2.1%)
Professional occupation	11 (0.3%)	14 (0.3%)	140 (2.2%)
(lawyer, tax accountant, etc.)			. ,
Other occupation	12 (0.3%)	33 (0.6%)	354 (5.5%)
Industry			× /
Manufacturing	1069 (25.0%)	1179 (23.0%)	755 (11.7%)
Public service	638 (14.9%)	389 (7.6%)	203 (3.2%)
Information and technology	312 (7.3%)	331 (6.5%)	287 (4.5%)
Retail and wolesale	244 (5.7%)	355 (6.9%)	629 (9.8%)
Eating/drinking	110 (2.6%)	182 (3.6%)	513 (8.0%)
Education and religion	275 (6.4%)	417 (8 1%)	507 (7.9%)
Finance	434 (10.2%)	213 (4 2%)	161 (2.5%)
Construction	96(2.3%)	139 (2.7%)	101 (2.5%)
Other	90(2.5%)	1012(27.4%)	428(0.770) 2057(45.0%)
Vaccination arranged by company	1004 (25.0%)	1)12 (37.470)	2)37 (43.970)
Vaccination arranged by company	2282 (55 8%)	1780 (34 8%)	014(14.204)
Ies N-	2383 (33.8%)	1780 (34.8%)	914(14.2%)
NO Manth of 2nd COVID 10 apprinting	1889 (44.2%)	3337 (63.2%)	5520 (85.8%)
Month of 2nd COVID-19 vaccination	1(1(2,00())	205 (1.0%)	107 (2.10/)
rebruary-June	101 (3.0%)	205 (4.0%)	197 (3.1%)
July	450 (10.5%)	46/ (9.1%)	607 (9.4%)
August	1267 (29.7%)	4354 (26.5%)	1550 (24.1%)
September	941 (22.0%)	1140 (22.3%)	1380 (21.4%)
October	774 (18.1%)	1063 (20.8%)	1212 (18.8%)
November	240 (5.6%)	319 (6.2%)	420 (6.5%)
December	21 (0.5%)	35 (0.7%)	40 (0.6%)
Non-vaccinated	418 (9.8%)	534 (10.4%)	1034 (16.1%)

Second vaccination	model 1			model 2			model 3		
Comp. size	OD	95%CI	P value	OD	95%CI	P value	OD	95%CI	P value
by July									
Large	Ref.			Ref.			Ref.		
Medium	0.93	0.82-1.05	0.229	0.98	0.86-1.10	0.691	1.06	0.94-1.21	0.330
Small	0.77	069-0.87	< 0.001	0.79	0.69-0.90	0.002	0.94	0.82-1.07	0.350
Vaccination by	comp.						1.56	1.40-1.74	< 0.001
by August									
Large	Ref.			Ref.			Ref.		
Medium	0.87	0.79-0.94	0.001	0.92	0.84-1.00	0.065	1.05	0.96-1.15	0.277
Small	0.67	0.62-0.73	< 0.001	0.76	0.69-0.83	< 0.001	0.98	0.89-1.08	0.692
Vaccination by	comp.						1.98	1.83-2.15	< 0.001
by September									
Large	Ref.			Ref.			Ref.		
Medium	0.86	0.78-0.93	0.001	0.92	0.84-1.01	0.085	1.04	0.95-1.15	0.349
Small	0.64	0.59-0.70	< 0.001	0.77	0.70-0.84	< 0.001	0.97	0.88-1.07	0.541
Vaccination by	comp.						1.90	1.76-2.07	< 0.001
by October									
Large	Ref.			Ref.			Ref.		
Medium	0.92	0.82-1.02	0.127	1.00	0.89-1.12	0.971	1.14	1.01-1.28	0.029
Small	0.54	0.48-0.61	< 0.001	0.75	0.67-0.84	< 0.001	0.95	0.85-1.07	0.377
Vaccination by	comp.						2.05	1.84-2.27	< 0.001
by November									
Large	Ref.			Ref.			Ref.		
Medium	0.93	0.81-1.10	0.218	1.01	0.88-1.15	0.918	1.15	1.01-1.32	0.042
Small	0.54	0.48-0.61	< 0.001	0.73	0.64-0.83	< 0.001	0.94	0.82-1.08	0.362
Vaccination by	comp.						2.14	1.88-2.43	< 0.001
by December									
Large	Ref.			Ref.			Ref.		
Medium	0.94	0.82-1.07	0.329	1.02	0.89-1.17	0.759	1.17	1.02-1.35	0.029
Small	0.54	0.48-0.61	< 0.001	0.73	0.64-0.83	< 0.001	0.93	0.81-1.07	0.317
Vaccination by	comp.						2.14	1.83-2.15	< 0.001

446 7	Table 2 Association bety	ween company	v size and con	pletion of the	e second COVI	D-19 vaccine dose
-------	--------------------------	--------------	----------------	----------------	---------------	-------------------

447 model 1: adjusted for age and sex

448 model 2: model 1+ adjusted for annual household income, education, marital status, occupation and industry

449 model 3: model 2 + adjusted for company-arranged vaccination

450 Size of company: large (1-49); medium-sized (50-999); large (1000 or more)

451 Vaccination by comp.: vaccination arranged by company

453

