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Abstract

Introduction: At the start of the pandemic, the Philippine capital Metro Manila was placed under a strict

lockdown termed Enhanced Community Quarantine (ECQ). When ECQ was eased to General Community

Quarantine (GCQ) after three months, healthcare systems were soon faced with a surge of COVID-19 cases,

putting most facilities at high or critical risk and prompting a return to a stricter policy.

Methods: We developed a mathematical model considering behavior changes and underreporting to repre-

sent the first major epidemic wave in Metro Manila. Key parameters were fitted to the cumulative cases in

the capital from March to September 2020. A bi-objective optimization problem was formulated that allows

easing of restrictions at an earlier time and minimizes the necessary additional beds to ensure sufficient

capacity in healthcare facilities once ECQ was lifted.

Results: If behavior was changed one to four weeks earlier before GCQ, then the cumulative number of

cases can be reduced by up to 55% and the peak delayed by up to four weeks. Increasing the reporting ratio

during ECQ threefold may increase the reported cases by 23% but can reduce the total cases, including the

unreported, by 61% on June 2020. If GCQ began on May 28, 2020, 48 beds should have been added per day

to keep the capacity only at high-risk (75% occupancy). Among the optimal solutions, the peak of cases is

lowest if ECQ was lifted on May 20, 2020 and with at least 56 additional beds per day.

Conclusion: Since infectious diseases are likely to reemerge, the formulated model can be used as a decision

support tool to improve existing policies and plan effective strategies that can minimize the socioeconomic

impact of strict lockdown measures and ensure adequate healthcare capacity.

Keywords: COVID-19, mathematical model, behavior change, underreporting, Metro Manila, Philippines,

community quarantine, bi-objective optimization

1. Introduction

Shortly after the first local transmissions of the coronavirus disease 2019 (COVID-19) in the Philippines1

were confirmed, the government imposed social distancing policies, termed community quarantines, which2
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were largely implemented by the police and military [1, 2]. By March 30, 2020, the country only had six3

laboratories that accommodated up to 1000 tests daily [3]. Contact tracing began slowly due to insufficient4

number of contact tracers [4]. Testing capacity was increased to about 35000 tests daily by the end of5

September 2020 [5]. From April to September 2020, the weekly positivity rate ranged between 4.5 and 28%,6

higher than the 5% threshold set by the World Health Organization during this time [6, 7].7

The Philippines’ capital region, Metro Manila, comprised around 12% of the country’s population in8

2020 [8]. Metro Manila was placed under Enhanced Community Quarantine (ECQ) on March 16, 20209

[9]. Under ECQ, movement was restricted to essential goods and services. Public transportation and mass10

gatherings were suspended [2]. People were encouraged to work from home and businesses were advised11

to do transactions online [1]. After two months, ECQ was replaced by the Modified Enhanced Community12

Quarantine (MECQ), a transition phase before easing further to General Community Quarantine (GCQ). On13

June 1, 2020, Metro Manila was placed under GCQ, where public transportation and other establishments,14

except those for leisure, were allowed to operate [2]. A surge in the number of cases occurred from July15

to August 2020 and consequently, Metro Manila was again placed under MECQ. During this time, the16

utilization of ICU, isolation, and ward beds in Metro Manila reached 77%, 74%, and 84%, respectively,17

placing most facilities on critical or high-risk and prompting 80 medical societies, representing 80000 doctors18

and a million nurses to demand a ‘timeout’ [10, 11]. On August 19, 2020, Metro Manila returned to GCQ19

[12]. By the end of September 2020, 53% of the 309303 total confirmed cases in the Philippines belonged to20

Metro Manila [5].21

Because of the lack of vaccines and limited antiviral therapies during the early phase of the COVID-1922

pandemic, NPIs such as wearing of masks, school and workplace closures, and travel restrictions were crucial23

disease control measures. In the Philippines, compliance to policies was not only prompted by public heath24

campaigns, but also driven by uncertainty and anxiety about the disease, and fear of getting reprimanded25

by the authorities [13, 14, 15]. Some of those who got infected suffered stigma and were blamed for not26

following the protocols [16, 17]. A study among low income households in the Philippines done in the early27

phase of the pandemic reported that 66% of respondents who might experience symptoms considered staying28

at home instead of seeking medical attention [13].29

Non-pharmaceutical interventions and behavior change have been incorporated into mathematical models30

of COVID-19 [18, 19, 20, 21]. In this study, we extend the SEIQR model developed by Kim et al. [21] that31

includes a compartment for behavior-changed susceptible individuals. We consider a local, prevalence-based32

spread of fear of the disease as a factor that influences the behavior change [22]. We add an unreported33

compartment to account for individuals who were undetected due to inadequate testing and tracing, or34

unwillingness to be detected. The addition of an unreported compartment has been used in estimating35

unreported COVID-19 cases in various countries [23, 24, 25, 26]. It is worth noting these models did not36

consider behavior change similar to our approach. This study aims to investigate how the behavior and37

attitude of the people towards COVID-19 during the early phase of the pandemic impact the spread of38
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the disease. In particular, we are interested on the effects of reporting and behavior on the timing and39

magnitude of the peak of COVID-19 infections in Metro Manila, Philippines from March to September 2020.40

Furthermore, we present an optimization approach that allows easing from ECQ to GCQ at an earlier time41

and minimizes the number of additional beds necessary to ensure sufficient capacity in healthcare facilities.42

Since infectious diseases are likely to emerge or reemerge, there is a need to improve existing policies and43

plan effective strategies to minimize socioeconomic impact caused by strict community quarantine protocols44

and ensure that healthcare service is available to those who may need it.45

2. Methods46

2.1. Data47

The number of cumulative confirmed cases from March 8 to September 30, 2020 were obtained from48

the Philippine Department of Health (DOH) data drop [6]. These data were used to estimate the rates of49

transmission, behavior change, and reporting. The data on COVID-19 bed capacity and occupancy rate in50

Metro Manila were gathered from the number of occupied and available isolation, ward, and ICU beds from51

the weekly DOH bulletin from June 20 to September 26, 2020 [33]. The total population of Metro Manila52

was set to 13484462, based on the 2020 census data of the Philippine Statistics Authority [8].53

2.2. Mathematical model54

The model we present is an extension of the model in [21] wherein an unreported compartment is added to55

represent the undetected or unreported COVID-19 cases in the early-phase of the pandemic in the Philippines.56

We consider seven compartments: susceptible (S), behavior-changed susceptible (SF ), exposed (E), reported57

infectious (I), unreported infectious (Iu), isolated (Q), and recovered (R). A schematic diagram of the model58

is shown in Figure 1.59

Assuming a local, prevalence-based spread of the fear of the disease and following the study of Perra et60

al. in [22], the transition rate of a susceptible to a behavior-changed susceptible is given by βFQ(t)/N(t).61

This means that a susceptible is more likely to change behavior as the number of confirmed cases among62

one’s contacts increase. Moreover, the movement back to S is assumed to be influenced by the number63

of recoveries and susceptible individuals without behavior change [22]. As the recoveries and susceptible64

individuals increase among the contacts of a behavior-changed susceptible, the more likely the individual to65

exit the SF class and resume regular social behavior. The parameter µ represents the rate of the easing of66

behavior and its value is assumed to be 1/14 [21].67

Susceptible individuals (S and SF ) move to the exposed class upon contact with infectious individuals68

(I and Iu) at a rate β. The transmission rate for the behavior-changed susceptible class is assumed to be69

reduced by a factor δ. The reporting ratio ρ partitions the exposed class to reported I and unreported Iu70

classes. Assuming that an individual becomes infectious 2 days before symptom onset [27], mean incubation71

period of the original virus strain is 6 days [28], and mean duration between symptom onset and the first72
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Figure 1: COVID-19 transmission model that incorporates behavior change and unreported cases. Susceptible (S) may change

behavior (SF ) and vice versa at rates βF or µ. These classes can be exposed (E) to the virus and become infectious (I, Iu) in

1/κ days on average. Transmission rate β is reduced by a factor δ for behavior-changed SF . Reporting ratio is denoted by ρ.

Confirmed cases are isolated (Q) in 1/α days and recover (R) 1/γ days on average. The average fatality rate is denoted by f .

Those in Iu recover 1/η days on average.

medical consultation in the Philippines during this time was 6.75 days [29], we set the mean latent period73

(1/κ) to 4 days and mean infectious period of reported cases (1/α) to 8.75 days. From isolation, individuals74

recover 1/γ days on average or die. The average fatality rate, which is the ratio of the daily deaths to daily75

active cases and denoted by f , is set to 1.9% [30]. Those in the unreported class are assumed to have less76

severe symptoms and move to the recovered class 1/η days on average. The model equations and the table77

of parameters are in Appendix A.78

2.3. Least-squares fitting of parameters79

The values of the transmission rates, reporting ratio, and reduction factor were estimated from the80

cumulative cases data in Metro Manila from March 8 to September 30, 2020. We divide the period into two:81

period 1 is from March 8 to May 31, while period 2 is from June 1 to September 30, 2020. Metro Manila82

was mostly under ECQ during period 1, while it was mostly under GCQ during period 2. It was during83

period 2 that the first major epidemic wave in the Philippines occurred. Since the intensity of NPIs and84

behavior of the population during ECQ and GCQ vary, the values for the transmission rates (β and βF )85

and reporting ratio (ρ) in periods 1 and 2 are assumed to be different. The reduction in transmission (δ) for86

the behavior-changed susceptible class is assumed to have the same value in the two periods. We denote the87

transmission rates and reporting ratio for periods 1 or 2 by the subscripts 1 or 2, respectively.88

Estimation of the parameters was done by fitting the model to the cumulative confirmed cases data at89

corresponding time points using a least squares approach. That is, we minimize90 ∑
i

(αI(ti)− Y (ti))
2
,

where Y (ti) is the total reported cases on day ti. We utilize the Matlab built-in function lsqcurvefit to91

obtain the parameter estimates for the best model fit.92
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2.4. LHS-PRCC and parameter bootstrapping93

Sensitivity analysis is a numerical technique that is widely used in identifying and ranking critical param-94

eters to a model output [31]. A parameter is said to be influential to an output if small perturbations of its95

value lead to significant changes in the output of the model. In this work, we use Partial Rank Correlation96

Coefficient (PRCC) method paired with the Latin Hypercube Sampling (LHS) technique. LHS-PRCC is one97

of the most efficient global sensitivity analysis techniques. To consider every infection, we use the cumulative98

number of infected individuals κE as the model output. In the implementation of LHS, we sampled 1000099

combinations of the parameters, all following a uniform distribution. PRCC values of each parameter are100

calculated at five time points: April 19, May 31, August 2, October 4, and November 1, 2020.101

Parameter bootstrapping is a statistical technique to quantify uncertainty and construct confidence inter-102

vals of estimated parameters. In this study, we utilize the algorithm introduced in [32], where large samples103

of synthetic data sets using the estimated model parameters are generated assuming a certain probabil-104

ity distribution structure. In our simulations, parameters are re-estimated from 10000 synthetic data sets105

each generated by assuming a Poisson error structure. The mean, standard deviation, and 95% confidence106

intervals of the re-estimated parameters are determined.107

2.5. Optimization problem108

Using the bed occupancy data from the DOH [33], we calculated that an average of 16% of the active109

cases Q(t) occupied COVID-19 beds from June to September 2020. Fitting the weekly data on available110

beds, a linear function representing 75% of the bed capacity was obtained. The DOH categorizes a facility111

as high risk if the bed occupancy is 70% to 85%, and critical if bed occupancy is greater than 85%. From112

July 18 to August 8, 2020, most facilities in Metro Manila was on critical or high-risk, with a combined113

COVID-19 bed occupancy (isolation, ward, and ICU beds) exceeding 75% of the capacity. Here, we propose114

an optimization approach to determine the number of additional beds per day so that the number of cases115

requiring beds does not exceed 75% of the total bed capacity and if it is possible to transition from ECQ to116

GCQ earlier than June 1, 2020.117

We denote by QH(t) the number of active cases requiring beds and H(t) the linear, time-dependent,118

data-fitted bed capacity. We consider two objectives:119

(i) minimize the number of additional hospital beds needed per day (ω) so that the 75% capacity is not120

reached, and121

(ii) determine an earlier timing (τ) of easing from ECQ to GCQ.122

The problem can be formulated as a bi-objective constrained optimization problem expressed as follows:123

min

ω
τ

 , (1)

such that124

QH(t) ≤ H(t;ω, τ) := 0.75[ω (t− τ) +H0] for all t, (2)

5

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 25, 2022. ; https://doi.org/10.1101/2022.03.29.22273148doi: medRxiv preprint 

https://doi.org/10.1101/2022.03.29.22273148
http://creativecommons.org/licenses/by-nc-nd/4.0/


where QH(t) = 0.16 ·Q(t), H0 is the baseline number of beds at time τ based on the data, and Q(t) is solved125

from (A.1) by setting τ as the day when GCQ started. Since this is a bi-objective optimization problem, the126

solution is not unique but a pareto optimal set. We solve (1)-(2) using Genetic Algorithm, which has found127

a growing number of applications in various fields of science and engineering [34, 35, 36]. In particular, we128

implement the Matlab built-in function gamultiobj, which is based on a variant of Non-dominated Sorting129

Genetic Algorithm II (NSGA-II) [37, 38].130

3. Results131

3.1. Parameter Estimation132

The best model fit for the cumulative and daily cases are shown as the black curves in Figure 2. The133

red circles represent the data points. The estimated transmission rates β1 and βF,1 in Period 1 were 0.199134

and 471.057, respectively. In Period 2, the transmission rate of the disease β2 increased to 0.361, while the135

transmission rate of awareness or fear of the disease βF,2 dropped to 67.783. The reporting ratio ρ1 in Period136

1 was estimated at 28%, which increased to 86% in Period 2. The reduction in transmission induced by137

behavior change δ was estimated at 0.202. The parameter estimates are given in Table A.1.138

The reproductive number R(t), which is the average number of secondary infections from an individual139

during one’s infectious period, is shown as the blue curve in Figure 2. Using the next-generation matrix140

approach [39], it is expressed as141

R(t) =
βρ

α

(
δSF (t) + S(t)

N

)
+

β(1− ρ)

η

(
δSF (t) + S(t)

N

)
.

Initially, R(t) was at 1.9 then decreased to 0.9 by the end of Period 1. During Period 2, R(t) remained142

above 1 from early June until mid-August, with peak of up to 1.5 in mid-July 2020.143

Using the cumulative number of infected individuals κE as the model output, results of the sensitivity144

analysis showed that β (range: 0.82 to 0.92) and δ (range: 0.52 to 0.68) have the highest PRCC values,145

followed by ρ (range: −0.49 to −0.44) and the parameters for the infectious periods, α (range: −0.48 to146

−0.46) and η (range: −0.45 to −0.28). PRCC values of κ declined over time, with its highest value at 0.436.147

The rest of the parameters have small magnitudes of PRCC. Moreover, the parameter bootstrapping results148

showed that the re-estimated values of β, βF , δ and ρ follow a normal distribution and the mean values of149

the estimates all fall within their respective 95% confidence intervals. Bar plots of the PRCC at different150

time points are shown in Figure B.6 and the distributions of the re-estimates are shown in Figure B.7 in the151

Appendix.152

3.2. Effects of Behavior Change and Reporting153

The solid curves in the upper panel of Figure 3 are the plots of the susceptible class S, while the dashed154

lines are the behavior-changed susceptible class SF . Here we investigate what happens if people changed155

their behavior one (orange), two (yellow), three (purple), or four (green) weeks earlier. We calculated that156
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Figure 2: Best model fit to the cumulative cases from March 8 to September 30, 2020. The black curves are the plots of the

cumulative cases (top) and daily cases (bottom) using the model and parameter estimates. The vertical dashed lines mark the

end of Periods 1 and 2. Metro Manila was under ECQ from March 8 to May 15, 2020 (dark gray), MECQ from May 16 to May

31 and August 4 to 18, 2020 (gray), and GCQ from June 1 to August 3 and August 19 to September 30, 2020 (light gray). The

red circles represent the data points and the blue curve is the reproductive number R(t).

at the beginning of Period 2, the proportion of SF with respect to the total susceptible population was 88%157

(SF : 11849000; S: 1592900). To incorporate early behavior change, we scale the value of βF to yield the158

same proportion of SF one to four weeks before the start of GCQ. The black curves in Figure 3 represent159

the plots of the model using the parameters in Table A.1.160

During Period 1, we observe a switch in the populations of SF and S. By the end of Period 1, SF161

comprises the majority (88%) of the susceptible classes. The impact of early behavior change is seen in162

the daily and cumulative cases in Period 2, shown in the bottom panels of Figure 3. As behavior changed163

one, two, three, or four weeks earlier, the cumulative cases decreased to 140468, 115573, 93041, or 73328164

from 163191 (model, black), respectively. These translate to reductions of 30%, 49%, 63%, or 74% in the165
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Figure 3: Dynamics of the susceptible population (top panel; S solid and SF dashed curves), daily (lower left panel), and

cumulative cases (lower right panel) if the population changed their behavior one (orange), two (yellow), three (purple), or four

(green) weeks earlier than the start of Period 2.

cumulative cases by September 30, 2020. The peak of the daily cases also reduced to 2148, 1870, 1618, and166

1392 from 2408 (model, black) and the timing was delayed from one to four weeks.167

When the community quarantine was relaxed to GCQ, we observe that the size of SF declined, while S168

increased. Around mid-July, when the number of daily cases were increasing (R(t) > 1), the behavior of169

the susceptible classes switched again. From that point until the peak of the first big wave in Metro Manila170

(∼August 14 according to the model), the proportion of SF among the susceptible classes increased from171

59% to 89%.172

The upper panels in Figure 4 show the effect of varying the values of µ and βF on the cumulative cases173

and timing of the peak of infections. Higher values of βF and lower factors of the behavior change ease rate174

µ in Period 2 result to notable reductions in the number of cases and delay in the occurrence of the peak.175

For instance, if in Period 2 we set βF,2 as 3 times βF,1 and µ reduced by 90%, then the cumulative cases by176

the end of September 2020 would have been approximately 30000 and the peak would have occurred around177

8
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July 25 (140 days from March 8). The blue area on the heatmap for peak timing indicates that the big wave178

in Period 2 did not occur until September 2020.

Figure 4: Effect of varying the behavior parameters (µ and βF ) in Period 2 and reporting ratio in Period 1 (ρ1) to the timing

of the peak and cumulative cases by September 30, 2020.

179

Finally, the bottom panel in Figure 4 shows the effect of increasing the reporting ratio ρ1 in Period 1 on180

the cumulative cases by September 30, 2020. Only slight differences in the reported cumulative cases (blue181

bars; range: 11817 to 13421) were observed if ρ1 was increased by factors of 1.5, 2, 2.5, or 3. On the other182

hand, cumulative cases, including the unreported (red bars), can be reduced by 29%, 45%, 54%, or 61%, if183

ρ1 was increased by factors of 1.5, 2, 2.5, or 3, respectively.184

3.3. Optimal bed capacity and timing of policy change185

Panel (A) in Figure 5 shows the fitted bed capacity H(t) (dashed curve) from the data (red circles) and186

the number of cases requiring beds QH(t) from the model. Note that the red circles depict 75% of the total187

COVID-19 bed capacity during this time and QH(t) is 16% of Q(t), representing the average number of188
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active cases that occupy beds. By calculating the slope of H(t), denoted by ωdata, an estimated 33 beds189

were added per day from June 21 to September 30, 2022 in Metro Manila. Notably, QH(t) > H(t) during190

the second MECQ, when healthcare workers demanded a ‘timeout’. The peak of QH(t) was calculated at191

5307 cases.

Figure 5: Pareto optimal solutions of the bi-objective optimization problem. (A) The black curve QH(t) is the number of

cases requiring beds, calculated as 16% of the reported active cases Q(t) and the black dashed line H(t) is the bed capacity

obtained by fitting the data (red circles) using linear regression. (B) Pareto optimal set of (1). (C) Plots of QH(tω⋆, τ⋆) (cases

requiring beds) and the optimal hospital bed capacity H(t;ω⋆, τ⋆) corresponding to the three Pareto optimal solutions colored

blue, purple, and yellow. (D) Peaks of QH(t;ω⋆, τ⋆) corresponding to the Pareto optimal solutions, compared to the model.

192

The optimal solutions of the bi-objective optimization problem in (1) form a Pareto optimal set illustrated193

in Figure 5 Panel (B). The circles are all optimal solutions depicting different policies. The blue-colored194

optimal solution corresponds to the earliest easing to GCQ on May 2, 2020 and requires 131 additional beds195

per day to ensure that the bed capacity is adequate (up to 75% occupancy) during the surge in cases following196

the lifting of restrictions (blue curves in Panel (C)). On the other hand, the yellow-colored optimal solution197

10
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has the least number of additional beds per day (47 beds) and latest start of GCQ (on May 28, 2020). This198

solution has a delayed and lower peak of infections compared to the blue Pareto optimal solution (see Panel199

(C)). Compared to the curves in Panel (A), the number of cases requiring beds QH(t;ω⋆, τ⋆) shown in Panel200

(C) is below the optimal bed capacity H(t;ω⋆, τ⋆). Hence, constraint (2) of the optimization problem is201

satisfied. Panel (D) shows the peak sizes of the epidemic waves corresponding to the various Pareto optimal202

solutions. The smallest peak size (4807 cases, purple) is the optimal solution with GCQ starting on May 20,203

2020 and with at least 56 additional beds.204

4. Discussion205

Using the estimated parameter values, we observe that the model captures the trend of the daily and206

cumulative data from March until November 2020. The model shows a small peak in the number of daily207

cases (204 cases) and a slow increase in cumulative cases during Period 1. A much higher peak (2408 cases)208

around mid-August 2020 and a sharp rise in cumulative cases is seen from the model during Period 2. A209

delay of about one month between the drop in Rt and decline in daily cases was also observed. Results210

of the parameter bootstrapping suggest good reliability of the estimated parameters. Moreover, sensitivity211

analysis showed that the transmission rate β was the most sensitive parameter with respect to the number212

of cumulative infections. Higher reporting ratio ρ or shorter mean infectious period of reported cases 1/α213

reduces the cumulative infections. These results suggest that intensifying testing and tracing efforts can214

effectively reduce new infections. The average latent period (1/κ), which has the effect of delaying infection,215

becomes less sensitive to the cumulative number of infections as the epidemic progresses, while the mean216

infectious period of unreported cases (1/η) becomes more sensitive as the epidemic progressed.217

Reporting was low in the early pandemic phase, possibly resulting from low testing capacity, slow contact218

tracing, uncertainty and lack of knowledge about the disease and protocols, or fear of social stigma. This219

changed during Period 2, where the estimated reporting ratio went up three times. These results are consis-220

tent with a study on time-varying under-reporting estimates in various countries, including the Philippines,221

during the same period [40]. The impact of the community quarantines imposed by the government are222

reflected on the reduction parameter δ and transmission rates β and βF . The estimated 20% reduction in223

transmission for the behavior-changed class compares with a mathematical model of COVID-19 transmission224

in the Philippines which showed that the minimum health standards reduced the probability of transmission225

per contact by 13−27% [41]. As the community quarantine was relaxed from Period 1 to 2, the transmission226

rate of the disease (β) increased from Period 1 to 2, while the rate of behavior change or transmission rate227

of awareness or fear of COVID-19 (βF ) decreased from Period 1 to 2.228

Results in Figures 3 and 4 emphasize the importance of early public health campaigns and positive229

behavior changes (e.g mask wearing, improved hygiene practices, and social distancing) on reducing and230

delaying the peak of infections. Although fear and stigma can influence behavior changes [42, 43], these can231

also affect reporting and negatively impact disease control. We see in Figure 4 that as reporting is increased,232
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total cumulative cases including the unreported decreased significantly.233

Without vaccines and antiviral therapy, control of epidemic diseases rely on effective NPIs and man-234

agement of healthcare systems. The bi-objective optimization approach can be used as a decision support235

tool because of the multiple optimal solutions provided by the method, wherein policymakers can choose236

depending on how much priority given on minimizing the number of additional beds or earlier easing of237

restrictions. Although the method is applied to the Philippines, the optimization approach can also be used238

by other cities or countries by adapting location-specific epidemiological parameters. For countries with239

limited resources, the solutions corresponding to later easing of restrictions and less number of additional240

beds may be better options. On the other hand, for those that can provide sufficient additional beds, the241

approach can be used to identify optimal timing of adjusting NPIs. Results in Figure 5 suggest that if Metro242

Manila eased to GCQ on June 1, 2020, at least 47 beds per day should have been prepared so that the bed243

occupancy in the capital did not reach critical or high-risk, and MECQ was not needed to be reimposed.244

The blue solutions in Figure 5 prioritizes the earlier timing (τ) of easing of protocols over the number of245

additional beds (ω). With this policy, GCQ could have been started 30 days earlier. However, this requires246

131 additional beds per day, which is 4 times ωdata. On the other hand, the yellow solutions correspond to247

implementing GCQ on May 29, 2020. This would require 47 additional beds per day, which is still more248

than ωdata. In Panel (D), the policy in purple has the lowest peak among all the Pareto solutions. For this249

policy, even though GCQ starts on May 20 (12 days earlier than what happened), the peak of cases (purple250

curve in Panel (C)) was 500 less than the peak from the model (black curve in (A)). This policy would have251

required 56 beds per day, which is almost double than ωdata.252

5. Conclusion253

In this work, we used an SEIQR model that considers behavior change and underreporting to study the254

spread of COVID-19 during the early phase of the pandemic in Metro Manila, Philippines. Behavior change255

can be influenced by awareness or fear of the disease, and willingness to observe NPIs such as social dis-256

tancing and mask-wearing. It was incorporated to the model by introducing a two-compartment susceptible257

population: one for the behavior-changed population and the other for those with regular behavior. The258

probability of getting infected is reduced for the behavior-changed susceptible class. Due to limited testing259

and tracing, or negative attitudes of people towards seeking healthcare, a compartment for the unreported260

cases was also added.261

The results of this study highlight the importance of early behavior change and high reporting rate in262

reducing the number of cases and delaying the peak of infections. These can be done by intensifying case263

surveillance and public health campaigns promoting compliance to NPIs, seeking healthcare, and discour-264

aging social stigma. Moreover, this study provides an optimization approach that quantifies the additional265

bed requirement when policies are eased. The approach can be helpful in planning strategies that address266

strengthening or easing of policies, especially during the early phase when NPIs were the only control mea-267
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sures. Although the study focused on the transmission of COVID-19 in the Philippines, the proposed model268

is general enough that it can be applied to any city or country. The optimization problem can also be applied269

to other disease outbreaks by adjusting key epidemiological parameters. A limitation of the model is that270

it can only describe the early phase of the epidemic, and so for future work, the model can be extended to271

describe succeeding epidemic waves and incorporating vaccination, variants, attitudes and behavior of the272

people towards the disease, and actions done by government. Since the simulations did not consider the273

economic impact of NPIs, a model that maximizes economic output of a city or country while minimizing274

the number of infections is another work that can be pursued.275
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Appendix A. Model Equations306

The following system of differential equations describe the model used in the study.307

dS

dt
= − βS

I + Iu
N

+ µSF
S +R

N
− βFS

Q

N
,

dSF

dt
= − δβSF

I + Iu
N

− µSF
S +R

N
+ βFS

Q

N
,

dE

dt
= δβSF

I + Iu
N

+ βS
I + Iu
N

− κE,

dI

dt
= ρκE − αI,

dIu
dt

= (1− ρ)κE − ηIu,

dQ

dt
= αI − γQ,

dR

dt
= (1− f)γQ+ ηIu,

N = S + SF + E + I + Iu +R.

(A.1)

We set the initial number of infectious individuals I0, exposed E0, and unreported Iu,0 equal to the number308

of cases 1/α, 1/α + 1/κ, and 10× I0 days from March 8, 2020, respectively. The initial number of isolated309

individuals Q0 was the number of cases at the start of the estimation period. The initial population of the310

S class is computed by getting the difference between the total population and E0, Iu,0, I0, and Q0. The311

rest of the state variables were initially set to zero. The model parameters and initial values of the state312

variables are shown in Table A.1.313

Appendix B. Results on sensitivity analysis and bootstrapping314

Figure B.6 shows the PRCC for the model parameters with total infections κE as the model output.315

Figure B.7 shows the distributions of the parameter re-estimates. The mean, standard deviation, and316

confidence intervals are also indicated in the figure.317
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Symbol Description (unit) Value Ref

β1, β2 Transmission rate of COVID-19 in Periods 1 and 2

(1/day)

0.199, 0.361 Estimated

βF,1, βF,2 Transmission rate of awareness or fear of the disease

in Periods 1 and 2 (1/day)

471.057, 68.783 Estimated

µ Behavior change ease rate (1/day) 1/14 Assumed

δ Transmission reduction factor for behavior-changed

individuals

0.202 Estimated

1/κ Mean latent period (day) 4 [27, 28]

1/α Mean infectious period of reported cases (day) 8.75 [27, 29]

1/γ Mean recovery period (day) 16 [29]

f Mean fatality rate 1.9% [30]

ρ1, ρ2 Reporting ratio in Periods 1 and 2 0.289, 0.866 Estimated

1/η Mean infectious period of unreported cases (day) 10 [44]

S0 Initial susceptible population 13483232 Calculated

SF,0 Initial behavior-changed susceptible population 0 Assumed

E0 Initial exposed population 139 Assumed

I0 Initial reported infectious population 99 Calculated

Iu,0 Initial unreported infectious population 990 Assumed

Q0 Initial isolated population 2 [6]

R0 Initial recovered population 0 Assumed

Table A.1: List of model parameters, their values, and references. The subscripts 1 and 2 denote the parameter in Periods 1

and 2, respectively.
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Figure B.6: PRCC values of the model parameters, with respect to the cumulative number of infected individuals κE. The

bars represent the PRCC values on April 19, May 31, August 2, October 4 and November 1, 2020.

Figure B.7: Distribution of the re-estimates of β1, β2, βF,1, βF,2, δ, ρ1 and ρ2 in the parameter bootstrapping. The mean,

standard deviation (SD), and 95% confidence intervals are also shown.
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