RESEARCH

Modeling behavior change and underreporting in the early phase of COVID-19 pandemic in Metro Manila, Philippines

Victoria May P. Mendoza¹,², Renier Mendoza¹,², Youngsuk Ko¹, Jongmin Lee¹ and Eunok Jung¹*

Abstract
When the Philippine government eased the community quarantine restrictions on June 2020, the healthcare system was overwhelmed by the surge in coronavirus disease 2019 (COVID-19) cases. In this study, we developed an SEIQR model considering behavior change and unreported cases to examine their impact on the COVID-19 case reports in Metro Manila during the early phase of the pandemic. We found that if behavior was changed one to four weeks earlier, then the cumulative number of cases can be reduced by up to 74% and the peak delayed by up to four weeks. Moreover, a two- or threefold increase in the reporting ratio can decrease the cumulative number of cases by 29% or 47%, respectively, at the end of September 2020. Results of our finding are expected to guide healthcare professionals to mitigate disease spread and minimize socioeconomic burden of strict lockdown policies during the start of an epidemic.

Keywords: COVID-19; mathematical model; behavior change; underreporting; Metro Manila, Philippines; community quarantine

Introduction
In the Philippines, the first confirmed local transmission of the coronavirus disease 2019 (COVID-19) was reported on March 7, 2020. To curb the infection, the Philippine government implemented a four-level community quarantine protocol [1]. The Philippine government’s policy on community quarantines is one of the world’s strictest and longest lockdown policy. The policies focused on mobility restrictions implemented by the military, while contact tracing and testing remained low compared to other countries [2]. The Philippine Department of Health reported on May 2020 that the country lacked 94,000 contact tracers to reach the ideal ratio of one contact tracer per 800 people [3]. Further, daily testing output for the whole country during this time was around 11,000 [4]. By the end of September 2020, the average number of samples processed per day was only nearly 35,000 [5]. The low testing capacity or high number of infections, whether reported or undetected, was reflected on the weekly positivity rate which was around 20% at the start of the pandemic, and ranged between 4.5 and 13.4% from April to September 2020 [6], higher than the 5% threshold set by the World Health Organization [7]. On September 26, 2020, the number of confirmed cases in the Philippines reached 301,256, with more than 50% of the cases belonging to its capital region, Metro Manila [5].
The Philippine President placed Metro Manila under Enhanced Community Quarantine (ECQ) on March 16, 2020. Under ECQ, strict home quarantine was observed, movement was restricted to essential goods and services, public transportation and mass gatherings were suspended [8]. People residing on areas under ECQ were encouraged to work from home and businesses were advised to do their transactions online [1]. Upon the recommendation of the Philippine Inter-Agency Task Force (IATF), ECQ was extended to May 15, 2020 and was subsequently replaced by the Modified Enhanced Community Quarantine (MECQ), a slightly relaxed protocol than ECQ. In MECQ, mobility was still restricted but more industries related to food and essential services were allowed to operate at limited capacity. On June 1, 2020, IATF placed Metro Manila under General Community Quarantine (GCQ), where public transportation, shopping centers, and other establishments, except those for leisure, were allowed to operate [8]. A surge in the number of cases occurred in July and consequently, Metro Manila was again placed under MECQ for two weeks. On August 10, 2020, the Philippines recorded the highest number of confirmed cases among the countries in the Southeast Asia [9]. On August 19, 2020, Metro Manila was placed back to GCQ.

Because of the lack of vaccines and limited antiviral therapies during the early phase of the COVID-19 pandemic, non-pharmaceutical interventions (NPIs), effective testing, and contact tracing were essential disease control measures. In Korea, aside from immediate isolation of individuals confirmed with COVID-19 and intensive screening of individuals with high risk of infection, the government had public campaigns for social distancing and behavior change. These campaigns include wearing face masks, maintaining proper hygiene and sanitation, social distancing, avoiding crowded places, and staying at home when sick [10, 11]. Such campaigns were not extensively done in the Philippines at the early phase of the pandemic [2]. A study on COVID-19 attitudes and practices among low income households in the Philippines published on June 2020 reported that 36% of respondents considered staying at home and wait to get better if they experienced symptoms, and only 32% identified social distancing as a preventive measure against COVID-19 [12].

Mathematical modeling has been used to study the dynamics of transmission of COVID-19 in various countries [13–20]. Furthermore, it has been utilized to study the effects of intervention policies in mitigating the spread of the disease [21–24]. In [25], the influence of behavior change to the perception and actual spread of diseases was studied. Mathematical models of COVID-19 that include behavior change have been developed to understand the dynamics of the disease [26, 27] and its effects on delaying school opening [28] and other NPIs such as social distancing [29].

In this study, we adopt the SEIQR model developed by Kim et al. [29] and include an unreported compartment. The addition of an unreported compartment has been used in estimating unreported COVID-19 cases in various countries [30–35]. It is worth noting that none of these models considered behavior changes using the approach described in [29]. Our study aims to understand how the attitude and behavior of the people towards COVID-19 during the early phase of the pandemic impact the spread of the disease. In particular, we are interested on the effects of reporting and behavior change on the timing and magnitude of the peak of COVID-19 infections in Metro Manila, Philippines from March to September 2020. Since
infectious diseases are likely to emerge or reemerge, there is a need to improve existing policies and plan effective strategies to minimize socioeconomic suffering of the people caused by strict lockdown protocols.

Materials and Methods
Epidemiological Data
The number of daily confirmed and cumulative cases from March 8, 2020 to November 30, 2020 are available from the Philippine Department of Health [6]. The population of Metro Manila is obtained from the 2020 census data of the Philippine Statistics Authority [36].

Timeline of Community Quarantines in Metro Manila
We divide the timeline from March 8 to November 30, 2020 into three periods. We use the data from the first two periods to estimate the rates of the transmission, behavior changes, and reporting. On the third period, we compare model results using the obtained parameter estimates to the observed data. Figure 1 summarizes the community quarantines observed on the three periods. The first period is from March 8 to May 30, 2020, which covers ECQ and a two-week MECQ. The second period is from June 1 to September 30, 2020, wherein Metro Manila was mostly under GCQ except for another two-week MECQ. It was during this period that a major epidemic wave that overwhelmed the healthcare system occurred. The third period is from October 1, 2020 to November 30, 2020 and was entirely under GCQ. Vaccines and antiviral therapy were not yet available during these periods and hence, NPIs such as community quarantines, social distancing, and mandates on wearing face masks were the only measures implemented by the government.

Mathematical Model Considering Behavior Change and Underreporting
Our proposed model is an extension of the work presented in [29] to capture underreporting of COVID-19 infections. We consider seven compartments: susceptible (S), susceptible with behavior changes (S_F), exposed (E), reported infectious (I), unreported infectious (I_u), isolated (Q), and recovered (R). The flow of the COVID-19 transmission is illustrated in Figure 2.

We assume that the change in behavior of susceptible classes is influenced by the S, Q, and R classes. As the number of confirmed and isolated individuals increases, more individuals change their behavior and transfer from S to S_F. On the other
Figure 2 The flow diagram of a COVID-19 transmission model that incorporates unreported cases. Susceptible S may change behavior S_F at rates β_F or μ. These classes can be exposed E to the virus at a rate β and become confirmed infectious I or unreported infectious I_u in $1/\kappa$ days on average. The reduction of infections caused by behavior change is denoted by δ and the reporting ratio is denoted by ρ. The confirmed cases are isolated Q in $1/\alpha$ days and recover $1/\gamma$ days on average. The average fatality rate is denoted by f. The unreported infectious class recovers $1/\nu$ days on average.

Hand, the movement back to S is influenced by the number of recoveries and susceptible individuals without behavior change. Individuals in S become E upon contact with infectious individuals (I and I_u) at a rate β. The parameter δ represents the reduction in transmission in behavior-changed susceptible individuals. Those exposed to the virus progress to the infectious classes in $1/\kappa$ days on average. The reporting ratio ρ partitions the infectious individuals to reported I and unreported I_u classes. Infectious individuals who are reported are isolated, and then eventually recover $1/\gamma$ days on average or die. The parameter f represents average fatality rate. Those in I_u are assumed to have less severe symptoms and recover $1/\eta$ days on average. The model is described by the following differential equations:

$$
\frac{dS}{dt} = -\beta S \frac{I + I_u}{N} + \mu S_F - \beta_F S Q N,
$$

$$
\frac{dS_F}{dt} = -\delta \beta S_F \frac{I + I_u}{N} - \mu S_F + \beta_F S Q N,
$$

$$
\frac{dE}{dt} = \delta \beta S_F \frac{I + I_u}{N} + \beta S \frac{I + I_u}{N} - \kappa E,
$$

$$
\frac{dI}{dt} = \rho \kappa E - \alpha I,
$$

$$
\frac{dI_u}{dt} = (1 - \rho) \kappa E - \eta I_u,
$$

$$
\frac{dQ}{dt} = \alpha I - \gamma Q,
$$

$$
\frac{dR}{dt} = (1 - f) \gamma Q + \eta I_u,
$$

$$
N = S + S_F + E + I + I_u + Q + R.
$$

The average number of days from symptom onset to case confirmation is set to 6.75 days [37]. The value of δ is assumed to be 0.2 based on the reduction of mobility in Metro Manila during periods 1 and 2 [38]. The average number of days for I and I_u to recover is set to $1/26.6$ [37] and $1/10$ [39], respectively. The parameters used in this study are summarized in Table 1.
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Value</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>β</td>
<td>Transmission rate of COVID-19</td>
<td>Period 1 (β_1): 0.222; Period 2 (β_2): 0.409</td>
<td>Estimated</td>
</tr>
<tr>
<td>β_F</td>
<td>Transmission rate of the awareness/fear of the disease</td>
<td>Period 1 ($\beta_F, 1$): 285.916; Period 2 ($\beta_F, 2$): 60.396</td>
<td>Estimated</td>
</tr>
<tr>
<td>μ</td>
<td>Behavior-change eased rate</td>
<td>1/14</td>
<td>[29]</td>
</tr>
<tr>
<td>δ</td>
<td>Transmission reduction ratio in behavior-changed individuals</td>
<td>0.2</td>
<td>Assumed</td>
</tr>
<tr>
<td>$1/\kappa$</td>
<td>Average latent period (days)</td>
<td>4.1</td>
<td>[29, 40]</td>
</tr>
<tr>
<td>$1/\alpha$</td>
<td>Average number of days from symptom onset to case confirmation</td>
<td>6.75</td>
<td>[37]</td>
</tr>
<tr>
<td>$1/\gamma$</td>
<td>Average number of days that a reported, infected individual recovers</td>
<td>26.6</td>
<td>[37]</td>
</tr>
<tr>
<td>f</td>
<td>Average fatality ratio</td>
<td>6.59%</td>
<td>[41]</td>
</tr>
<tr>
<td>ρ</td>
<td>Reporting ratio</td>
<td>0.3345</td>
<td>Estimated</td>
</tr>
<tr>
<td>$1/\eta$</td>
<td>Average number of days that an unreported, infected individual recovers</td>
<td>10</td>
<td>[39]</td>
</tr>
</tbody>
</table>

Table 1 Summary of the symbols and values of the parameters in the model. We estimate the transmission rates β and β_F on Periods 1 and 2. The reporting ratio ρ was estimated using data from Periods 1 and 2.

We set the initial number of infectious individuals I_0, exposed E_0, and unreported $I_{u,0}$ equal to the number of cases $1/\alpha$, $1/\alpha + 1/\kappa$, and $3 \times I_0$ days from March 8, 2020, respectively. The initial number of isolated individuals Q_0 was the number of cases on March 8, 2020. The initial number of individuals in the S class is computed by getting the difference between the total population and E_0, $I_{u,0}$, I_0, and Q_0. The rest of the state variables were initially set to zero.

Estimation of Parameters and Sensitivity Analysis

We estimate the transmission rates in the first ($\beta_1, \beta_{F,1}$) and second ($\beta_2, \beta_{F,2}$) periods, and the reporting ratio. Estimation was done by minimizing the squared difference between the cumulative confirmed cases and the model at corresponding time points using the Matlab built-in function `lsqcurvefit`. The transmission rates in periods 1 and 2 are estimated separately since the intensity of NPIs implemented during these periods vary.

Sensitivity analysis is a numerical technique that is widely used in identifying and ranking critical parameters to a model output [42]. A parameter is said to be influential to an output if small perturbations of its value lead to significant changes in the output of the model. In this work, we use partial rank correlation coefficient (PRCC) method paired with the Latin hypercube sampling (LHS) technique. The PRCC-LHS method is one of the most efficient global sensitivity analysis techniques. In our simulations, we rely on the PRCC Matlab codes presented in [42].

Parameter bootstrapping is a statistical technique for uncertainty quantification and constructing confidence intervals of estimated parameters. In this study, we utilize the algorithm introduced in [43]. The algorithm generates large samples of synthetic data sets using the estimated model parameters by assuming a certain
probability distribution structure. In our simulations, we sample 10,000 synthetic data sets using Poisson distribution. The parameters are re-estimated from the generated data sets. The mean, standard deviation, and confidence intervals of the re-estimated parameters are calculated.

Results and Discussion

Parameter Estimation
The obtained estimates for the transmission rates in periods 1 and 2, and the reporting ratio ρ are shown in Table 1. The red circles in Figure 3 depict the data on cumulative (top) and daily (bottom) cases, while the black curves represent the best fit of the model to the data. The model solution shows a small peak in the number of daily cases (258 cases) around May 2020 on Period 1 and much higher peak (2,437 cases) around August 2020 on Period 2. Notice that from Period 1 to 2, the value of β increased while β_F decreased, which is expected since a higher peak occurred in the second period. The blue dotted curve in Period 3 is the extended model simulation using the estimated parameter values from Period 2. We see that the model was able to predict the trend of COVID-19 reported cases in Period 3.

Figure 3 Data-fitting result using the data on cumulative confirmed cases. The data are represented by the red circles. Parameter estimation was done on the Periods 1 and 2. The plots (black curves) show the best fit of the model to the cumulative confirmed cases (top), and daily confirmed cases (bottom). The prediction (blue dotted curves) was done on Period 3.

Figure 4 shows the plots of S and S_F (blue, solid and dashed curves, respectively), daily cases from the model (black), and reproductive number (magenta) during Period 2. At the beginning of this period, the government relaxed the community quarantine to GCQ. Consequently, we see the behavior-changed S_F go down and S move up. But as the reproductive number increased, the behavior of the susceptible individuals switched again. At the peak of the number of reported cases, majority of the susceptible population are in the behavior-changed class.
The effective reproductive number $R(t)$ depicts the average number of secondary infections from an individual during his or her infectious period. Using the next-generation matrix approach [44], we derive $R(t)$ as

$$R(t) = \frac{\beta \rho}{\alpha} \left(\frac{\delta S_F(t) + S(t)}{N} \right) + \frac{\beta (1 - \rho)}{\eta} \left(\frac{\delta S_F(t) + S(t)}{N} \right).$$

(2)

According to this formula, the reproductive number of the susceptible group without behavior change is 1.98 in Period 1 and 3.65 in Period 2. The reproductive number of the behavior-changed susceptible group is 0.40 in Period 1 and 0.73 in Period 2.

PRCC-LHS

We use the cumulative number of infected individuals κE as the model output to consider every infection. In the implementation of LHS, we sampled 10,000 combinations of parameters, all following a uniform distribution. We can see that the parameter β is the most influential parameter, followed by the reporting ratio (ρ),
and then the parameters related to the duration of infection and behavior change (α, δ, βF, η and μ). The average latent period (κ), which has the effect of delaying infection, influences the number of new infections only at the beginning. When the disease has spread, the effect of κ is negligible. Increasing γ decreases the number of quarantined individuals, making behavior changes less and increasing the number of infected.

According to the PRCC result, concentrating on active efforts such as testing and tracking of confirmed cases can reduce new infections efficiently. This also means that these parameters have to be properly estimated. In our estimation, we opted to exclude κ, α, γ and η because the values of these parameters can be obtained from the data and references [37]. Note that, at the beginning of the simulations, δ has a small PRCC value since the number of behavior-changed susceptible class is not large enough to affect the number of new infections.

Bootstrapping

The results of the parameter bootstrapping are shown in Figure 6. After 10,000 simulations, the re-estimated values of the parameters $\beta_1, \beta_2, \beta F_1, \beta F_2$, and ρ follow a normal distribution. The obtained standard deviations are several degrees lower than the mean estimates. Furthermore, the estimated parameters shown in Table 1 fall inside the 95% confidence interval of the estimates, and are close to the mean estimates, suggesting good reliability of the estimated parameters.

![Figure 6 Results of the parameter bootstrapping for $\beta_1, \beta_2, \beta F_1, \beta F_2$, and ρ with the mean, standard deviation, and 95% confidence interval.](image)

Analysis of Behavior Changes and Reporting Rate

We now analyze the effects of the parameters related to the behavior change. At the end of Period 1, the proportion of S_F reached 85% of the total population (upper-left panel of Figure 7). The reproductive number $R(t)$ in (2) is directly related to $\delta S_F(t) + S(t)$. Because $\delta < 1$, an increase in the proportion of S_F over the total susceptible class will reduce $R(t)$.
We investigate what happens if people changed their behavior sooner, that is, one, two, three, and four weeks earlier, by scaling the values of β_F that yields a proportion of S_F equal to 85%. Figure 7 displays the dynamics of the susceptible population, daily confirmed cases, and cumulative cases when the change in behavior happened earlier. As the behavior change was made one, two, three, and four weeks earlier, the cumulative numbers of cases (peak size of daily cases) became 114673 (1853), 83533 (1503), 60253 (1231), and 41971 (998), respectively. These translate to a reduction of 30%, 49%, 63%, or 74% in the cumulative cases as behavior was changed from one to four weeks earlier, respectively. These results emphasize the importance of public campaigns on wearing face masks, proper hygiene and sanitation, and social distancing policies. The Philippine government imposed a less strict quarantine protocol (MECQ) than ECQ, two weeks before the end of Period 1. Hence, the 85% proportion could have been reached sooner if ECQ was not lifted.

At the start of Period 2, individuals in the S_F class started to move to S, but returned to the S_F compartment when the number of cases began to rise. From August 4 to August 19, 2020, Metro Manila was once again placed under MECQ. During this time, the number of infections peaked and the proportion of S_F, according to our model simulations, ranged from 80% to 94%. Aside from the reduction in cases, the peak was also delayed.

Another parameter related to behavior change is μ, which quantifies the easing of behavior from S_F to S. In Figure 8, we illustrate the effects of reducing μ and

Figure 7 The dynamics of the susceptible population (upper-left, S and S_F are illustrated by solid and dashed lines, respectively) and the daily cases (upper-right) if Metro Manila residents changed their behavior one (orange), two (yellow), three (violet), and four (green) weeks earlier. The number of cumulative cases and the corresponding percent reduction are shown in the bottom panel.
increasing β_F on the cumulative number of cases and timing of the peak of infections. Higher values of β_F and lower reduction factors of μ result in a significant decrease in the number of COVID-19 cases and delay in the arrival of the peak. The blue area on the right panel in Figure 8 indicates that there is no peak of infections on Period 2. In other words, if the value of β_F was increased and μ was reduced enough, then the surge of infections can be prevented. This simulation emphasizes how behavior change can be a key in controlling the pandemic, especially when the cure or vaccines are not yet widely available.

Figure 8 The effect of reducing the behavior change eased rate and increasing the transmission rate of the awareness of the disease on the cumulative cases (left, in log scale) and the peak of the epidemic (right).

In Figure 9, we illustrate the scenario if community quarantine and behavior in Period 1 were maintained throughout Period 2. To show this, we set the values of the parameters β and β_F in Period 2 to their corresponding values from Period 1 (see the values in Table 1). The results, indicated by the blue curves, show that there is a significant decrease in the number of cases and the second peak was not present. This simulation aligns with the early prediction results presented in [45], where they showed that the cases were expected to decrease during Period 2, based on the data from Period 1. Note that the simulation in Figure 9 did not consider the socioeconomic burden of extending MECQ on Period 2. However, the significant difference in the number of cases suggests that the easing of protocol might have been too soon or too relaxed. A transition between MECQ and GCQ might be necessary at the start of Period 2 to allow the economy to open while preventing a surge in the number of infections.

Finally, we investigate the effect of increasing the reporting ratio on the COVID-19 transmission dynamics. In Figure 10, the orange, yellow, violet, and green curves represent the number of infected individuals (reported and unreported) and cumulative cases during Period 2, when reporting was increased by a factor of 1.5, 2, 2.5, and 3, respectively. It can be seen how increasing the value of ρ flattens the $I(t)$ and $I_u(t)$ curves. At the start of period, an increase in the reporting ratio yields a higher number of confirmed cases. In turn, an increase in the cumulative number of cases (bottom-right panel in Figure 10) is observed. However, because reported cases are quarantined, the long-term effect of a higher reporting ratio reduces the cumulative cases by the end of Period 2. By increasing the reporting rate by 50%
(orange), the cumulative cases can be reduced by 17% at the end of September 2020. This suggests that if the government eases the policy from MECQ to GCQ, the number of cases can still be reduced by increasing the reporting ratio, which can be done through strategies such as hiring more contact tracers and intensifying COVID-19 testing.

Figure 9 The dynamics of the susceptible population (left, S and S_F are illustrated by solid and dashed lines, respectively) and the daily cases (right) if the behavior of Metro Manila residents and transmission rates in Period 2 is the same as in Period 1.

Figure 10 The effects of increasing reporting rate during period 2 on the number of active infected cases $I(t)$ (upper-left), active unreported cases $I_u(t)$ (upper-right), and cumulative cases (bottom panels).
Conclusion

In this work, we used an SEIQR model that considers behavior change and underreporting to study the spread of COVID-19 during the early phase of the pandemic in Metro Manila, Philippines. Behavior change was incorporated by using a two-compartment susceptible population: a compartment for those individuals who change their behavior, influenced by the number of confirmed cases, and another for those without behavior change. The probability of getting infected is reduced for behavior-changed susceptible individuals. Due to limited testing and negative attitudes of people towards seeking healthcare and observing NPIs such as social distancing and wearing of masks at beginning of the pandemic, we also incorporated underreporting of cases by adding an infected, unreported compartment.

The results of this study highlight the importance of early behavior change and high reporting rate in reducing the number of cases and delaying the arrival of the peak of infections. In Metro Manila, if a change in behavior was done even a week earlier, the cumulative number of cases can be reduced by 30% and the peak can be delayed by a week. A change in behavior two and four weeks early can reduce the number of cases by 49% and 74%, and delay the peak by two and four weeks, respectively. This can be done by intensifying public campaigns on wearing face masks, social distancing, and proper hygiene. Moreover, easing quarantine restrictions is possible as long as other aspects of disease control are given more attention. When the government eased the community quarantine protocol from MECQ to GCQ on June 1, 2020, contact tracing and testing should have been improved to increase the reporting rate and isolate infected individuals earlier. For instance, if the reporting rate was increased by 50% and 300%, cumulative cases by September 30, 2020 can be reduced by 17% and 47%, respectively.

Although the study is focused on modeling the transmission dynamics of COVID-19 in Metro Manila, Philippines, the proposed model is general enough that it can be applied to any city or country with low reporting rate and policies which are based on the number of cases.

The model and parameters used in this study describe early phase of infections in Metro Manila, Philippines, when antiviral drugs and vaccines were not yet available. Possible research directions to consider are extensions of the model that can describe succeeding epidemic waves and impact of vaccination to the spread of the disease, considering the attitudes and behavior of the people towards the disease and actions done by government. Furthermore, the simulations done in this work do not consider the economic impact of NPIs. Hence, formulating policies that maximize economic output of a city or country while minimizing the number of infections is another work that can be pursued.

Availability of data and material

Competing interest
The authors declare that they have no competing interests.

Funding
This paper is supported by the Korea National Research Foundation (NRF) grant funded by the Korean government (MEST) (NRF-2021M3E3E308120711). This paper is also supported by the Korea National Research Foundation (NRF) grant funded by the Korean government (MEST) (NRF-2021R1A2C100448711).
Author’s contributions

VMMP and RM, Conceptualization, Draft preparation, Methodology, and Software. YK and J.L, Conceptualization,
Draft preparation, Methodology. EJ, Conceptualization, Draft preparation, Methodology, Project Supervision. All
authors read and approved the final version of the manuscript.

Acknowledgments

The authors acknowledge Dr. Peter Julian Cayton of the UP Resilience Institute for his assistance with the data
collection.

Author details

1Department of Mathematics, Konkuk University, Seoul, Republic of Korea. 2Institute of Mathematics, University
of the Philippines Diliman, Quezon City, Philippines.

References

2. Quijano, N., Fernandez, M.C., Pangilinan, A.: Misplaced priorities, unnecessary effects: Collective suffering and
https://www.rappler.com/nation/philippines-needs-contact-tracers
2021-11-17. https://drive.google.com/drive/folders/1ux8Tbp8uWrGBDy1z2CyFqA_NmdCooCafbc1ld=
https://doc.gov.ph/covid19tracker
https://publichealth.jhu.edu/2020/covid-19-testing-understanding-the-percent-positive
8. Inter-Agency Task Force for the Management of Emerging Infectious Diseases: Omnibus guidelines on the
https://doc.gov.ph/node/27640
2021-10-12. https://tinyurl.com/dttpt6aa
10. Ministry of Interior and Safety (MOISA) (Central Disaster and Safety Countermeasure Headquarters
.go.kr/eng/brd/m_22591/view.do?seq=14archFr=cmparchFr=archWord=archName=multi_item_seq=0
&arch_page=2&titleNm=
https://www.mofa.go.kr/eng/brd/m_22591/view.do?seq=35&archFr=cmparchFr=archWord=
archName=multi_item_seq=0&arch_page=2&titleNm=
12. Lau, L.L., Hung, N., Go, D.J., Ferma, J., Choi, M., Dodd, W., Wei, X.: Knowledge, attitudes and practices of
30(1) (2020)
Argentina with the real data based on daily cases from March 03, 2020 to March 29, 2021 using classical and
in India with dynamics of transmission and control. Advances in Difference Equations 2020(1), 1–19 (2020)
methoids, and applications. Advances in Difference Equations 2020(1), 1–17 (2020)
23. Traoré, A., Kanené, F.V.: Modeling the effects of contact tracing on COVID-19 transmission. Advances in
24. de la Sen, M., Ibeas, A.: On an SE (ls) (lh) AR epidemic model with combined vaccination and antiviral
31. Liu, Z., Magal, P., Webb, G.: Predicting the number of reported and unreported cases for the COVID-19 epidemics in China, South Korea, Italy, France, Germany and United Kingdom. Journal of theoretical biology 509, 110501 (2021)