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Abstract

The primary screening by automated computational pathology algo-
rithms of the presence or absence of adenocarcinoma in biopsy specimens
(e.g., endoscopic biopsy, transbronchial lung biopsy, and needle biopsy)
of possible primary organs (e.g., stomach, colon, lung, and breast) and
radical lymph node dissection specimen is very useful and should be
a powerful tool to assist surgical pathologists in routine histopatho-
logical diagnostic workflow. In this paper, we trained multi-organ
deep learning models to classify adenocarcinoma in biopsy and radi-
cal lymph node dissection specimens whole slide images (WSIs). We
evaluated the models on seven independent test sets (stomach, colon,
lung, breast, lymph nodes) to demonstrate the feasibility in multi-
organ and lymph nodes specimens from different medical institutions
and international public datasets, achieving receiver operating charac-
teristic areas under the curves (ROC-AUCs) in the range of 0.91-0.99.

Keywords: Deep learning, Weakly supervised learning, Adenocarcinoma,
Whole slide image, multi-organ

1 Introduction

Adenocarcinoma is a type of carcinoma that has the propensity to differentiate
into glandular, ductal, and acinar cells in several organs (e.g., stomach, colon,
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2 1 INTRODUCTION

lung, and breast). According to the Global Cancer Statistics 2020 Sung et al
(2021), number of new deaths and % of all sites for stomach, colon, lung, and
breast cancers were as follows: 768,793 cases (7.7%) in stomach, 576,858 cases
(5.8%) in colon, 1,796,144 cases (18.0%) in lung, and 684,996 cases (6.9%)
in breast. Adenocarcinoma is the major cancer arise in these organs, so that
adenocarcinoma classification in the primary organs especially on biopsy spec-
imens is one of the most important histopathological inspection in clinical
workflow to determine the strategies of cancer treatment. Moreover, lymph
nodes are the most common site of metastatic adenocarcinoma, and can be
constituted the first clinical manifestation of the cancer. The important clini-
cal practice of the surgical pathologist is to identify the presence or absence of
a malignant process in the lymph node. If cancer cells are identified within the
efferent lymph vessels and extra-nodal tissues, it is necessary to note in the
pathological report because of the possible prognostic significance. Histopatho-
logical evaluation of lymph node metastasis is very important for staging of
tumors, documentation of tumor recurrence, and prediction of the most prob-
able primary site for a metastatic cancer of uncertain primary site. However,
in the routine practical diagnosis, frequently there are numerous number of
lymph nodes to be inspected in a single glass slide and there are number of
radical lymph node dissection specimen glass slides in the same patient, which
should be a workload burden for surgical pathologists.

The incorporation of deep learning models in routine histopathological
diagnostic workflow is on the horizon and is a promising technology, allowing
the potential of reducing the burden of time-consuming diagnosis and increas-
ing the detection rate of anomalies including cancers. Deep learning has been
widely applied in histopathological cancer classification on whole-slide images
(WSIs), cellular detection and segmentation, and the stratification of patient
outcomes Yu et al (2016); Hou et al (2016); Madabhushi and Lee (2016); Litjens
et al (2016); Kraus et al (2016); Korbar et al (2017); Luo et al (2017); Coudray
et al (2018); Wei et al (2019); Gertych et al (2019); Bejnordi et al (2017); Saltz
et al (2018); Campanella et al (2019); Iizuka et al (2020). Previous works have
looked into applying deep learning models for adenocarcinoma classification
separately for different organ, such as stomach Iizuka et al (2020); Kana-
vati and Tsuneki (2021b); Kanavati et al (2021a), colon Iizuka et al (2020);
Tsuneki and Kanavati (2021), lung Kanavati and Tsuneki (2021b); Kanavati
et al (2021b), and breast Kanavati and Tsuneki (2021a); Kanavati et al (2022)
histopathological specimen WSIs. Although these existing models exhibited
very high ROC-AUCs for each organ, they cannot classify adenocarcinoma
across organs accurately.

In this study, we trained deep learning models using weakly-supervised
learning to predict adenocarcinoma in WSIs of stomach, colon, lung, and breast
biopsy specimens for primary tumors as well as radical lymph node dissec-
tion specimens for metastatic carcinoma using training datasets for stomach,
colon, lung, and breast biopsy specimen WSIs without annotations. We evalu-
ated the models on each primary organ biopsy specimen (stomach, colon, lung,
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and breast) and public datasets (lung and breast) as well as radical lymph
node dissection specimens to evaluate presence or absence of metastatic ade-
nocarcinoma, achieving and ROC-AUC from 0.91 to 0.99. Our results suggest
that deep learning algorithms might be useful for histopathological diagnos-
tic aids for adenocarcinoma classification in primary organs and lymph node
metastatic cancer screening.

2 Materials and methods

2.1 Clinical cases and pathological records

In the present retrospective study, a total of 8,896 H&E (hematoxylin & eosin)
stained histopathological specimen slides of human adenocarcinoma and non-
adenocarcinoma (adenoma and non-neoplastic) lesions were collected from the
surgical pathology files of five hospitals: International University of Health and
Welfare (IUHW), Mita Hospital (Tokyo, Japan) and Kamachi Group Hospitals
(total four hospitals: Wajiro, Shinkuki, Shinkomonji, and Shinmizumaki Hos-
pital) (Fukuoka, Japan) after histopathological review by surgical pathologists.
The histopathological specimens were selected randomly to reflect a real clin-
ical settings as much as possible. Prior to the experimental procedures, each
WSI diagnosis was observed by at least two pathologists with the final check-
ing and verification performed by senior pathologists. All WSIs were scanned
at a magnification of x20 using the same Leica Aperio AT2 Digital Whole Slide
Scanner (Leica Biosystems, Tokyo, Japan) and were saved as SVS file format
with JPEG2000 compression.

2.2 Dataset

Hospitals which provided histopathological specimen slides were anonymised
(e.g., Hospital-A, B, C, D, and E). Table 1 breaks down the distribution of
training sets from four domestic hospitals (Hospital-A, B, C, and D). Table 2
shows the distribution of 1K (1,000 WSIs), 2K (2,000 WSIs), and 4K (4,000
WSIs) training sets. Validation sets were selected randomly from the training
sets and the numbers of validation sets were given in parentheses (Table 2).
The distribution of test sets from five domestic hospitals (Hospital-A, B, C, D,
and E) was summarized in Table 3. In both training and test sets, stomach,
colon, lung, and breast WSIs solely consisted of biopsy (stomach and colon:
endoscopic biopsy, lung: transbronchial lung biopsy (TBLB), breast: needle
biopsy) specimens and lymph node WSIs consisted of radical dissection spec-
imens (Table 1, 2, 3). The distribution of lymph nodes using test sets were
summatized in Table 4. All training sets WSIs were not manually annotated
and the training algorithm only used the WSI labels which were extracted from
the histopathological diagnostic reports after reviewing surgical pathologists;
meaning that the only information available for the training was whether the
WSI contained adenocarcinoma or non-adenocarcinoma but no information
available about the location of the cancerous lesions. In addition to the test sets
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4 2 MATERIALS AND METHODS

Fig. 1: Overview of training method. (a) shows a zoomed-in example of a tile
from a WSI. (b) During training, we alternated between an inference step and
a training step. During the inference step, the model weights were frozen and
the model was used to select tiles with the highest probability after applying
it on the entire tissue regions of each WSI. The top k tiles with the highest
probabilities were then selected from each WSI and placed into a queue. During
training, the selected tiles from multiple WSIs formed a training batch and
were used to train the model.

from clinical institutions, we have used the external lung and breast TCGA
datasets as test sets (Table 5) which are publicly available through the Genomic
Data Commons (GDC) Data Portal (https://portal.gdc.cancer.gov/). We have
confirmed that surgical pathologists were able to diagnose these cases from
visual inspection of the H&E stained slide WSIs alone.

2.3 Deep learning models

In this study, we used the EfficientNetB1 Tan and Le (2019) as the architecture
of our models. We use the partial fine-tuning approach Kanavati and Tsuneki
(2021c) to train them. This method consists of using only fine-tuning the affine
parameters of the batch normalization layers and the final classification layer
while leaving the remaining weights of an existing pre-trained model frozen.
Figure 1 shows an overview of the training method.

As we only had WSI labels, we used a weakly supervised method to train
the models. The training method is similar to the one described in Kanavati
et al (2020).

WSIs typically have large areas of white background that is not required
for training the model and can easily be eliminated with preprocessing via
thresholding using Otsu’s method Otsu (1979). This creates a mask of the
tissue regions from which it would then be possible to sample tiles in real-time
using the OpenSlide library Goode et al (2013) by providing coordinates from
the tissue regions.
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2.4 Software and statistical analysis 5

During inference, the tissue regions are divided in a grid with a fixed stride,
and the model perform prediction in a sliding window fashion over the grid.
This allows obtaining predictions for the entire tissue regions. During training,
we initially performed a balanced random sampling of tiles from the tissue
regions for first two epochs; this meant that we alternated between a positive
WSI and a negative WSI and selecting an equal number of tiles from each.
After the second epoch, we switched into hard mining of tiles, whereby we
alternated between a positive WSI and a negative WSI; however, this time
performing a sliding window inference on the entire tissue regions and then
selecting the top k tiles with the highest probabilities for being positive. If
the WSI is negative, this effectively selects the tiles most likely to be false
positives. The selected tiles were placed in a training subset, and once that
subset contained N tiles, a training was run whereby the model weights get
updated. We used k = 8, N = 256, and a batch size of 32.

We optimised the model weights by minimising the binary cross-entropy
loss using the Adam optimization algorithm Kingma and Ba (2014) with the
following parameters: beta1 = 0.9, beta2 = 0.999 and a learning rate of 0.001.
We applied a learning rate decay of 0.95 every 2 epochs. We used early stopping
by tracking the performance of the model on a validation set; this allows
stopping the training when no improvement was observed for more than 10
epochs. The model with the lowest validation loss was chosen as the final
model.

2.4 Software and statistical analysis

The deep learning models were implemented and trained using TensorFlow
Abadi et al (2015). AUCs were calculated in python using the scikit-learn
package Pedregosa et al (2011) and plotted using matplotlib Hunter (2007).
The 95% CIs of the AUCs were estimated using the bootstrap method Efron
and Tibshirani (1994) with 1000 iterations.

The true positive rate (TPR) was computed as

TPR =
TP

TP + FN
(1)

and the false positive rate (FPR) was computed as

FPR =
FP

FP + TN
(2)

Where TP, FP, and TN represent true positive, false positive, and true neg-
ative, respectively. The ROC curve was computed by varying the probability
threshold from 0.0 to 1.0 and computing both the TPR and FPR at the given
threshold.
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6 3 RESULTS

2.5 Availability of data and material

The datasets generated during and/or analysed during the current study are
not publicly available due to specific institutional requirements governing pri-
vacy protection but are available from the corresponding author on reasonable
request. The datasets that support the findings of this study are available from
International University of Health and Welfare, Mita Hospital (Tokyo, Japan)
and Kamachi Group Hospitals (Fukuoka, Japan), but restrictions apply to the
availability of these data, which were used under a data use agreement which
was made according to the Ethical Guidelines for Medical and Health Research
Involving Human Subjects as set by the Japanese Ministry of Health, Labour
and Welfare, and so are not publicly available. However, the data are available
from the authors upon reasonable request for private viewing and with per-
mission from the corresponding medical institutions within the terms of the
data use agreement and if compliant with the ethical and legal requirements
as stipulated by the Japanese Ministry of Health, Labour and Welfare.

2.6 Code availability

To train the classification model in this study we adapted the publicly avail-
able TensorFlow training script available at https://github.com/tensorflow/
models/tree/master/official/vision/image classification.

3 Results

3.1 Insufficient AUC performance of WSI
adenocarcinoma evaluation using existing stomach
adenocarcinoma classification model

Prior to the training of multi-organ adenocarcinoma model, we have demon-
strated the existing stomach adenocarcinoma classification model Iizuka et al
(2020) AUC performance on test sets (Table 3 and 5). Table 6 and Figure 2A
show that stomach and colon endoscopic biopsy WSIs and breast TCGA pub-
lic datasets exhibited high ROC-AUC and low log loss values but not in lung
TBLB, breast needle biopsy, and radical lymph node dissection WSIs. Thus,
we have trained the models using different WSI number of training sets (Table
2).

3.2 High AUC performance of WSI evaluation of
adenocarcinoma histopathology images

We trained models using weakly-supervised (WS) learning which could be used
with weak labels (WSI labels) Kanavati et al (2020). We trained using the
EfficientNetB1 convolutional neural network (CNN) architecture at magnifi-
cation x10. The models were applied in a sliding window fashion with input
tiles of 224x224 pixels and a stride of 256 (Fig. 1). To train the deep learning
models, we used a total of 1,000 (1K), 2,000 (2K), and 4,000 (4K) training set
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3.3 True positive adenocarcinoma prediction of stomach, colon, lung, and breast biopsyWSIs7

WSIs (Table 2). This resulted in three different models: (1) WS-1K: 224, x10
EfficientNetB1, (2) WS-2K: 224, x10 EfficientNetB1, and (3) WS-4K: 224, x10
EfficientNetB1. We evaluated the models on test sets from domestic hospitals
(Table 3) and TCGA public datasets (Table 5). For each test set (stomach
endoscopic biopsy, colon endoscopic biopsy, lung TBLB, breast needle biopsy,
radical lymph node dissection, lung TCGA, and breast TCGA), we computed
the ROC-AUC, log loss, accuracy, sensitivity, and specificity and summarized
the results in Table 7 and 8 and Fig. 2B-D. The models trained using 2K and
4K training sets have a higher ROC-AUCs compared to the model trained
using 1K and existing stomach adenocarcinoma model (Table 7, Fig. 2). How-
ever, there was no obvious difference between the model trained using 2K
and 4K training sets (Table 7, Fig. 2C-D). The model (WS-4K: 224, x10 Effi-
cientNetB1) achieved highest ROC-AUC of 0.9993 (CI: 0.9966 - 1.0000) and
lowest log loss of 0.0723 (CI: 0.0579 - 0.0903) for adenocarcinoma classifica-
tion in breast TCGA test sets (Table 7). In test sets from domestic hospitals,
the model (WS-4K: 224, x10 EfficientNetB1) achieved very high ROC-AUCs
(0.9123 - 0.9776) with low values of log loss (0.203 - 0.437) (Table 7). In all test
sets, the model (WS-4K: 224, x10 EfficientNetB1) achieved very high accuracy
(0.853 - 0.9987), sensitivity (0.7959 - 0.9986), and specificity (0.8245 - 1.0000)
(Table 8). As shown in Fig. 2, Tables 6, 7, and 8, the model (WS-4K: 224, x10
EfficientNetB1) is fully applicable for multi-organ adenocarcinoma classifica-
tion in wide variety of organs (stomach, colon, lung, breast, and lymph node)
WSIs as well as TCGA public WSI dataset. Figures 3, 4, 5, 6, and 7 show repre-
sentative cases of true positive, true-negative, false positive, and false negative,
respectively from using the model (WS-4K: 224, x10 EfficientNetB1).

3.3 True positive adenocarcinoma prediction of stomach,
colon, lung, and breast biopsy WSIs

Our model (WS-4K: 224, x10 EfficientNetB1) satisfactorily predicted adeno-
carcinoma in stomach endoscopic biopsy (Fig. 3A, B, C), colon endoscopic
biopsy (Fig. 3D, E, F, G), lung TBLB (Fig. 3H, I), and breast needle biopsy
(Fig. 3J, K) specimens. Importantly, the heatmap images showed true negative
predictions of internal non-neoplastic lesion tissue fragments (#2 in Fig. 3A,
B; #3 in Fig. 3D, E; 3H, I, J, K) which were confirmed by surgical pathologists.

3.4 True positive adenocarcinoma prediction of radical
lymph node dissection (lymphadenectomy) WSIs

A lymphadenectomy (radical lymph node dissection) is a surgical procedure
to evaluate evidence of metastatic cancer. In routine histopathological diag-
nosis, the histopathological inspection of lymph nodes is one of the very
important but time-consuming task to avoid the risk of medical oversight.
Therefore, in clinical settings, the multi-organ adenocarcinoma model is more
useful when performing histopathological diagnosis of lymphadenectomy spec-
imen WSIs. Our model (WS-4K: 224, x10 EfficientNetB1) perfectly predicted
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8 4 DISCUSSION

metastatic lung adenocarcinoma (Fig. 4A-D) and breast invasive ductal carci-
noma (Fig. 4E-J). The heatmap images showed true negative predictions (Fig.
4B) of internal non-neoplastic lymph nodes (Fig. 4A). Importantly, adenocar-
cinoma localization areas in both metastatic lung adenocarcinoma (Fig. 4C)
and breast invasive ductal carcinoma (Fig. 4G) are positively predicted by
heatmap images (Fig. 4D, H).

3.5 True negative adenocarcinoma prediction of radical
lymph node dissection (lymphadenectomy) WSIs

Our model (WS-4K: 224, x10 EfficientNetB1) showed true negative predic-
tions of metastatic adenocarcinoma in lymph nodes without evidence of cancer
metastasis (Fig. 5). In Fig. 5A, there were numbers of lymph nodes with broad
ranging of size (small to large) and shape (round to irregular) which were
not predicted as metastatic lymph nodes (Fig. 5B). Moreover, in Fig. 5C, the
lymph node was enlarged due to lymphadenitis (Fig. 5E) but without evidence
of metastatic adenocarcinoma which were not predicted as metastatic lymph
nodes (Fig. 5D).

3.6 False positive adenocarcinoma prediction of radical
lymph node dissection (lymphadenectomy) WSIs

Histopathologically, Fig. 6A shows no evidence of metastatic adenocarcinoma.
Our model (WS-4K: 224, x10 EfficientNetB1) exhibited false positive predic-
tions of adenocarcinoma (Fig. 6B, D, F). These tissue areas (Fig. 6C, E) showed
dense hematoxylic artifacts induced by crushing during specimen handling
procedures which could be the primary cause of false positive due to its mor-
phological similarity to irregular shaped and dense nuclei in adenocarcinoma
cells.

3.7 False negative adenocarcinoma prediction of radical
lymph node dissection (lymphadenectomy) WSIs

In Fig. 7A, histopathologically, only two metastatic colon adenocarcinoma foci
were observed in the left-most lymph node (Fig. 7C). After double checking two
independent pathologists, there were no more metastatic adenocarcinoma cells
in Fig. 7A. However, the heatmap image did not predict any adenocarcinoma
cells (Fig. 7B).

4 Discussion

In the present study, we trained multi-organ deep learning models for the clas-
sification of adenocarcinoma in WSIs using weakly-supervised learning. The
models were trained on WSIs obtained from four medical institutions and
were then applied on multi-organ test sets obtained from five medical institu-
tions and publicly available TCGA datasets to demonstrate the generalisation
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12 4 DISCUSSION

Fig. 2: ROC curves with AUCs from four different models (A-D) on the test
sets: (A) existing stomach adenocarcinoma classification model and weakly
supervised (WS) learning models based on 1K (B), 2K (C), and 4K (D) training
sets with tile size 224 px and magnification at x10.

Resected organ Clinical diagnosis Histopathological diagnosis WSI

Stomach Advanced gastric cancer
Adenocarcinoma 18
Non-neoplastic lesion 97

Colon Advanced colon cancer
Adenocarcinoma 21
Non-neoplastic lesion 166

Lung Lung cancer
Adenocarcinoma 38
Non-neoplastic lesion 181

Lung Metastatic colon cancer
Adenocarcinoma 27
Non-neoplastic lesion 172

Breast Breast cancer
Invasive ductal carcinoma 42
Non-neoplastic lesion 166

Table 4: Distribution of whole slide images (WSIs) in the lymph nodes test
sets.
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Fig. 3: Representative true positive adenocarcinoma classification of stomach,
colon, lung, and breast biopsy test cases using the model (WS-4K: 224, x10
EfficientNetB1). In the adenocarcinoma whole slide images (WSIs) of stomach
endoscopic biopsy (A), colon endoscopic biopsy (D), lung transbronchial lung
biopsy (TBLB) (H), and breast core needle biopsy (J) specimens, the heatmap
images show true positive prediction of adenocarcinoma cells (B, E, F, G,
I, K) which correspond respectively to H&E histopathology (A, C, D, F, G,
H, J). The heatmap images show true negative predictions of non-neoplastic
lesion tissue fragments (#2 in (B) and #3 in (E)) and true positive predictions
of adenocarcinoma tissue fragments (#1 in (B) and #1-#2 in (E)) which
correspond respectively to H&E histopathology of adenocarcinoma area (C, F,
G). The heatmap uses the jet color map where blue indicates low probability
and red indicates high probability.

of the model on unseen data. The deep learning model (WS-4K: 224, x10
EfficientNetB1) achieved ROC-AUCs in the range of 0.91-0.99.

So far, we have been investigating adenocarcinoma classification on
histopathological WSIs in diverse organs (e.g., stomach Iizuka et al (2020);
Kanavati et al (2021a); Kanavati and Tsuneki (2021b), colon Iizuka et al
(2020); Tsuneki and Kanavati (2021), lung Kanavati et al (2020, 2021b), and
breast Kanavati and Tsuneki (2021a); Kanavati et al (2022)). These models are
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14 4 DISCUSSION

Organ Class Diagnosis TCGA

Lung
Adenocarcinoma Adenocarcinoma 433

Non-adenocarcinoma Non-neoplastic lesion 246
total 679

Breast
Adenocarcinoma Invasive ductal carcinoma 737

Non-adenocarcinoma Non-neoplastic lesion 4
total 741
total 1420

Table 5: Distribution of cases in the test set obtained from the TCGA public
dataset

Existing stomach adenocarcinoma model
test sets ROC-AUC log loss
Stomach endoscopic biopsy 0.937 [0.918 - 0.953] 0.450 [0.364 - 0.557]
Colon endoscopic biopsy 0.986 [0.977 - 0.992] 0.192 [0.142 - 0.252]
Lung TBLB 0.698 [0.665 - 0.726] 1.807 [1.680 - 1.960]
Breast needle biopsy 0.888 [0.864 - 0.907] 1.225 [1.111 - 1.329]
Lymph node radical dissection 0.804 [0.771 - 0.832] 1.940 [1.787 - 2.091]
Lung TCGA 0.797 [0.757 - 0.829] 1.545 [1.387 - 1.732]
Breast TCGA 0.991 [0.964 - 1.000] 0.024 [0.012 - 0.039]

Table 6: ROC-AUC and log loss results for adenocarcinoma classification on
test sets using existing stomach adenocarcinoma classification model

specific to each organ, and versatile adenocarcinoma histopathological classifi-
cation model(s) which can be applied in multi-organ have not been developed
to date. The global adenocarcinoma classification model in multi-organ may
play key roles in first-screening processes especially radical lymph node dis-
section specimens which consist of a large number of lymph nodes in a single
WSI in routine pathological diagnosis in the clinical laboratories.

Prior to the training, we have demonstrated the versatility of the exist-
ing models. For example, the existing stomach adenocarcinoma classification
model Iizuka et al (2020) exhibited scores of high ROC-AUC and low log loss
for the stomach and colon endoscopic biopsy test sets, but not for the lung,
breast, and lymph node test sets (Table 6). Therefore, we have trained the
deep learning models from scratch by the weakly-supervised learning approach
in this study.

We have collected histopathological H&E stained specimens from as many
medical institutions as possible to ensure diversities of histopathological vari-
ability and specimen quality in training sets (Table 1). In the training sets,
we did not include radical lymph node dissection specimens because we would
like to train the model based on the primary organs and predict metastatic
adenocarcinoma in lymph nodes. In all training sets (1K, 2K, and 4K), WSIs
from each organ (stomach, colon, lung, and breast) were equally distributed
(Table 2).

All rights reserved. No reuse allowed without permission. 
author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprint (which was not certified by peer review) is the31, 2022. 
this version posted March; https://doi.org/10.1101/2022.03.28.22273054doi: medRxiv preprint 

https://doi.org/10.1101/2022.03.28.22273054


15

WS-1K: 224, x10 EfficientNetB1
test sets ROC-AUC log loss
Stomach endoscopic biopsy 0.886 [0.864 - 0.912] 0.415 [0.356 - 0.473]
Colon endoscopic biopsy 0.973 [0.964 - 0.981] 0.209 [0.175 - 0.242]
Lung TBLB 0.879 [0.859 - 0.900] 0.501 [0.443 - 0.555]
Breast needle biopsy 0.919 [0.900 - 0.935] 0.358 [0.315 - 0.404]
Lymph node radical dissection 0.929 [0.903 - 0.951] 0.427 [0.380 - 0.486]
Lung TCGA 0.948 [0.930 - 0.963] 0.282 [0.238 - 0.333]
Breast TCGA 0.997 [0.990 - 1.000] 0.122 [0.097 - 0.150]

WS-2K: 224, x10 EfficientNetB1
test sets ROC-AUC log loss
Stomach endoscopic biopsy 0.913 [0.894 - 0.932] 0.351 [0.301 - 0.396]
Colon endoscopic biopsy 0.977 [0.969 - 0.936] 0.197 [0.167 - 0.226]
Lung TBLB 0.931 [0.915 - 0.946] 0.342 [0.300 - 0.386]
Breast needle biopsy 0.919 [0.901 - 0.936] 0.371 [0.325 - 0.423]
Lymph node radical dissection 0.953 [0.939 - 0.978] 0.228 [0.188 - 0.257]
Lung TCGA 0.967 [0.955 - 0.977] 0.246 [0.212 - 0.287]
Breast TCGA 0.999 [0.996 - 1.000] 0.146 [0.119 - 0.177]

WS-4K: 224, x10 EfficientNetB1
test sets ROC-AUC log loss
Stomach endoscopic biopsy 0.914 [0.890 - 0.931] 0.355 [0.315 - 0.404]
Colon endoscopic biopsy 0.978 [0.970 - 0.984] 0.203 [0.173 - 0.236]
Lung TBLB 0.933 [0.917 - 0.946] 0.437 [0.391 - 0.494]
Breast needle biopsy 0.912 [0.894 - 0.930] 0.374 [0.330 - 0.421]
Lymph node radical dissection 0.962 [0.942 - 0.978] 0.309 [0.272 - 0.356]
Lung TCGA 0.966 [0.955 - 0.978] 0.231 [0.190 - 0.266]
Breast TCGA 0.999 [0.997 - 1.000] 0.072 [0.058 - 0.090]

Table 7: ROC-AUC and log loss results for adenocarcinoma classification on
test sets using trained models

In this study, we showed that it was possible to exploit the use of a moder-
ate size training sets of 2,000 (2K) and 4,000 (4K) WSIs to train deep learning
models using a weakly-supervised learning, and we have obtained high ROC-
AUC performance on primary organ (stomach, colon, lung, and breast) and
radical lymph node dissection test sets as well as public TCGA datasets (lung
and breast), which is highly promising in terms of the generalisation perfor-
mance of our models to classify adenocarcinoma in multi-organs. Using the
weakly-supervised learning method allowed us to train on our datasets and
obtain high performance without manually performed annotations. This means
that it is possible to train a very high performance model for any type of
cancer classification in multi-organ without having to have detailed cellular
level or rough annotations or requiring an extremely large number of WSI. We
have demonstrated the usefulness of weakly-supervised learning approach for
lung carcinoma classification Kanavati et al (2020). Importantly, there were
no significant difference in ROC-AUC and log loss results between 2K and
4K training sets, meaning that small number (total 2,000 WSIs) of training
datasets were enough for adenocarcinoma classification in multi-organ.
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WS-4K: 224, x10 EfficientNetB1
test sets Accuracy Sensitivity Specificity
Stomach
endoscopic biopsy

0.859 [0.837 - 0.877] 0.813 [0.766 - 0.850] 0.882 [0.856 - 0.905]

Colon endoscopic
biopsy

0.929 [0.912 - 0.944] 0.907 [0.878 - 0.935] 0.943 [0.924 - 0.960]

Lung TBLB 0.853 [0.831 - 0.875] 0.885 [0.861 - 0.915] 0.825 [0.792 - 0.855]
Breast needle
biopsy

0.853 [0.831 - 0.876] 0.796 [0.755 - 0.837] 0.892 [0.868 - 0.917]

Lymph node radi-
cal dissection

0.928 [0.912 - 0.944] 0.911 [0.866 - 0.955] 0.931 [0.913 - 0.948]

Lung TCGA 0.900 [0.879 - 0.923] 0.882 [0.853 - 0.912] 0.931 [0.900 - 0.965]
Breast TCGA 0.999 [0.995 - 1.000] 0.999 [0.995 - 1.000] 1.000 [1.000 - 1.000]

Table 8: Scores of accuracy, sensitivity, and specificity on test sets using the
best model (WS-4K: 224, x10 EfficientNetB1)

Our model satisfactorily predicted adenocarcinoma areas not only in pri-
mary organs (stomach, colon, lung, and breast) (Fig. 3) but also in radical
lymph node dissection specimens (Fig. 4). In routine histopathological diagno-
sis, inspecting cancer metastasis in lymph nodes is laborious because usually
there are a lot of lymph nodes with wide variety of sizes and shapes in glass
slides. Our model can localise the prediction of adenocarcinoma invasion and
visualise them as heatmap images (Fig. 4) which would be a great tool for pri-
mary screening or double-check purpose in clinical workflow in laboratories.
Importantly, our model can evaluate adenocarcinoma-free (non-metastatic)
lymph nodes (Fig. 5) which reflected high specificity (0.931) (Table 8). This is
an important finding to apply our model in clinical workflow. As for the false
positive and false negative predictions, certain trends were observed. The dense
hematoxylic artifacts induced by crushing during specimen handling proce-
dures were observed as the primary causes of the false positive prediction which
have morphological similarities to adenocarcinoma cell clusters with irregular
shaped and dense nuclei (Fig. 6). In the next step for further training, it would
be best to collect appropriate number of false positive and false negative cases
and perform active learning.
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Fig. 4: Representative examples of metastatic adenocarcinoma true positive
prediction outputs on cases from radical lymph node dissection (lymphadenec-
tomy) test sets using the model (WS-4K: 224, x10 EfficientNetB1). In the
metastatic lung adenocarcinoma (A) and breast invasive ductal carcinoma
(E) whole slide images (WSIs) of radical lymph node dissection specimens,
the heatmap images show true positive prediction of metastatic lung adeno-
carcinoma (B, D) and breast invasive ductal carcinoma (F, H) cells which
correspond respectively to H&E histopathology (A, C, E, G, I, J). According
to the histopathological diagnostic report, in (A), only one lymph node (blue
dot line circled) was positive for metastatic lung adenocarcinoma (C). The
heatmap image (B) shows true positive prediction which was consistent with
areas of metastatic lung adenocarcinoma invasion in the same lymph node (D).
The heatmap image (B) also shows no positive predictions in the lymph nodes
without evidence of cancer metastasis (A). As compared to (A), histopatholog-
ically, it was not easy to determine metastatic cancer areas in (E) at low power
view. According to the histopathological report, in (E), metastatic breast inva-
sive ductal carcinoma was localized in (G). The heatmap image (F) shows
true positive predictions in (H) which are coincided with metastatic carcinoma
infiltrating areas (G, I, J). The heatmap uses the jet color map where blue
indicates low probability and red indicates high probability.
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Fig. 5: Representative true negative metastatic adenocarcinoma classifica-
tion of radical lymph node dissection (lymphadenectomy) test sets using the
model (WS-4K: 224, x10 EfficientNetB1). Histopathologically, in (A), there
were diverse size (small to large) and shape (round to irregular) of lymph nodes
without evidence of metastatic adenocarcinoma. The heatmap image (B) shows
true negative prediction of metastatic adenocarcinoma. Histopathologically, in
(C), there were lymph nodes with lymphadenitis (E) but without evidence of
metastatic adenocarcinoma (C, E). The heatmap image (D) shows true nega-
tive prediction of metastatic adenocarcinoma. The heatmap uses the jet color
map where blue indicates low probability and red indicates high probability.

Fig. 6: Representative example of metastatic adenocarcinoma false posi-
tive prediction outputs on a case from the radical lymph node dissection
(lymphadenectomy) test set using the model (WS-4K: 224, x10 Efficient-
NetB1). Histopathologically, (A) has no sign of metastatic adenocarcinoma.
The heatmap image (B) exhibits false positive predictions of adenocarcinoma
(D, F) where the tissue consists of dense hematoxylic artifacts induced by
crushing during specimen handling procedures (C, E), which most likely is the
primary cause of the false positive prediction due to its morphological sim-
ilarity to adenocarcinoma cells with irregular shaped and dense nuclei. The
heatmap uses the jet color map where blue indicates low probability and red
indicates high probability.
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Fig. 7: Representative example of metastatic adenocarcinoma false nega-
tive prediction output on a case from the radical lymph node dissection
(lymphadenectomy) test set using the model (WS-4K: 224, x10 Efficient-
NetB1). According to the histopathological diagnostic report, this case (A) has
metastatic adenocarcinoma foci in (C) but not in other areas. The heatmap
image exhibited no positive adenocarcinoma prediction (B). The heatmap uses
the jet color map where blue indicates low probability and red indicates high
probability.
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