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Abstract

Mathematical modelling plays a key role in understanding and predicting the epi-
demiological dynamics of infectious diseases. We construct a flexible discrete-time
model that incorporates multiple viral strains with different transmissibilities to esti-
mate the changing infectious contact that generates new infections. Using a Bayesian
approach, we fit the model to longitudinal data on hospitalisation with COVID-19 from
the Republic of Ireland and Northern Ireland during the first year of the pandemic.
We describe the estimated change in infectious contact in the context of government-
mandated non-pharmaceutical interventions in the two jurisdictions on the island of
Ireland. We take advantage of the fitted model to conduct counterfactual analyses
exploring the impact of lockdown timing and introducing a novel, more transmissi-
ble variant. We found substantial differences in infectious contact between the two
jurisdictions during periods of varied restriction easing and December holidays. Our
counterfactual analyses reveal that implementing lockdowns earlier would have de-
creased subsequent hospitalisation substantially in most, but not all cases, and that an
introduction of a more transmissible variant - without necessarily being more severe -
can cause a large impact on the health care burden.



1 Introduction

During an epidemic, behavioural changes are encouraged, and sometimes mandated,
to curtail infectious disease transmission. These changes aim to reduce the number of
contacts between people indiscriminately (e.g., closure of schools, workplaces, commer-
cial establishments, roads, and public transit; restriction of movement; cancellation of
public events; maintenance of physical distances in public) and reduce the chance of in-
fection upon contact (e.g., use of personal protective equipment). Furthermore, tracing
and isolating known infectious cases can limit the contact between infectious and sus-
ceptible individuals. These actions are collectively referred to as non-pharmaceutical
interventions (NPIs) and are often mandated by governments. Slowing the surge of
infection (or “flattening the curve”) affords an opportunity to reduce infection-induced
mortality and mobility, alleviate health care burden and wait out an epidemic until
pharmaceutical solutions (i.e., treatment and vaccines) become available. Implemen-
tation of mandated NPI in historical outbreaks, including during the 1918 influenza
pandemic, was crucial for preventing excess death in the United States [1]. NPIs have
also been mandated globally during the COVID-19 pandemic.

Mathematical modelling and quantitative analyses of empirical data plays a pivotal
role in understanding and predicting epidemiological dynamics. Mechanistic epidemi-
ological models have been widely applied to study the dynamics of SARS-CoV-2, and
to make predictions of clinical outcomes under alternative scenarios (e.g., an assumed
decrease in physical contact [2]). Despite their public health benefits, social distanc-
ing measures have been shown to incur high costs in several domains, including in
economy (3], mental health [4], and civil liberty [5]. Thus, it is crucial to quantify
infection contact, or its derivative quantities like the effective reproductive number,
R - to monitor changes in infection burden, achieve desired public health outcomes
and improve policy transparency and public engagement. While it is not possible to
measure infectious contact directly, fitting a mathematical model to longitudinal data
on observed processes such as reported cases and hospital admissions allows estimation
of inter-individual infectious contact and its derivatives [6L[7].

A large contingency of epidemiological models follows a rich tradition of ordinary
differential equation (ODE) models [8], which track the spread of infection and often
immunity in a population. Specifically, ODE models assume that waiting time pro-
cesses (such as infectious period and time to hospitalisation) are memoryless, that is to
say, that the waiting time until an event (such as recovery and hospitalisation) does not
depend on the elapsed time. Seen at the population level, this assumption deduces that
times spent by individuals in each compartment are distributed exponentially, implying
large individual variability. While mathematically convenient, the lack of memory is
unsupported for certain epidemiological processes [9], and empirical evidence indicates
other probability distributions with smaller individual variability and non-monotonic
densities (e.g., gamma-, Weibull and log-normal distributions) are better equipped to
describe those processes. Previous studies have also demonstrated that quantitative
predictions of epidemiological outcomes depend on the assumed probability distribu-
tion in a variety of systems [10-13], including SARS-CoV-2 [7]. As such, it is pertinent
to incorporate realistic waiting time distributions, particularly when one aims to ob-
tain quantitative and short-term, rather than qualitative and long-term insights from



epidemiological models.

Here we develop a compartmental epidemiological model that accurately predicts
inter-individual infectious contact over the first year of the epidemic in the Repub-
lic of Ireland (ROI) and Northern Ireland (NI). These neighbouring jurisdictions on
the island of Ireland present a compelling contrast due to independent policymaking
over a small geographical area. We use a discrete-time approach, which allows us to
incorporate more accurate assumptions about times spent in each compartment [7].

The COVID-19 pandemic has been characterised by subsequent waves of novel vari-
ants with varying disease transmissibility and severity. To separate the effect of human
behaviour from the difference in transmissibility of multiple strains, we explicitly model
multiple SARS-CoV-2 strains, with differing transmissibilities, seeded in the popula-
tion at differing times. Our multiple strain model allows consistent estimates of relative
infectious contact between periods even when the dominant variant has changed.

Previous studies of SARS-CoV-2 have estimated the time-dependent contact ratio
and its derived quantities using continuous (e.g., basis splines [14]), or piece-wise,
discrete functions of time (e.g., consisting of the specified period corresponding to
NPI mandates [7]). However, both approaches can be fraught with challenges. On
the one hand, it is not obvious to choose the appropriate extent of smoothing of a
continuous function, for example, by deciding the number of knots in a basis spline
function. On the other hand, abrupt changes imposed by piece-wise functions are
at odds with empirical data on human movement during the COVID-19 pandemic
[15]. Furthermore, it is difficult to establish a precise definition of the level of an
intervention over time as definitions changed over time [16,]17]. To address these
concerns, we develop an intermediate approach, in which we introduce a prior that
allows smoothness in infectious contact between neighbouring weeks in the absence of
information otherwise from empirical data.

In the Irish context, compartmental models have been used by several other re-
search groups to understand the dynamics of the virus, make forecasts of outcomes
under various scenarios, and assess economic impacts of policy restrictions [18-23].
Our study complements these studies by providing a high-resolution description of the
change in infectious contact over time, comparing the two jurisdictions on the island
of Ireland. Leveraging the epidemiological model and estimated parameters, we also
perform counterfactual analyses to explore the effects of alternative interventions on
cumulative hospitalisation and assess the impact of a novel variant.

2 Methods

2.1 Epidemiological model and data

Our multi-strain discrete-time model consists of three types of host compartments
(Fig. [I): a susceptible compartment (S) and two infectious compartments for viral
strain s, (Js,; and Y, ,; where ¢ indicates the infection age, i.e., day since exposure).
The compartments J and Y differ in their future clinical outcome: individuals in the
components Y eventually get hospitalised while those in J remain out of hospitals.
As our primary focus is the inference of NPI in the community, we did not consider
within-hospital transmission, recurring hospital admissions of the same patients, or



demographic turnover. We ignored the dynamics of recovered hosts who were assumed
to have minimal influence on the transmission during the period investigated.

Our model is parameterised by 6, the probability of hospitalisation, A, the daily
probability of infection with strain s, and a discrete random variable H that charac-
terises a set of probabilities governing daily transitions to hospital. Ay is informed by
a discrete random variable, Z, that characterises a set of probabilities governing daily
transitions into infected compartments, and is defined in Section 2.1.1. Z denotes the
time in days from exposure of the infector to exposure of the infectee for a randomly
chosen infectee-infector pair (i.e., generation interval), and can be viewed as the av-
erage relative contribution of each day to the individual reproduction number. The
probability that infection occurs at infector age i, (; = P(Z =) = Fz(i) — Fz(i — 1),
where the cumulative distribution function Fyz (i) = P(Z < 1).

The event transmission of infection does not affect the individual’s stay in the
compartment; however, for transition out of the Y compartments, the event going to
hospital at infection age i is conditional on still being in the compartment at infection
age ¢ — 1. Given H, the random variable representing time from infection to hospital
admission in hospitalised patients, we denote by 7; the probability of hospitalisation at
infection age i given the individual was still not hospitalised at infection age i — 1, that
isn; = % This is the discrete hazard of hospital admission at infection age
i We use published estimates for Z and H, as described in section 2.1.3 below. Our
model assumes that the proportion of infected people hospitalised and the processes
governing hospitalisation and recovery over time are constant across strains.

2.1.1 Infection dynamics

We extend a discrete epidemiological modelling framework by Sofonea et al. [7] to
accommodate multiple viral strains spreading simultaneously. First, we express the
effective density of infectious host population on a given day d that contributes to
transmission of the strain s as:

I(d) = ¢(d) Z Gi (Jsi(d) + Ysi(d)), (1)

in which Js;(d) + Ys,(d) is the number of individuals with strain s on day d with
infection age 4 in the community. Multiplying by (; and summing over infection ages,
> Gi(Js,i(d) + Y5(d)) can be regarded as the total 'potential for infection’ in the
community on day d. The effective infectious density, I,(d), is this sum scaled by
the infectious contact ratio, ¢(d), on day d. The infectious contact ratio is the ratio
of infectious contact rate on day d to infectious contact rate on day 0. The infectious
density is thus a measure of the total amount of transmission in a completely susceptible
population.

We allow susceptible hosts encounter the viral strain s with a probability Ag(d),
which as in [7] is assumed to follow the Michaelis-Menten function that saturates with

the effective infectious density, Is(d) and the contact rate; under assumptions about
initial conditions as in [7] we derive the following:

_ C(d) Ts Is (d)
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Figure 1: Discrete-time model of SARS-CoV-2 community transmission consists of suscep-
tible S and infectious (J and Y') compartments of pathogen strain s. Each square represents
a group of individuals with an identical contribution to the epidemiological dynamics. In-
fection with strain s occurs with probability A; per day. Individuals in the components
Y are infectious patients to be hospitalised. Once infected, individuals progress to the
next square each day (J and Y'), capturing the memory effect of the infection age. After
spending n; days, infectious hosts in J are no longer infectious. Alternatively, a fraction,
0 of infectious hosts (in Y'), is admitted to the hospital with a delay specified by the prob-
abilities 71, ..., n,, where 7; is the probability that the individual is admitted to hospital
on the day 4, conditional on their being infectious for ¢ — 1 days. The grey arrows indicate

the daily transition of individuals from one square to another that occurs with probability
1.

susceptible
individuals




where 7, is the relative transmission advantage of strain s, Sy the population size, and
Ry, the basic reproductive number of the original strain. We define the 7, as the ratio
of the basic reproductive numbers of strain s to the original strain Ry, = 75Ry,.

When a host encounters multiple strains, we model the interaction between strains
assuming superinfection with priority determined by order of exposure: i.e., only the
first strain that encounters a host establishes infection when the same host subsequently
encounters multiple strains. Thus, in the case of two strains, the probability of getting
infected with the strain s, s € {1,2}, A(d), is:

As(d) = Pr(exposure to strain s) — Pr(exposure to both strains and s’ first)
A(d)A2, (d)
= Asd) — K@@ (3)

Similarly, expressions can be derived for more than two strains.
It follows then that the number of susceptibles on the next day is expressed as:

S(d+1) = (1-) A,(d))S(d). (4)

Of those exposed to either viral strain, the proportion 6 will develop severe symp-
toms and eventually be admitted to the hospital (Fig. [I).

For less severe cases that do not result in hospitalisation, J, the infection progresses
towards recovery until they are no longer infectious on the day n;:

J371(d + 1)
Js’i(d + 1)

(1-0)As(d) S(d) (5)
Jsﬂ‘,l(d) 1< < ;. (6)

Those that develop severe symptoms, Y, are admitted to hospital with the probability
7; on the i-th day following exposure.

Yo1(d+1) = 0 Ay(d) S(d), (7)
Yei(d+1)=(1—-ni-1)Ys-1(d), 1 <i < ny,. (8)

It follows then that the number of hospital admissions on day d + 1 equals

H(d+1) =3 7> miYi(d) (9)

2.1.2 Observed longitudinal data

Epidemiological models are often fitted to data on infected cases - however, case data
depends on levels of testing, which varied over time during the COVID-19 pandemic.
It can also be problematic to rely on data on deaths - for instance, many deaths in
the ROI occurred following outbreaks in care homes, and thus data on deaths may not
reflect disease spread in the general community. Biases and uncertainty in estimating
the reproductive number arising from such issues are discussed elsewhere [6]. Thus,
hospital admission data is likely a better reflection of the community spread of SARS-
CoV-2. We used daily COVID-19 hospital admissions in the ROI and NI, reported



respectively by the Central Statistics Office COVID data hub for the ROT [24], and the
NI Department of Health [25].

Successive invasions of new variants have so far characterised the COVID-19 pan-
demic. Our study tracks two strains that circulated in the island of Ireland in the
first 12 months of the pandemic: i.e., the original strain (initially detected in Wuhan,
China) and the Alpha strain (also known as B.1.1.7., initially detected in Kent, UK).
We used publicly accessible data on the frequency of the Alpha strain in the ROI [26],
and NI [27], respectively.

2.1.3 Incorporating empirical estimates of waiting time distribu-
tions

Linking transitions within and between these components are two random variables,
each describing a waiting time process. These are the infectious period (generation in-
terval), Z, and the delay between infection exposure and hospitalisation, H. The prob-
ability distributions representing these random variables have been estimated elsewhere
empirically for SARS-CoV-2 in a global and European context.

Generation interval

The generation interval refers to the time between infection events in a pair of infector
and infectee, reflecting the incubation duration and recovery timing. Here, we used the
distribution of this interval to model the relationship between the age of infection (i.e.,
time since exposure) and the infectiousness of the infector. We employed an estimate by
Ferretti et al. [28] who found the variation in SARS-CoV-2 generation interval was best
described by the Weibull distribution with the mean interval of 5.5 days (shape= 3.29
and scale= 6.12). We truncated the Weibull distribution at the upper-integer-rounded
99%-quantile — without this truncation, the discrete model would require infinite
time-tracking sub-compartments due to a right-unbounded support [0,00]. We then
discretised the distributions because the dynamics unfold in discrete-time intervals of
one day in our model.

Exposure to hospital admission

The waiting time between exposure and hospital admission was estimated as the sum
of the incubation period and the delay between symptom onset and hospitalisation. We
assumed that the two waiting times were independent due to the absence of evidence
otherwise. A meta-analysis of global, but predominately, Chinese data found that the
SARS-CoV-2 incubation period was log-normally distributed with parameters p = 1.63
and o = 0.50 [29], corresponding to a mean incubation time of 5.78 days (standard
deviation of 3.97 days). The distribution of waiting time between symptom onset
and hospitalisation was estimated assuming a gamma distribution by Public Health
England with a mean of 5.14 days (standard deviation of 4.2 days) [30]. We fitted
a gamma distribution to the simulated sum of the two distributions to represent the
timing between exposure to infection and hospital admission (shape = 4.76 and rate
= 0.435).



2.1.4 Weekly infectious contact ratio

Here, we defined the contact ratio ¢ as the (potentially infectious) contact rate relative
to the pre-pandemic, pre-intervention baseline (eq. [1]& [2) and estimated this quantity
using a piece-wise function consisting of weekly intervals. Specifically, we estimated
the ratio in each area a (NI and ROI), per week w (i.e., ¢4) as a function of ¢g 4,
the log proportional change in the contact rate from the previous week. We index w
from the date of the first public health intervention in either jurisdiction, which took
place in ROT on 2020-03-12 (Supporting Information S1: Table S1 & S2); hence the
preceding, pre-intervention contact ratios are defined as 1.0.

Caw = 1.0, w=0. (10)

Caw = Ca,(w—1) ePaw > 1. (11)

With this formulation, hierarchical Bayesian inference with priors on the ¢, ., allows
us to estimate the time-varying weekly contact ratios with minimal prior information
specific to the modelled system. Specifically, we used a prior ~ A(0,€), where € is
a hyperparameter specifying the standard deviation of ¢, such that ¢, ,, would equal
Ca,(w—1) i the absence of signals from epidemiological data (Table. A priori, this for-
mulation avoids over-fitting random weekly variation at the potential risk of smoothing
over valid signals of an abrupt change in the weekly contact ratio, for example, follow-
ing an introduction of lockdown measures. To check for such bias, we examined the
extent to which our smoothing approach affects the estimation of sudden changes in
the infectious contact ratio, c. We showed that our formulation is unlikely to introduce
substantial bias (Supporting Information S2).

2.1.5 Initial conditions

The first case of SARS-CoV-2 on the island of Ireland was identified in NI on 2020-02-
27 from an individual travelling back from Northern Italy via Dublin Airport located
in ROI (Table S2). Two days later, the first official case in the ROI was also con-
firmed from a traveller from Northern Italy (Table S1). Initially, most known cases
are travel-related, and contact tracing may successfully contain infections. As our
model solely tracks community transmission, we started our simulations on the first
day that community transmission was detected on the island of Ireland: 2020-03-05
(Table S1). Coincidentally, the exponential growth of confirmed cases appears to have
begun around 2020-03-05 in both ROT and NI [24,/31]. We account for the uncertainty
of the beginning of community transmission by estimating the initial infectious den-
sity independently in the two jurisdictions (Table [1). We assume implicitly that the
contribution of the travel-related cases is negligible once the infection starts growing
exponentially in the community.

The first cases of the Alpha strain were reported in November and December 2020,
respectively, in ROI and NI (Tables S1 & S2). Due to high connectivity with the island
of Britain, the Alpha strain likely entered the island of Ireland soon after it emerged in
England, where the strain was detected in mid-September [32]. By February 2021, the
Alpha strain comprised the majority of infections in both ROI and NI. To estimate the
date of introduction, we fitted a three-parameter logistic function to the longitudinal



data of the Alpha frequency and identified the date on which Alpha cases (frequency
of Alpha x known new cases) intersects 1: the date of introduction was estimated
as 2020-09-22. Again, we account for the sensitivity of the timing of introduction by
estimating the founding infectious density of the Alpha strain, independently in the
two areas (Table . In our model, viral strains differ only in their transmissibility, 7s.

2.1.6 Fitting

We used a Bayesian approach to fit the above model to two types of longitudinal
data from the ROI and NI: daily counts of hospital admissions and the Alpha strain
frequency. Model parameters are detailed in Table Hospital admissions per day
were modelled as log-normally distributed with standard deviation parameters o. The
frequency of the Alpha strain was fitted assuming the beta proportion distribution with
a standard deviation parameter, oy.

We fitted our model to the data from the first year of the pandemic from the
first confirmed case of community transmission on the island, which was detected on
2020-03-05, in ROI, to the end of February 2021. Our modelling period precedes the
widespread administration of the full course of vaccination in either jurisdiction: the
proportion of fully (twice) vaccinated individuals in ROI and NI was less than 3% and
2% at the end of February 2021, respectively [24}31].

Our model was written in Stan 2.21.2 and fitted through the RStan interface [33].
We fitted the model in parallel in four independent chains, each with 5000 sampled
iterations and 1000 warmup iterations. For diagnostics, we confirmed over 400 effective
samples and ensured convergence of independent chains using the R metric (values
below 1.1 are considered an indication of multi-chain convergence) for all parameters
[34]. We assessed the goodness of fit to data using standardised residuals (Supporting
Information S3). We also quantified the posterior z-score and posterior contraction to
examine the accuracy and precision of posterior distributions and the relative strength
of data to prior information [35] (Supporting Information S4).

2.2 Counterfactual analyses

Estimating infectious contacts with a multi-strain model separates the effect of human
behaviour from the difference in transmissibility of multiple strains. This separation
allows us to leverage the epidemiological model and estimated parameters to simulate
an epidemic based on data-generating processes consistent with the observed data. In
turn, we can modify one part of the fitted model —while everything else is constant —
to conduct counterfactual analyses, which allows us to explore the impact of different
factors that affect disease transmission. Here, we explored two counterfactual scenar-
ios: to examine the effect of lockdown timing; and to isolate the impact of the more
transmissible Alpha strain on the hospitalisation outcome.

2.2.1 Effect of lockdown timing

We explored the impact of the timing of lockdown introduction by simulating an epi-
demic with parameters estimated from the model fitted to the observed data on hospi-
talisations and strain proportions, but the contact ratios counterfactually shifted earlier



Table 1: Description of model parameters and their fixed values, or prior distributions used
in Bayesian statistical inference. We assigned an informed prior for Ry, 7 and a generic,
weakly informative prior for I, 4(0), € and measurement error parameters.

Symbol Description Fixed value or | Source
prior
Epidemiological parameters
¢ Infectivity detailed in text | [36]
n Exposure to hospital admission detailed in text [29./30]
So,ROT Population size of the Republic of Ireland | 4.92 x 106 137]
So,N1 Population size of Northern Ireland 1.89 x 106 138]
log(Is4(0)) | Log initial effective infectious density (of | A(0,10)
strain s in area a)
Ry, Basic reproductive number of the origi- | N(2.79,0.86) 139]
nal strain
To Transmission advantage of the Alpha | N(1.31,0.24) [32]
strain
ba,w Log proportional change in the contract | AV(0,¢)
ratio from the previous week
€ Hyperprior specifying the standard devi- | half-A(0, 1)
ation of ¢
0 Probability of hospital admission given | 0.026 [40]
infection
Measurement error
Oh Standard deviation for hospital admis- | half-A(0, 1)
sion (log-normal distribution)
of Standard deviation for frequency of the | half-A/(0, 1)

Alpha strain (beta proportion distribu-
tion)

10



by seven and 14 days relative to the actual start of the three lockdowns imposed in the
ROI and NI. We then compared counterfactual scenarios and reality by computing the
ratio of the cumulative hospital admission numbers for the subsequent days under the
counterfactual versus the observed scenarios. Our effect measure is the (natural) log
of this quantity, denoted InRR.

Suppose the intervention is to shift the first lockdown date earlier by seven days.
Denoting the actual lockdown date d; and the counterfactual contact ratio on day d as
c*(d):

o e ifd<(d—7)
¢ (d)_{c(d+7) itd> (d—7).

The counterfactual infectious density on day d follows from equation [I} and we
denote this

I (d) = c"(d) Z Gi (J24(d) + Y (d)

where the J*,Y™* denote the counterfactual numbers in these compartments on day
d. From this follows the counterfactuals on day d A%(d), A%(d), and H*(d + 1) from
equations 2] to[9} For the second of third lockdowns, we assume that the epidemic had
proceeded as observed up to the second and third lockdown, respectively.

2.2.2 Impact of a more transmissible variant

We investigated the extent to which the introduction of the more transmissible Alpha
strain contributed to public health burden by simulating an alternative epidemic with
parameters estimated from the model fitted to the observed data on hospitalisations
and strain proportions, but without introducing the Alpha strain in September 2020.
We then used InRR to compare the cumulative hospital admission numbers between
the counterfactual and real scenarios over time until the end of the modelled period at
the end of February 2021.

3 Results

3.1 Epidemiological model fit

Our discrete-time epidemiological model of SARS-CoV2 accurately described the time-
course of hospital admissions and the frequency of the Alpha strain during the first
year of the pandemic in the two jurisdictions on the island of Ireland, before the full
course of vaccines were widely administered (Fig. [2 Supporting Information S3 & S4).

3.2 Estimated infectious contact ratios

We estimated a rapid decline in infectious contact ratios during the first month of the
pandemic before a strict lockdown was implemented (Fig. |3} Tables S1 & S2). The
first lockdown started on 2020-03-28 in both jurisdictions. By this date, the estimated
infectious contact ratio was already down to about 60% of the pre-pandemic baseline
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Figure 2: The fit of the epidemiological model to the longitudinal hospital admissions
data and the frequency of the Alpha strain (the original strain in blue and Alpha strain
in purple). The crosses indicate data and coloured bands correspond to 95% predictive
intervals of the model, incorporating uncertainty in parameter estimation and sampling.
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Figure 3: Estimated weekly infectious contact ratios in Northern Ireland (top) and the
Republic of Ireland (middle) and differences in the contact ratio between the two jurisdic-
tions (bottom). The three lockdown periods, corresponding to the most strict restrictions
in each jurisdiction, are marked in yellow, blue and green, respectively. The black line, and
grey bands correspond to the median, the 5({%9 (dark) and 95% (light) predictive intervals.



in both jurisdictions. During this lockdown, estimated infectious contact fluctuated
only slightly.

In both jurisdictions, the easing of the first lockdown began from 2020-05-18, and
a long period of slow restriction easing took place during the summer months. In the
RO, the estimated infectious contact ratio increased from June and fluctuated between
approximately 70-80% of the pre-pandemic baseline in July, August and September.
In NI, the contact ratio rose to a peak around the end of July. We detected higher
infectious contact in NI than the ROI in mid-June (indicated by 95% predictive inter-
vals of the difference excluding zero; Fig. [3; bottom panel). Of potential relevance, we
note that all non-essential retail outlets were allowed to reopen earlier in NI than the
ROI during this period from 2020-06-12 and 2020-06-29, respectively (Tables S1 and
S2). Infectious contact in NI decreased through August but elevated again to about
90% of baseline by the end of September with no parallel increase in the ROI. This
period corresponds to the first time primary and secondary teaching resumed in person
in both jurisdictions. The increased contact in NI mirrors a trend in detected England
where the September schooling reopening led to increased cases, most notably among
the teaching staff [41].

Ahead of the second lockdown, the estimated infectious contact ratio declined to
about 60% of baseline in both jurisdictions during October. Unlike during the other
two lockdowns, the contact ratios tended to increase during the lockdown period in
both jurisdictions throughout November (Fig. |3} top and middle panels).

At the beginning of December in the ROI, several mitigation measures were lifted,
allowing non-essential businesses, restaurants, cafes and gastro-pubs to open as well
as relaxing household gathering restrictions (Table S1). This period coincides with an
increasing trend in the estimated infectious contact ratio, which reached about 90%
of the pre-pandemic baseline the week before Christmas. In NI, on the other hand,
the lockdown remained in place almost two weeks longer, and the estimated infectious
contact ratio reached a maximum of about 75% of the baseline value before Christmas.
Our estimates indicate that infectious contact was substantially higher in the ROI than
NI for two weeks over the Christmas period (indicated by 95% predictive intervals of
the difference excluding zero; Fig. |3} bottom panel): the ROI experienced the highest
per capita infection rate in the world during this period. [42]. In both NI and the ROI,
the third lockdown introduced in late-December 2020 coincided with the lowest contact
ratio (Fig. [3} green) followed by the first lockdown in late March (Fig. [3} yellow) and
second lockdown in November (Fig. [3} green).

3.3 Counterfactual scenarios

3.3.1 Effect of lockdown timing

Lockdown measures have been shown effective in reducing the infection burden of
SARS-CoV-2, and the timing of introduction is the most significant factor in deter-
mining their effectiveness [43./44]. We found that bringing forward the lockdown dates
by either seven or 14 days would have substantially reduced the cumulative hospi-
talisation over the subsequent 50 days from the date of lockdown in most scenarios
(indicated by the 95% predictive interval of the InRR excluding zero; Fig. . Of note,
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we found that a counterfactual simulation to bring forward the second lockdown date
by seven days showed a non-conclusive impact on the cumulative hospitalisation in the
subsequent 50-day period in either jurisdiction (judged by the 95% predictive interval
of the InRR containing zero; Fig. . The second lockdown was preceded by a declin-
ing trend in contact ratios while the contact during the lockdown remained relatively
higher than the first or third lockdown (Fig. [3)).

3.3.2 Impact of a more transmissible variant

Our model estimated that the Alpha strain was approximately 19% more transmissible
than the original strain (95% prediction intervals [16.0,21.8]). It is worthwhile noting
that our model does not consider continuous inputs of infection into the island of
Ireland, despite the high connectivity among the British Isles. Thus, our estimate of
the Alpha transmissibility may be confounded by repeated introductions, for example,
from England, where the Alpha strain was first detected. Nonetheless, our estimate is
consistent with those from England [32].

To assess the the impact of the Alpha strain, which arrived later and is more
transmissible than the original strain, we compared the fitted model (Fig. |3} orange)
to a counterfactual simulation without the Alpha strain, in which we assumed the
same estimated contact ratio (Fig. |3} blue). We detected a statistically distinguishable
impact of the Alpha strain on the cumulative hospital admissions by earlier January in
both jurisdictions - approximately 3.5 months after the initial introduction (indicated
by the 95% predictive interval of InRR excluding zero; Fig. . By the end of February
2021, we show that the Alpha strain was responsible for a 38 and 55% increase in
cumulative hospitalisation, in NI (median InRR = 0.323) and the ROI (median InRR
= 0.437), respectively (Fig. . Our findings demonstrate that an introduction of a
more transmissible variant - without necessarily being more severe - can cause a large
impact on the health care burden.

4 Conclusion

We developed a multi-strain model of SARS-CoV-2 and estimated time-dependent in-
fectious contact over the first 12 months of the pandemic on the island of Ireland.
Unlike many earlier COVID-19 modelling studies that estimate the effective reproduc-
tive number of a single strain, our model explicitly incorporates multiple viral strains
and focus on estimating infectious contact ratios. An important difference between
the infectious contact ratio and the effective reproductive number is that the former
is unaffected by changes in virus transmissibility, which is modelled independently. As
such, our approach separates the effect of human behaviour from that of the difference
in transmissibilities between multiple, co-circulating strains.

Examining the longitudinal patterns and geographical differences in the estimated
infectious contact ratios allowed us to identify corresponding policies and events. In
addition, we leveraged estimated parameters to conduct counterfactual analyses, in
which we examined the role of lockdown timing and a novel variant on cumulative
hospitalisation. In a companion paper, we extended the application of the estimated
infectious contact ratios to causal inference |45]. Specifically, we used mobility and
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Figure 4: Counterfactual analysis demonstrates the effect of lockdown timing on epidemi-
ological outcomes. The relative difference in cumulative hospital admissions between the
counter-factual and factual scenarios is estimated as the log response ratio (InRR). Shown
are the InRR following the introduction of three lockdowns in Northern Ireland and the
Republic of Ireland, assuming that they would have started seven days and 14 days earlier.
The black line and grey band indicates the median and 95% predictive interval, respectively.
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mask-wearing data to independently predict the infectious contact ratios estimated
from our epidemiological model described in the current paper and subsequently com-
pared observed hospitalisations with predicted hospitalisations under a counterfactual
mask-wearing scenario.

We presented a generic, epidemic model parameterised for SARS-CoV-2 to fit lon-
gitudinal hospitalisation data, one of the most reliable and available data types [6].
Of most relevance to COVID-19 in 2022, our model lacks human age structure and
vaccination: these omissions give rise to certain limitations. For example, hospitalisa-
tion risks increase with age while older individuals adjust their behaviour differently
from young counterparts [46]. Thus ignoring the age structure may bias our estimate
of infectious contact estimated from hospitalisation data. In addition, the lack of vac-
cination and associated immunity in our model restricted our scope to the first 12
months of the COVID-19 pandemic. Technically, our model can be extended modu-
larly to relax these assumptions about age structure and vaccination. However, these
extensions were outside the scope of this study due to challenges in parameterising
these processes reliably. For instance, the output of age-structured models are highly
sensitive to assumptions of age-specific contact patterns [47], which likely changed dur-
ing the epidemic, yet empirical data for time-dependent contact matrices are scarcely
available. Behavioural adjustment in response to the pandemic is further complicated
by the interaction between age- and sex-specific effects [48]. Furthermore, it is difficult
to track and parameterise the state of immunity generated by natural infections from
multiple viral strains and multiple vaccine doses using compartmental models.

Finally, our work contributes to the growing COVID-19 modelling literature by
providing a transparent Bayesian workflow for fitting a multi-strain epidemic model to
longitudinal epidemiological data, which may be readily adapted to modelling SARS-
CoV-2 in other jurisdictions and other infectious diseases.
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