Species-specific bacterial detector for fast pathogen diagnosis of severe pneumonia in the intensive care unit

Yan Wang¹#, Xiaohui Liang²#, Yuqian Jiang², Danjiang Dong¹, Cong Zhang², Tianqiang Song², Ming Chen¹, Yong You¹, Han Liu³, Min Ge⁴, Haibin Dai⁵, Fengchan Xi⁶, Wanqing Zhou⁷, Jian-Qun Chen², Qiang Wang²*, Qihan Chen²,⁸*, Wenkui Yu¹,⁸*

1 Department of Critical Care Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu 21008, China.

2 The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China.

3 Department of Critical Care Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, China.

4 Department of Cardiothoracic Surgery Intensive Care Unit, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008, China.

5 Department of Neurosurgery Intensive Care Unit, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008, China.

6 Research Institute of General Surgery, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, China.

7 Department of Laboratory Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing University, Nanjing, Jiangsu 210008, China.

8 Department of Laboratory Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008, China.

All rights reserved. No reuse allowed without permission.

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
China.

8 Medical School of Nanjing University, Nanjing, Jiangsu 210093, China.

These authors share first author

*Corresponding author

Corresponding Author:

Wenkui Yu, Ph.D., M.D.

Department of Critical Care Medicine, Nanjing Drum Tower Hospital

Nanjing, Jiangsu 21008, China

Phone: +86 13701582986

yudrnj2@163.com

Qihan Chen, Ph.D.

School of Life Sciences, Nanjing University

Nanjing, Jiangsu 210023, China

Phone: +86 13236592587

chenqihan@nju.edu.cn

Qiang Wang, Ph.D.

School of Life Sciences, Nanjing University

Nanjing, Jiangsu 210023, China

Phone: +86 13382014346

wangq@nju.edu.cn.
Abstract

Rapid diagnosis of pathogens is the cornerstone of appropriate therapy and is also a great challenge to be overcome. Although NGS and some other PCR-based pathogen detection methods were applied to improve the speed and accuracy of clinical diagnosis, it was still a long way from the clinical needs of rapid and accurate diagnostic therapy in the intensive care unit (ICU). In this study, we aimed at developing a new rapid diagnostic tool, Species-Specific Bacterial Detector (SSBD), to evaluate the existence and quantification of 10 most usual pathogenic bacteria in ICU in 4 hours. Briefly, the species-specific genome fragments of each bacterium were identified by our algorithm using 1791 microbe genomes from 232 species and then used to combine with CRISPR/Cas12 to establish diagnosis tools. Based on the tests of 77 samples, SSBD demonstrated 100% sensitivity and 87% specificity compared with conventional culture test (CCT). Later on, an interventional random-grouped study was applied to evaluate the clinical benefits of SSBD. Briefly, SSBD demonstrated more accurate and faster diagnosis results and led to earlier antibiotics adjustment than CCT. Based on the results acquired by SSBD, cultivation results could deviate from the real pathogenic situation with polymicrobial infections. In addition, nosocomial infections were found widely in ICU, which should deserve more attention.

Keywords: Diagnosis, Pathogen, Severe pneumonia, Intensive care unit, Antimicrobial therapy
1. Introduction

Sepsis is associated with high morbidity and mortality [1]. Adequate antibiotic therapy in time could decrease mortality and reduce the length of stay in ICU for patients with sepsis or septic shock [2-5]. As reported in the previous study, the mortality rate of patients increased approximately 7.6% for every hour delayed [3]. Therefore, rapid diagnosis of pathogenic microorganisms is crucial for shortening the time of empirical antibiotic therapy and improving the prognosis of patients with sepsis.

Conventional culture test (CCT) is the most commonly used and golden standard identification method of pathogenic microorganisms in most countries. However, it showed two critical limitations: long time-consuming (2 to 5 days) and low sensitivity (30-50%), which limited the application of this method in the ICU [6, 7]. To overcome this bottleneck, several new tools were developed and showed significant improvement in time consumption and accuracy. Recently, next-generation sequencing (NGS) technology was applied to acquire the entire information of microorganisms and demonstrated great ability in diagnosing rare pathogens. However, the whole process still needs at least 2 days for the full diagnostic report with high cost [8, 9]. On the other hand, NGS provided too much information about microorganisms but only semi-quantification of pathogens, which was hard for most clinical doctors to extract the most important information to determine antibiotic usage. Other new emerging detection techniques designed by BioFire and Curetis are much superior in detection time than these above. However, its original principle was based on nucleotide diversity of conserved genes among species, which could not satisfy the application in the ICU due
to potential false-positive results [10-12]. Therefore, a unique diagnosis tool aimed at
faster and more accurate pathogen identification in the ICU was still a great challenge.

In this study, we aimed to design a simple and convenient diagnosis tool for sepsis
patients in the ICU, which covered the most common pathogenic bacteria and
completed the detection process in the shortest possible time with low cost and
minimum instrument requirements. A clinical trial with two stages was applied to
evaluate the accuracy of the tool and the clinical benefits.

2. Materials and Methods

2.1. Study design

The full study design was shown in Fig 1. In the discovery stage, we screened species
specific DNA-tags of 10 epidemic pathogenic bacteria in the ICU. In the training stage,
we optimized reaction conditions and sample preparation process, including detection
concentration limitation, DNA purification, and incubation time of the CRISPR/Cas12a
reaction. The finalized experiment operating procedure of SSBD was used in the
subsequent stages (detailed protocol was shown in Supplementary Materials).

In validation stage I, 77 specimens of bronchoalveolar lavage fluid (BALF) directly
acquired from patients in ICU were finally detected by SSBD to confirm the specificity
and sensitivity of SSBD compared to CCT results. Some of the samples were sent to
NGS technology, providing additional references.

After the stability and accuracy of SSBD were thoroughly evaluated, the validation
stage II, a preliminary clinical intervention experiment, was launched to verify the
clinical application of the SSBD.

2.2. Ethics Approval

We acquired the ethics approval (2019-197-01) from the ethics committee of Nanjing Drum Tower Hospital Affiliated to Nanjing University Medical School in July 2019, registered and posted the complete research protocol, informed consent, subject materials, case report form, researcher manual, the introduction of main researchers and other information in Chinese. Later on, this study was registered in English at ClinicalTrials.gov (NCT04178382) in November 2019.

2.3. Screening species-specific DNA tags

We designed a process to find the species-specific DNA tags according to the basic principle, intraspecies-conserved and interspecies-specific sequences (illustrated in Fig 2A). 1791 high-quality genomes of 232 microorganism species from the public databases were included in the screening process. To accelerate the screening process, we developed a linear comparison algorithm instead of comparing every two genomes, which could save more than 90% of calculation time cost (S1 Fig). 10 species of bacteria were selected as targets for subsequent detecting process, including Acinetobacter baumannii (A. baumannii), Escherichia coli (E. coli), Klebsiella pneumoniae (K. pneumoniae), Pseudomonas aeruginosa (P. aeruginosa), Stenotrophomonas maltophilia (S. maltophilia), Staphylococcus aureus (S. aureus), Staphylococcus epidermidis (S. epidermidis), Staphylococcus capitis (S. capitis), Enterococcus faecalis (E. faecalis) and Enterococcus faecium (E. faecium). Then we designed different DNA primers targeting selected species-specific DNA tags from each
species (S1 and S2 Table).

To evaluate our primers' specificity in identifying species, we chose *S. aureus* and *S. epidermidis* from the same genus as our cross-validated target species. We extracted DNA sequences of the *S. aureus* and the *S. epidermidis* amplified by primers used in FilmArray Pneumonia Panel developed by BioFire and in our protocol, which were acquired from NCBI Reference Prokaryotic Representative genomes. We then aligned *S. aureus*-specific DNA sequences with the representative genome of *S. epidermidis* using blast to search the most similar DNA sequences. In the FilmArray Pneumonia Panel, DNA amplified sequences from the *S. aureus* and the *S. epidermidis* were aligned to each other (two different gene regions, *rpoB* and *gyrB*, were used to separate two species).

2.4. Patients

Patients admitted to ICUs and diagnosed with severe pneumonia were recruited from Aug 27, 2019. The recruit criteria for patients were: (1) age ≥ 18 years; (2) had artificial airway and expected to retain for more than 48 hours; (3) clinically diagnosed as pneumonia, and the microbiology of etiology was unclear; (4) signed informed consent; (5) the expected length of staying in ICU was more than 3 days. According to previous mortality acquired from the adequate anti-infective group, the sample size calculation (two-group rate) for patients was done, and a sample size of 73 patients in each group was needed.

2.5. Clinical outcomes

BALFs were obtained from all the patients from 2 groups on day 1, day 3-5, and day 7-
10 after recruitment and were sent directly to the hospital diagnostic microbiology
laboratory for CCT and susceptibility testing. BALFs from patients of the experiment
group were also sent for SSBD tests immediately after sampling. Other clinical records
included blood routine tests, CRP and PCT examinations.

All enrolled patients received primary empirical antibiotic therapy. Once the SSBD
results of the patients in the experiment group were obtained, the decisions about
whether antibiotics were adjusted or not were made by two senior doctors according to
the SSBD results and other clinical information. While in the control group, adjustment
depended on conventional culture results and clinical data. Patient demographics and
other vital clinical parameters were recorded. Acute Physiology and Chronic Health
Evaluation II (APACHE II) scores and Sequential Organ Failure Assessment (SOFA)
scores were calculated and recorded for patients on days 1, 3, 7, 10 and 14 to assess
their disease severity and organ function.

2.6. Statistical analysis

The number of improved patients on different clinical indicators of different days was
calculated and tested by Fisher's exact test. APACHE II scores and SOFA scores were
tested as a series by two-way ANOVA. Different clinical outcomes and TTAT were
tested by the Mann-Whitney test.

2.6. Funding support

This study was funded by National Natural Science Foundation of China. The National
Key Scientific Instrument and Equipment Development Project. Project number:
81927808.
3. Results

3.1. The identification of species-specific DNA fragments

The first step to identify pathogenic bacteria was to figure out the specific genome information of each species. Unlike viruses or animals, bacteria were quite similar between close-related species but sometimes quite different among different strains of one species due to fast evolution and horizontal gene transfer [13-15]. Therefore, the widely-used method to identify bacteria with conserved genes may not be a good choice [16, 17]. We developed an innovative algorithm and designed a workflow to figure out the best DNA tag for each species for diagnostic application based on 1791 microbe genomes from 232 species (Fig 2A). The details could be found in the Supplementary Materials.

We started from 10 common bacteria contributing to sepsis infection as the initial panel according to local epidemic data from ICU of Drum Tower hospital and previous studies about pathogens in ICU (S2 Fig) [18, 19]. To our surprise, bacteria-specific DNA sequences showed a random distribution and turned out to be only 0.3%-4.1% in the whole genomes of 10 bacteria (Fig 2B and 2C). Considering the application scenario of ICU with only basic instruments, PCR+CRISPR/Cas12a system was chosen for the following detection. Based on the identified species-specific DNA fragments, related primers and crRNAs (CRISPR RNA) were designed according to each species (S1 and S2 Table).

3.2. The establishment of species-specific bacteria detection tool
Briefly, CRISPR/Cas12a with designed crRNA could be activated by its target, which could be told by whether the reporter probe was cleaved and demonstrated signal as previously reported [20].

To optimize the working conditions of the detection tool in ICU, multiple experiments were applied to optimize the sample preparation and detection process. With the gradient concentration of DNA templates, we confirmed that the lowest detection limit was 10^{-15} M with PCR amplification and 10^{-8} M without amplification step (Fig 3B), which was consistent with previous studies [21]. In addition, 30 minutes’ incubation of CRISPR/Cas12a with PCR products was enough to demonstrate signals (Fig 3B). An additional purification step right after PCR amplification appeared unnecessary to acquire the positive result but helpful for weaker signal (S3A Fig). In addition, the comparison of CRISPR/Cas incubation duration confirmed that fluorescence value showed a significant difference from 5 minutes and reached its maximum after 30 minutes compared to the negative control (S3B Fig).

To confirm the primary behavior of SSBD, two clinical strains separated from different patients for each of 10 selected bacteria species were collected and tested by SSBD as the positive control, which showed clear positive results (S3C Fig). To further confirm the specificity of SSBD, each bacteria strain was tested by 10 SSBD test panels targeting different bacteria. Compared to negative control, only SSBD targeting the tested bacteria showed a positive result, which confirmed its high specificity (Fig 3C).

Putting these results together, a standard operating procedure was finally established for the following validation stages (Fig 3A), which was capable of providing the
information about the ten most common pathogenic bacteria in ICU. Since this method was a quite fast and species-specific bacteria detection tool, we named it SSBD.

3.3. The accuracy and clinical benefits of SSBD

We started our study with validation stage I, which was a non-intervention study with 77 samples of BALF extracted from patients. Samples were detected both by SSBD and CCT, and the results were compared (raw detection results were shown in S3 Table).

Generally, 5 of 10 selected bacteria were detected by both tests, including *A. baumannii*, *K. pneumoniae*, *P. aeruginosa*, *S. aureus* and *S. maltophilia*. SSBD could detect those 5 bacteria separately with 100% sensitivity and over 87% specificity, which were calculated by the results of CCT as golden standard (Fig 4A). The other 5 bacteria were detected by SSBD but not CCT, including *E. coli*, *S. epidermidis*, *S. capitis*, *E. faecalis* and *E. faecium*. To further evaluate the results, 11 samples among all 77 samples were collected randomly and sent for NGS detection, which confirmed that SSBD and NGS demonstrated quite high similarities in results (Fig 4A).

Based on these accurate results, we started the validation stage II, which was an intervention study aiming to evaluate the clinical benefits of SSBD compared to the current diagnosis and treatment strategy in ICU. Although the study was paused due to the outbreak of SARS-CoV2, 22 patients were recruited into the experiment group and 24 patients into the control group. The baseline characteristics had no significant difference except ages (S5 Table).

We finally got 57 BALF results tested by SSBD, which included 43 results that also had CCT results among them in the experiment group. While in the control group, we
got 63 samples tested only by CCT. In the experiment group, 47 samples were positive among 57 samples tested by SSBD, while 28 samples were positive among 43 samples tested by CCT (raw detection results were shown in S4 Table). In the control group, 41 samples showed positive among 63 samples. It was shown that SSBD could detect each bacterium with similar high sensitivity and specificity in validation stage II (Fig 4B). Consistent with the local epidemic data, the most frequent occurrence was A. baumannii (Fig 4B). 12 of the 57 samples were also sent for the NGS technology, and the SSBD also showed high consistency between those two methods compared to CCT (Fig 4B).

To explore clinical benefits with the help of SSBD, effective antibiotic coverage rate, APACHE II scores and SOFA scores were calculated and compared to evaluate the rationalization of antibiotic therapy and patients' disease severity and organ function status in the two groups (Fig 4C-4E). Effective antibiotic coverage rates for each test were significantly higher in the experimental group than those in the control group in three tests (Fig 4C). The definition of antibiotic coverage and the original calculation results were shown in S4A-B Fig. APACHE II scores were significantly lower in the experimental group than those in the control group after day 1 (p=0.0035, two-way ANOVA); the separation between two groups of patients increased progressively until day 14 (Fig 4D). SOFA scores showed no difference between the groups (p=0.8918, two-way ANOVA) (Fig 4E). Other clinical outcomes showed no significant difference in both groups, such as time of ventilation, shock, 28-day mortality and the numbers of antibiotic-associated diarrhea (S6 Table).

3.4. Polymicrobial infection and nosocomial events observed by SSBD
Based on the previous studies, CCT had defects in the evaluation of polymicrobial infection events due to the limitations of its technology [22]. Therefore, we tried to evaluate whether SSBD demonstrated better performance with polymicrobial infection. Here, we defined situations of infection with more than one pathogenic microorganism as polymicrobial infection events to assess the performance based on the results of both methods. From the results, the detection rate of polymicrobial infection events by SSBD was 41.8% (55/134) in two validation stages, which was significantly higher than 11.7% (14/120) of CCT (Fig 5A). To confirm the reliability of the extra detected polymicrobial infection events by SSBD, 6 samples were sent for NGS, which demonstrated the same results as SSBD (Fig 5B).

Since both SSBD and NGS were based on target DNA, we wanted to confirm if some polymicrobial infection events were “false positive” and caused by dead bacteria. Here, we showed patient B19 as an example, who received three times tests at day 1, 3 and 7 by both CCT and SSBD. Based on the results, S. maltophilia was detected as level II in test1 with SSBD but not CCT. Later on, S. maltophilia was detected by CCT in test2 as well with few days’ development from level II to level III based on result of SSBD, which means SSBD discovered the true polymicrobial infection event earlier than CCT (Fig 5C). From the aspect of pathogen species participated in polymicrobial infection events, both methods demonstrated similar results with A. baumannii, S. maltophilia, P. aeruginosa, K. pneumoniae and S. aureus in top 5 (Fig 5D), which were consistent with the frequency of pathogens in ICU [18].

Hospital infections, also known as nosocomial infections, are an important factor in...
the incidence rate and mortality of ICU patients with severe pneumonia [23]. Since
CCT has a long delay in clinical feedback of pathogenic results, there is no effective
monitoring method in clinical practice. Here, we tried to evaluate nosocomial infections
based on the test results. We defined a case as a nosocomial infection event if a
pathogenic bacterium was newly detected in the current time point but not before. For
example, B17 (K. pneumoniae at test 2, E. faecalis at test 3) and B19 (S. maltophilia at
test 2, K. pneumoniae at test 3) patients were discovered as nosocomial infection cases
for SSBD and CCT (Fig 5E and 5F). Based on the results of SSBD, 47.6% (10/21) of
patients had nosocomial infections at the test 2, and 28.6% (4/14) of patients had
nosocomial infections at the test 3. Similarly, 40% (4/10) of patients were identified as
nosocomial infections by CCT at test 2, and 27.3% (3/11) of patients were identified as
nosocomial infections at test 3 (Fig 5G).

4. Discussion
In this study, we developed a rapid bacteria detection technique based on
CRISPR/Cas12a using species-specific DNA tags and detected common bacteria taken
from pneumonia in 4 hours with 100% sensitivity and over 87% specificity in the
validation stage I. Currently, there are already some market-oriented detection
technologies for pneumonia patients, such as FilmArray Pneumonia Panel by BioFire
and Curetis Unyvero system, which also could detect microorganisms in several hours
[12]. Sequences used by FilmArray Pneumonia Panel from two gene regions had highly
similar DNA sequences in the S. epidermidis representative genome (E-value=5e-40,
rpoB; E-value=8e-39, gyrB), which could interfere with pathogen identification between species from the same genus. It was ideal for early and rapid screening of infectious diseases but was not applicable in the ICU, considering the complexity and urgency of infection events within the ICU. We have adopted a completely different strategy from the existing methods, getting specific gene regions from species for further test using our developed bioinformatics workflow and algorithm. It was shown that our sequences used for S. aureus diagnosis had no similar fragments in S. epidermidis, which avoided distinguishing different species by gene diversity. It was likely to get the species-specific DNA tags from such amount genomes when aligned bacterial genomes with each other but consuming computational cost. We optimized calculation processes by rescheduling steps and then made it possible for us to acquire species-specific DNA regions after shortening time to a range bearable.

NGS technology is useful in species identification and also shows its advantages in clinical diagnosis. It is valuable to detect uncommon pathogens because of its unique capability in detecting multiple agents across the full microbial spectrum contributing to disease and has already been developed as a new detection platform [9]. However, in the majority of cases of common pathogens, redundant microorganism results were probably unhelpful to the anti-infection regimen. In addition, the high cost and relatively long turnaround time prevent its widespread application, especially in the ICU circumstance. Therefore, our SSBD method seemed more advantageous in time-consuming and information effectiveness than other mentioned methods, especially when we could quantify bacterial load based on fluorescence intensity for better
antibiotic therapy strategy. CRISPR/Cas12a and qPCR are both quantitative methods, but CRISPR/Cas12a shows its robustness and lower equipment requirement, which satisfied our needs for most of the ICU. There are still several challenges in implementing POCT in developing countries, especially the qPCR/POCT system, which will be an alternative.

The results of SSBD demonstrated high sensitivity and specificity. However, we discovered several “false positive” results compared to CCT, which might be caused by two reasons: 1) The low bacterial load of the patient sample was probably not enough or needed much longer time than expected to be cultivated. SSBD provided a lower threshold of detection \((10^{-15} \text{ M})\) than CCT, which could detect pathogens that even existed in trace amounts which unable to be cultivated. In our study, the fluorescence intensity obtained from SSBD was divided into three intervals (level I: \(10^{-15}-10^{-14} \text{ M}\), level II: \(10^{-14} \text{ M}-10^{-13} \text{ M}\), level III: over \(10^{-13} \text{ M}\)), representing the different strengths of bacteria (roughly equivalent to bacteria amounts according to our lowest detection thresholds, dividing details in Supplementary Method SSBD diagnostic report and S4A Fig). All false-positive results were calculated on the count of species and strengths, mostly belonging to the level I or II (S5 Fig). Considering most of those false positive samples were also validated by NGS technology, it suggested that some pathogens might be missed in the CCT results. 2) Cultivation could fail in detecting pathogens that failed in competitive growth environments. It was interesting to see that many patients were infected by more than one pathogen, which might cause potential competition between different pathogens in CCT process (S7 Table). For example, \(A.\)}
baumannii was found to be the most competitive bacteria in cultivation, which may be
due to its fastest growth rate. On the other hand, *P. aeruginosa* seemed to be relatively
the weakest one among them, which was usually concealed in the cultivation with other
species existing (sample A16, B19-3, B21-1, B21-2 after we excluded all samples with
A. baumannii existing).

When evaluating the clinical benefit from SSBD, the quicker directed therapy
adjustment for patients in the experiment group (Exp: 10.2±8.8 hours vs. Con:
96.0±35.1 hours, p<0.0001, Mann-Whitney test) could shorten the empirical anti-
infection time and seemed to alleviate illness severity (APACHE II score) during the
validation stage II with the help of the SSBD. Some clinical parameters were also
showed good tendency in the experiment group patients on day 7, including the absolute
value of white blood cell (WBC), the cases number with abnormal body temperature
improved, and the clinical anti-infection efficiency (*S6 Table*). It implied that
appropriate antibiotic treatment guided by in-time pathogenic information would
alleviate acute physiological illness. Nevertheless, at the endpoint, clinical outcomes
showed no differences between the two groups, which may due to the insufficient
patient numbers.

Despite the size in our intervention stage, there were still some aspects that have not
been considered. 1) Resistance genes were not included in the study. Multi-drug
resistant organisms (MDROs) prevailed in ICU [24, 25], which might not improve the
situation of patients even with accurate pathogenic information. There were a few cases
(e.g. B07, B25 and B35 patients) showing no signs of clearing the bacterial infection.
2) The 10 designed pathogens were originated from sepsis, which might not completely overlap with pathogens of severe pneumonia, though pneumonia is one of the most common causes of sepsis. The panel pathogens could be optimized flexibly for meeting diverse clinical needs in the ICU. 3) Other potential pathogenic microbes, such as viruses and fungus, might affect the clinical outcomes considering the complexity of ICU patients.

Previous studies showed that polymicrobial pneumonia is related to an increased risk of inappropriate antimicrobial treatment [26]. In both phases, a total of 55 samples were identified as polymicrobial infections by SSBD, while only 14 samples were identified as polymicrobial infections by CCT, which suggested that SSBD could provide more precise pathogenic bacteria information than CCT, especially for those patients with polymicrobial infections. On the other hand, nosocomial infections contribute to a considerable proportion of deaths in ICU patients with severe pneumonia [23]. Although SSBD identified similar ratio of nosocomial infection events with CCT (Fig 5G), SSBD provided more timely information for clinical control and response, which might improve the clinical medication decision in ICU.

As anticipated, SSBD performed well with high sensitivity and specificity in rapid pathogens identification, and it reduced TTAT, which was associated with more rapid administration of appropriate antimicrobial therapy in the experiment cases. SSBD also has enormous potential in expanding pathogens from different diseases with much more pathogen genomes concluded. We believe that SSBD is competent in the role of clinical application and able to be applied in more clinical research.
References

Figure Legends

Figure 1: Study Design
This study contained four stages: discovery stage, training stage, validation stage I and validation stage II. All patients were from the Department of Critical Care Medicine, Nanjing Drum Tower Hospital. Patients were randomly divided into two groups for the clinical trial.

Figure 2: Screening workflow and statistics of species-specific DNA-tags.
A. Schematic diagram of screening species-specific DNA-tags.
B. Genomic distribution of species-specific DNA-tags in 10 bacteria.
C. Genomic proportion of species-specific DNA-tags in 10 bacteria.

Figure 3: SSBD development and effectiveness validation.
A. SSBD workflow for clinical validation stages.
B. Cas12a and Cas12a-after-PCR detection of different concentrations and reaction times including 30 minutes (left) and 60 minutes (right). Blue bars indicated the Cas12a-after-PCR test. Brown bars indicated Cas12a test only. The concentration gradient of pGL3 plasmid from 10^{-17} M-10^{-7}M was established as the test group. NC stood for the fluorescence values of PCR products of using DEPC-H2O as input. Each group had three repeats. Error bars indicated mean±SEM of fluorescence value. ** indicated p value<0.01 and *** indicated p value<0.001 of unpaired t-test.
C. SSBD results of 10 pathogenic bacteria.
Every test panel for each of 10 bacteria was used to detect genome DNA samples of 10 bacteria by SSBD. NC stood for the fluorescence values of PCR products of using DEPC-H2O as input. Each group had three repeats. Error bars indicated mean±SEM of fluorescence value.

Figure 4: Statistical analysis of test results and clinical outcomes in the two validation stages.

A. Cross-tables for 5 of 10 bacteria by both SSBD and CCT and comparative analysis of SSBD, CCT and NGS results in the validation stage I.

B. Cross-tables for 5 of 10 bacteria by both SSBD and CCT and comparative analysis of SSBD, CCT and NGS results in the validation stage II.

C. Antibiotics coverage rate of each test in the two groups. Exp meant the experimental group, and Con meant the control group. Test 1: Day 1. Test 2: Day 3-5. Test 3: Day 7+.

Raw antibiotics coverage results of each patient were available in S2B Fig. Detailed judging guidelines were shown in Supplementary Material.

D and E. Line charts for APACHE II and SOFA scores, respectively. Error bars indicated mean±SEM of scores of all the recorded patients. * indicated a significant difference between the two groups using two-way ANOVA.

Figure 5: Statistical analysis of polymicrobial infection and nosocomial infection in the two validation stages.

A. Statistics of pathogenic infection status of BALF samples in the two validation
B. Verification from NGS results for 6 samples identified as polymicrobial infection by SSBD but not CCT.

C. Case study of polymicrobial infection detected by SSBD and CCT.

D. Statistics of pathogens involved in polymicrobial infections in the two stages.

E. Case study of nosocomial infection identified by SSBD.

F. Case study of nosocomial infection identified by CCT.

G. Percentage of nosocomial infection identified by SSBD and CCT.
Discovery Stage
10 bacteria are included as targets to screen species specific DNA-tags

Training Stage
Design 10 types of crRNA based on species specific DNA-tags
2 samples of each kind of bacteria are used to be tested

Validation Stage I
77 samples are detected by both SSBD and cultivation
11 samples are sent for NGS

Validation Stage II
Plan to recruit 146 patients for randomized controlled trial

Experiment group
3 BALF samples collected for each patient
Methods: SSBD and cultivation (12 samples sent for NGS)
Clinical data recorded
Follow-up at the 28th day

Control group
3 BALF samples collected for each patient
Method: only cultivation
Clinical data recorded
Follow-up at the 28th day

2 patients excluded for cultivation results missing
A

1. Download genome from NCBI database.
2. Screen, mask, and build index.
3. Set target and align other sequence.
4. Maintain the colinear sequence.
5. Arranging and clustering.
7. Run output.

B

- A. baumannii
- E. faecalis
- E. faecium
- E. coli
- K. pneumoniae
- P. aeruginosa
- S. aureus
- S. capitis
- S. epidermidis
- S. maltophilia

Genomes of pathogens

C

Proportion (%)
Fig 3

A

Extraction samples → DNA → PCR Products → Fluorescence reading

B

Fluorescence levels for different bacterial strains:
- A. baumannii
- E. coli
- K. pneumoniae
- S. aureus
- P. aeruginosa
- S. epidermidis
- S. capitis
- E. faecalis
- E. faecium
- S. maltophilia

C

Bar charts showing fluorescence levels for each test panel:
- A. baumannii
- E. coli
- K. pneumoniae
- S. aureus
- P. aeruginosa
- S. epidermidis
- S. capitis
- E. faecalis
- E. faecium
- S. maltophilia

Fluorescence levels range from 0 to 7000.
Fig 4

A. Validation Stage I

<table>
<thead>
<tr>
<th></th>
<th>Positive</th>
<th>Negative</th>
<th>Predictive Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Positive</td>
<td>39</td>
<td>4</td>
<td>PPV 90.7%</td>
</tr>
<tr>
<td>Negative</td>
<td>0</td>
<td>34</td>
<td>NPV 100%</td>
</tr>
<tr>
<td>Sensitivity</td>
<td>100%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Specificity</td>
<td></td>
<td>89.5%</td>
<td></td>
</tr>
</tbody>
</table>

A. baumannii

<table>
<thead>
<tr>
<th></th>
<th>Positive</th>
<th>Negative</th>
<th>Predictive Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Positive</td>
<td>8</td>
<td>7</td>
<td>PPV 53.3%</td>
</tr>
<tr>
<td>Negative</td>
<td>0</td>
<td>62</td>
<td>NPV 100%</td>
</tr>
<tr>
<td>Sensitivity</td>
<td>100%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Specificity</td>
<td></td>
<td>89.9%</td>
<td></td>
</tr>
</tbody>
</table>

K. pneumoniae

<table>
<thead>
<tr>
<th></th>
<th>Positive</th>
<th>Negative</th>
<th>Predictive Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Positive</td>
<td>5</td>
<td>3</td>
<td>PPV 62.5%</td>
</tr>
<tr>
<td>Negative</td>
<td>0</td>
<td>69</td>
<td>NPV 100%</td>
</tr>
<tr>
<td>Sensitivity</td>
<td>100%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Specificity</td>
<td></td>
<td>95.8%</td>
<td></td>
</tr>
</tbody>
</table>

S. aureus

<table>
<thead>
<tr>
<th></th>
<th>Positive</th>
<th>Negative</th>
<th>Predictive Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Positive</td>
<td>8</td>
<td>9</td>
<td>PPV 47.1%</td>
</tr>
<tr>
<td>Negative</td>
<td>0</td>
<td>60</td>
<td>NPV 100%</td>
</tr>
<tr>
<td>Sensitivity</td>
<td>100%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Specificity</td>
<td></td>
<td>87.0%</td>
<td></td>
</tr>
</tbody>
</table>

P. aeruginosa

<table>
<thead>
<tr>
<th></th>
<th>Positive</th>
<th>Negative</th>
<th>Predictive Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Positive</td>
<td>3</td>
<td>9</td>
<td>PPV 25.0%</td>
</tr>
<tr>
<td>Negative</td>
<td>0</td>
<td>65</td>
<td>NPV 100%</td>
</tr>
<tr>
<td>Sensitivity</td>
<td>100%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Specificity</td>
<td></td>
<td>87.8%</td>
<td></td>
</tr>
</tbody>
</table>

S. maltophilia

B. Validation Stage II

<table>
<thead>
<tr>
<th></th>
<th>Positive</th>
<th>Negative</th>
<th>Predictive Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Positive</td>
<td>16</td>
<td>4</td>
<td>PPV 80.0%</td>
</tr>
<tr>
<td>Negative</td>
<td>0</td>
<td>23</td>
<td>NPV 100%</td>
</tr>
<tr>
<td>Sensitivity</td>
<td>100%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Specificity</td>
<td></td>
<td>85.2%</td>
<td></td>
</tr>
</tbody>
</table>

A. baumannii

<table>
<thead>
<tr>
<th></th>
<th>Positive</th>
<th>Negative</th>
<th>Predictive Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Positive</td>
<td>4</td>
<td>2</td>
<td>PPV 66.7%</td>
</tr>
<tr>
<td>Negative</td>
<td>0</td>
<td>37</td>
<td>NPV 100%</td>
</tr>
<tr>
<td>Sensitivity</td>
<td>100%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Specificity</td>
<td></td>
<td>94.9%</td>
<td></td>
</tr>
</tbody>
</table>

K. pneumoniae

<table>
<thead>
<tr>
<th></th>
<th>Positive</th>
<th>Negative</th>
<th>Predictive Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Positive</td>
<td>1</td>
<td>3</td>
<td>PPV 25.0%</td>
</tr>
<tr>
<td>Negative</td>
<td>0</td>
<td>39</td>
<td>NPV 100%</td>
</tr>
<tr>
<td>Sensitivity</td>
<td>100%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Specificity</td>
<td></td>
<td>92.9%</td>
<td></td>
</tr>
</tbody>
</table>

S. aureus

<table>
<thead>
<tr>
<th></th>
<th>Positive</th>
<th>Negative</th>
<th>Predictive Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Positive</td>
<td>4</td>
<td>7</td>
<td>PPV 36.4%</td>
</tr>
<tr>
<td>Negative</td>
<td>1</td>
<td>31</td>
<td>NPV 96.9%</td>
</tr>
<tr>
<td>Sensitivity</td>
<td>80.0%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Specificity</td>
<td></td>
<td>81.6%</td>
<td></td>
</tr>
</tbody>
</table>

P. aeruginosa

<table>
<thead>
<tr>
<th></th>
<th>Positive</th>
<th>Negative</th>
<th>Predictive Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Positive</td>
<td>6</td>
<td>7</td>
<td>PPV 46.2%</td>
</tr>
<tr>
<td>Negative</td>
<td>0</td>
<td>30</td>
<td>NPV 100%</td>
</tr>
<tr>
<td>Sensitivity</td>
<td>100%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Specificity</td>
<td></td>
<td>81.1%</td>
<td></td>
</tr>
</tbody>
</table>

S. maltophilia

C.

D.

E.
Fig 5

A

CCT

SSBD

polymicrobial infection
monomicrobial infection
negative

B

<table>
<thead>
<tr>
<th>Sample ID</th>
<th>SSBD</th>
<th>CCT</th>
<th>NGS</th>
</tr>
</thead>
<tbody>
<tr>
<td>A20</td>
<td>E. faecium (III), S. capitis (I)</td>
<td>Negative</td>
<td>E. faecium, S. capitis</td>
</tr>
<tr>
<td>A27</td>
<td>A. baumannii (III), S. epidermidis (III)</td>
<td>A. baumannii</td>
<td>A. baumannii, S. epidermidis</td>
</tr>
<tr>
<td>A49</td>
<td>A. baumannii (III), S. maltophiila (III), S. aureus (III)</td>
<td>A. baumannii, S. maltophiila</td>
<td>A. baumannii, S. maltophiila, S. aureus</td>
</tr>
<tr>
<td>B05-1</td>
<td>A. baumannii (III), S. maltophiila (II)</td>
<td>A. baumannii</td>
<td>A. baumannii, S. maltophiila</td>
</tr>
<tr>
<td>B11-1</td>
<td>A. baumannii (III), P. aeruginosa (III), S. maltophiila (II)</td>
<td>A. baumannii, P. aeruginosa, S. maltophiila</td>
<td></td>
</tr>
<tr>
<td>B31-1</td>
<td>A. baumannii (III), A. baumannii, S. capitis (III)</td>
<td>A. baumannii</td>
<td>A. baumannii, S. capitis</td>
</tr>
</tbody>
</table>

C

Patient ID
B19

A. baumannii
S. maltophiila

K. pneumoniae
S. maltophiila

D

Pathogens involved in polymicrobial infections in two stages

E

Tests by SSBD

<table>
<thead>
<tr>
<th>Test1</th>
<th>Test2</th>
<th>Test3</th>
</tr>
</thead>
</table>

F

Tests by CCT

<table>
<thead>
<tr>
<th>Test1</th>
<th>Test2</th>
<th>Test3</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. baumannii</td>
<td>A. baumannii, S. maltophiila</td>
<td>K. pneumoniae, S. maltophiila</td>
</tr>
</tbody>
</table>

G

Nosocomial infection

Percentage (%)

D

Percentage (%)
Supplementary Figure 1

A

Conventional pairwise alignment

Optimized alignment method

\[N_{SA} = \frac{n^2}{2} - \frac{n}{2} \]

\[N_{SA} = n - 1 \]

B

Species 1

strain1
strain2
strain3
strain4
strain(x)

Intra-species conserved DNA fragments

C

Species-specific DNA tags in species 1

Excluding similar DNA fragments

Tag 1

Tag 5

Tag m
Supplementary Figure 2

Nanjing Drum Tower Hospital (2017)

- A. baumannii (17%)
- K. pneumoniae (15%)
- E. coli (10%)
- P. aeruginosa (10%)
- S. aureus (8%)
- S. epidermidis (6%)
- S. maltophilia (6%)
- E. faecium (6%)
- P. mirabilis (4%)
- E. faecalis (3%)
- S. capitis (2%)
- others (≤1%)

Supplementary Figure 2: Distribution of bacteria from Nanjing Drum Tower Hospital (2017).
Supplementary Figure 3

A

![Fluorescence vs incubation time for A. baumannii, E. coli, K. pneumoniae, S. maltophilia, S. epidermidis, S. capitis, S. aureus, E. faecalis, and E. faecium with data points for NC, strain sample of A patient, and strain sample of B patient.](image)

B

![Fluorescence vs incubation time for K. pneumoniae and E. faecium with data points for NC, strain sample of A patient, and strain sample of B patient.](image)
Supplementary Figure 4

A

B

Exp

Con

Test 1
Test 2
Test 3

Patient ID: B01, B03, B05, B07, B09, B11, B13, B15, B17, B19, B21, B23, B25, B27, B29, B31, B33, B35, B37, B39, B41, B43

Test 1
Test 2
Test 3

Patient ID: C02, C04, C06, C08, C10, C12, C14, C16, C18, C20, C22, C24, C26, C28, C30, C32, C34, C36, C38, C40, C42, C44, C46, C48

Covered
Uncovered
Discharged/Death

ExpCon

15/22
18/21
14/14

14/24
13/23
12/16
Supplementary Figure 5

A Validation stage I

B Validation stage II