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ABSTRACT  

Objective: Alzheimer’s disease (AD) has several known genetic determinants, yet the mechanisms 

through which they lead to disease onset remain poorly understood. This study aims to estimate the 

effects of genetic liability to AD on plasma metabolites measured at seven different stages across the 

life course. 

 

Methods: Genetic and metabolomic data from 5,648 offspring from the Avon Longitudinal Study of 

Parents and Children birth cohort were used. Linear regression models examined the association 

between higher AD liability, as measured by a genetic risk score (GRS), and plasma metabolites 

measured at 8, 16, 18 and 25 years of age. Two hundred twenty-nine metabolites were studied, most 

relating to lipid/lipoprotein traits. Two-sample Mendelian randomization was performed using 

summary statistics from age-stratified genome-wide association studies (GWAS) of the same 

metabolites for 118,466 participants from the UK Biobank, to examine the persistence of any AD 

liability effects into late adulthood. 

 

Results: The GRS including the APOE4 isoform demonstrated the strongest positive associations for 

cholesterol-related traits per doubling of genetic liability to AD, e.g., for low-density lipoprotein 

cholesterol (LDL-C) at age 25yrs (0.12 SD; 95% CI 0.09, 0.14), with similar magnitudes of association 

across age groups in ALSPAC. In the UK Biobank, the effect of AD liability decreased with age tertile 

for several lipid traits (e.g., LDL-C, youngest: 0.15 SD; 95% CI 0.07, 0.23, intermediate: 0.13 SD; 95% CI 

0.07, 0.20, oldest: 0.10 SD; 95% CI 0.05, 0.16). Across both cohorts, the effect of AD liability on high-

density lipoprotein cholesterol (HDL-C) attenuated as age increased. Fatty acid metabolites also 

demonstrated positive associations in both cohorts, though smaller in magnitude compared with lipid 

traits. Sensitivity analyses indicated that these effects were driven by the APOE4 isoform.  
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Conclusions: These results support a profound influence of the APOE4 isoform on circulating lipids 

and fatty acids from early life to later adulthood. Such lipid and fatty acid traits may be implicated in 

early AD pathogenesis and warrant further investigation as potential targets for preventing the onset 

of AD.  
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INTRODUCTION 

By virtue of our ageing population, the number of patients with Alzheimer’s disease (AD), the most 

common form of dementia, continues to rise1. Neuropathological hallmarks of AD precede the onset 

of clinical symptoms by decades2, yet diagnosis is often late in the disease course. Brain and 

cerebrospinal fluid (CSF) metabolites discriminate AD cases from controls with high accuracy3,4, 

though necessitate invasive modes of sample collection such as lumbar puncture. Therefore, great 

impetus remains for identification of more easily measured plasma AD biomarkers, as is beginning to 

be demonstrated for plasma amyloid-β5, which could improve our understanding of early disease 

aetiology. 

 

AD involves a complex genetic architecture. Genome-wide association studies (GWAS) have 

illuminated many AD-associated single nucleotide polymorphisms (SNPs); the largest to date 

identifying 3,915 genome-wide significant variants across 38 independent loci6. The polymorphic 

APOE gene encodes Apolipoprotein E (ApoE). The role of the APOE ε4 allele (UK allele frequency 0.157) 

in greatly elevating AD risk is unequivocal, accounting for ~50% of total genetic susceptibility7, whilst 

the ε2 allele affords neuroprotection via mechanisms yet to be elucidated8. The three isoforms of 

APOE created by combinations of the ε2, ε3 and ε4 alleles, each confer differential AD risk. APOE 

functions to regulate lipid homeostasis9. It is hence postulated that circulating lipid perturbations are 

associated with both AD risk and early pathology10. Indeed, lipidomic studies suggest that both 

increased and decreased cholesterol, phospholipids, and sphingolipids11 may reflect 

neurodegeneration-associated membrane changes12,13. Many studies are, however, underpowered10 

and given evaluation of AD patients in case-control studies, we cannot ascertain whether metabolic 

derangements are a cause or a secondary consequence of disease13 (i.e. biased by reverse causation), 

or confounded by lifestyle factors or other disease processes. The effects of medications for AD or 

comorbidities such as cardiovascular disease also may not be adequately accounted for13. Other 

metabolic markers such as impaired glucose homeostasis are also likely implicated in AD 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 5, 2022. ; https://doi.org/10.1101/2022.03.24.22272867doi: medRxiv preprint 

https://doi.org/10.1101/2022.03.24.22272867
http://creativecommons.org/licenses/by/4.0/


 6 

pathogenesis14, with functional brain imaging demonstrating abnormally low rates of glucose 

metabolism in APOE ε4 carriers decades before disease onset15. Serum amino acid profiles can 

discriminate AD cases from controls with high accuracy16, though there are inconsistencies regarding 

the directionality of these associations17,18.  

 

In this study, we aimed to estimate the metabolic features of genetic liability to AD across the life 

course, with the goal of revealing early features of AD pathogenesis which may be potentially targeted 

to prevent the clinical onset of AD. To estimate the effect of higher liability to AD on the circulating 

metabolome across the life course, we constructed a genetic instrument for AD liability and examined 

its association with circulating metabolites measured in two studies; the Avon Longitudinal Study of 

Parents and Children (ALSPAC) and the UK Biobank. 

 

METHODS 

Study participants 

ALSPAC is a population-based multi-generational birth cohort study. Eligibility of pregnant women for 

inclusion to ALSPAC was based on residence in a defined area of South West England and an estimated 

delivery date between 1st April 1991 and 31st December 199219. Recruitment to ALSPAC occurred in 

four phases yielding a total of 15,454 pregnancies and 15,589 foetuses, 14,901 of whom were alive at 

one year20,21. ALSPAC offspring were eligible for this study if they had the following information 

recorded: genotype, sex, age, and at least one metabolic trait at any time point. A total of 5,648 

individuals were eligible for analysis on at least one occasion. See Supplementary Figure 1 for full 

details of the eligibility criteria and Supplementary Tables 1 and 2 for descriptive statistics of the 

eligible ALSPAC cohort.  

 

Ethical approval for the study was obtained from the ALSPAC Ethics and Law Committee and the Local 

Research Ethics Committees. Consent for biological samples has been collected in accordance with 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 5, 2022. ; https://doi.org/10.1101/2022.03.24.22272867doi: medRxiv preprint 

https://doi.org/10.1101/2022.03.24.22272867
http://creativecommons.org/licenses/by/4.0/


 7 

the Human Tissue Act (2004). Note that the study website contains details of all the data that is 

available through a searchable data dictionary and variable search tool 

(http://www.bristol.ac.uk/alspac/researchers/our-data/). Study data were collected and managed 

using REDCap electronic data capture tools hosted at the University of Bristol24. REDCap (Research 

Electronic Data Capture) is a secure, web-based software platform designed to support data capture 

for research studies. 

 

Summary-level GWAS data from UK Biobank, a large-scale multicentre cohort study, were also used. 

Over 500,000 adults aged 40-69 years were recruited between 2006-2010 via 22 assessment centres 

across England Wales and Scotland. Details of the UK Biobank design, participants, quality control (QC) 

and its strengths and limitations have been detailed previously22–24.  

 

Assessment of genetic liability to AD 

In ALSPAC, genotype was assessed using the Illumina HumanHap550 quad chip, with imputation 

performed with the Haplotype Reference Consortium (HRC) panel. AD susceptibility was defined using 

SNPs associated with AD at genome-wide significance (p≤5×10−8) reported by the Kunkle et al. 

GWAS25. This GWAS reports 25 loci of genome-wide significance using data from 46 case-control 

studies included in four AD consortia that comprise the International Genomics of Alzheimer’s Project 

(IGAP). A total of 21,982 cases and 41,944 cognitively normal controls were analysed, all of whom 

were adults of non-Hispanic white ethnicity. Amongst cases, 61.3% were female and the mean age of 

onset of AD was 72.9 years. Amongst controls, 57% were female and the mean age of examination 

was 72.4 years. Proxy SNPs that were in LD with the sentinel SNP at r2≥0.5 were also considered. 

Summary statistics for the Kunkle et al. meta-analysis are available at: 

https://www.niagads.org/datasets/ng00075.  
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Data harmonisation constituted identical coding of effect (risk-increasing) alleles in both the AD GWAS 

and ALSPAC datasets. If a SNP associated with AD at genome-wide significance was not present in the 

ALSPAC dataset, then a proxy SNP in high linkage disequilibrium (LD) (within 10,000kb, r2=0.8) with 

the AD SNP was included instead. As such, rs9331896 (associated with the CLU gene) was replaced 

with rs2279590. AD-associated SNPs were combined into two genetic risk scores (GRS), one including 

and one excluding the SNPs denoting the ε4 alleles of APOE. The three isoforms of APOE are derived 

from combinations of the polymorphic SNPs rs429358 and rs741226. The APOE-including GRS contains 

beta coefficients for the C alleles of both SNPs, defining ε4/ε4 genotype and APOE4 isoform. Given 

the missingness of genotype data for some ALSPAC participants, GRSs were created for all individuals 

who had genotype data for at least one SNP for AD to preserve sample size and statistical power. The 

smallest number of SNPs for any included individual was 18 out of 25. These GRSs used the AD risk-

increasing allele and log(OR) as external weights. Apart from APOE SNPs that were not carried forward 

to replication GWAS analyses, all effect sizes were obtained from the final stage of GWAS meta-

analysis (Supplementary Table 3). The GRS reflects the average per-SNP effect on AD risk. 

 

In UK Biobank, liability to AD was instrumented using the same SNPs used to create GRSs in ALSPAC. 

As such, the same data harmonisation process was used. 

 

Assessment of metabolites 

In ALSPAC, blood samples were taken at clinics when offspring participants were approximately 8, 16, 

18 and 25 years old. These samples were fasted except for those obtained at age 8 years. A total of 

229 metabolites from a targeted metabolomics platform were measured via proton nuclear magnetic 

resonance (1H-NMR) spectroscopy using EDTA-plasma27. All metabolites were quantified at the first 

three time points; however, the following were not measured at 25 years: diacylglycerol, ratio of 

diacylglycerol to triglycerides, fatty acid chain length, degree of unsaturation, conjugated linoleic acid, 

and ratio of conjugated linoleic acid to total fatty acids.  
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Most metabolites relate to lipoproteins, categorised by density and size. Lipoprotein characteristics 

are recorded, including their triglyceride, phospholipid and cholesterol content. Various fatty acid, 

glycolysis-related, amino acid and inflammatory trait concentrations are also included. 

 

In the UK Biobank, non-fasting EDTA plasma samples from a random subset of UK Biobank participants 

(n = 118 466) were analysed for levels of 249 metabolites, using the same platform as in ALSPAC, but 

with several additional ratios of lipid measures. 

 

Statistical approach 

We adopted a  “reverse MR”28 framework, such that genetic liability to AD is treated as the exposure 

and metabolites as the outcome, to ascertain the “metabolic features” of AD susceptibility in a 

preclinical population. Figure 1 illustrates the potential mechanisms of association between AD SNPs 

and circulating metabolites. In ALSPAC, we conducted a GRS analysis which combines alleles into a 

score, whereas in the UK Biobank, we performed a formal MR analysis which uses SNPs as formal 

instrumental variables (IVs)  for AD liability29. GRS analyses are typically better powered than MR 

analyses and hence were deemed more suitable for ALSPAC’s smaller sample size. GRS analyses do 

not, however, allow interrogation of potential bias due to horizontal pleiotropy. MR analyses are less 

well powered than GRS analyses, but there are several sensitivity analyses (including MR-Egger, 

weighted median and weighted mode30) that enable the assessment of horizontal pleiotropy. 

 

Results across cohorts are comparable despite the different analysis methods; all causal effect 

estimates were multiplied by 0.693 (loge2) as recommended and are interpreted as SD-unit 

differences in each metabolic trait per doubling of genetic liability to AD31. 
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In ALSPAC, the GRS and metabolite measurements were standardised by creating z-scores prior to 

analysis. Associations between the AD GRS and each metabolite at each time point were assessed 

using separate linear regression models, adjusting for age at time of metabolite assessment and sex.  

 

In UK Biobank, 118,466 participants of European ancestry were stratified into tertiles of age, before a 

GWAS of metabolites was performed. Genetic association data for metabolites were generated using 

the MRC IEU UK Biobank GWAS pipeline32.  All metabolites were standardized and normalized prior to 

analyses using rank-based inverse normal transformation.  SNP-exposure associations based on the 

25 SNPs for AD (the same SNPs used to create GRSs in ALSPAC) were integrated with the SNP-

metabolite associations. Three statistical methods were used to generate MR estimates of effect using 

the TwoSampleMR package33: inverse variance weighted (IVW), MR Egger, weighted median, and 

weighted mode, each of which make differing assumptions about directional pleiotropy34,35. MR 

analyses were repeated with a set of 23 SNPs excluding the two APOE4 SNPs. These analyses were 

performed in R version 4.0.2.   

 

Summary-level GWAS results for metabolites can be accessed through the IEU-OpenGWAS platform36, 

accessible at https://gwas.mrcieu.ac.uk/datasets/?gwas_id__icontains=met-d.  
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Figure 1. Schematic to demonstrate potential mechanisms of association between the AD GRS and metabolomic 
changes. Bracketed links denote hypothesised associations with AD itself, rather than our analysis (which does 
not directly measure AD but genetic liability to AD).  
(1) Horizontal pleiotropy. SNPs incurring higher AD liability exert their effects on AD via a different mechanism 
from their effects on metabolites. This is unlikely given the postulated role of metabolites in AD pathogenesis. 
However, APOE is known to be pleiotropic, performing location and isoform-specific effects. -= 
(2) Hallmarks of the AD prodrome causing metabolic derangements. This is unlikely as participants as young as 
those in ALSPAC would not be expected to be experiencing prodromal AD.  
(3) Here, metabolomic changes are a direct consequence of increased AD liability and precede the onset of 
clinical disease. 
 
 

RESULTS 

Full results for all associations between genetic liability to AD and metabolites, including and excluding 

APOE from analyses, can be found in Supplementary Tables 4, 5 and 6. Overall, when strong evidence 

was observed for causal effects of AD liability on metabolites (i.e., confidence intervals did not span 

the null), the direction and magnitude of association between genetic liability to AD (per SD higher 

GRS) and metabolite effect sizes remained consistent across the life course. Within ALSPAC, the extent 

of overlap of confidence intervals means it is often impossible to elucidate a trend in the associations 

across time points. The same is true for UK Biobank results, except for the main lipid metabolites, 

where there is a trend for attenuation of effect size towards the null as age increases in the IVW 

models. In general, UK Biobank estimates were largely consistent across MR sensitivity models, with 

wider confidence intervals for MR Egger estimates and smaller confidence intervals for weighted 
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median and weighted mode estimates compared to IVW. For all metabolite subcategories, there is 

substantial attenuation of beta values towards the null, without substantial loss of statistical power 

when APOE4 is excluded from the GRS (Supplementary Figures 2-4). This suggests that results are 

largely driven by the APOE4 variant. Within ALSPAC, higher age was associated with wider confidence 

intervals, reflecting decreased sample size at each consecutive clinic visit. 

 

Genetic liability to AD and lipid traits 

Of all metabolite subtypes, lipid traits demonstrated the strongest and most consistent associations 

with higher AD liability (including APOE4, Figure 2). The strongest positive associations were observed 

for the following lipid metabolites: serum total cholesterol, very-low density lipoprotein (VLDL) 

cholesterol, remnant cholesterol, low-density lipoprotein (LDL) cholesterol, esterified cholesterol, free 

cholesterol, apolipoprotein B and ratio of apolipoprotein B to apolipoprotein A1. For these 

metabolites, the magnitude and direction of association was similar across the life course.  Within 

ALSPAC, the strongest positive associations tended to be observed at 18 years old (e.g., LDL 

cholesterol (0.11 SD; 95% CI 0.09, 0.14). For these same lipid metabolites, UK Biobank estimates from 

IVW models exhibited a decreased effect of AD liability with increased age tertile, although confidence 

intervals were overlapping (e.g., LDL cholesterol, youngest: 0.15 SD; 95% CI 0.07, 0.23, intermediate: 

0.13 SD; 95% CI 0.07, 0.20, oldest: 0.10 SD; 95% CI 0.05, 0.16). Estimates from weighted mode and 

weighted median models showed similar differences between age tertiles for total, VLDL and LDL 

cholesterol and apolipoprotein B, but with non-overlapping confidence intervals between the 

intermediate and oldest tertiles. Across both cohorts, the effect of AD liability on high-density 

lipoprotein (HDL) cholesterol moved towards the null as age increased. There was no association with 

triglycerides in HDL at any ALSPAC time point, with confidence intervals consistently spanning the null. 

However, the effect estimates from IVW models for AD liability in UK Biobank were negative for 

triglycerides in HDL and decreased with age, which was consistent across sensitivity models. AD 

liability had no effect on apolipoprotein A1 but was consistently negative in UK Biobank. Effect 
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estimates for the association between higher AD liability and sphingomyelins were consistently 

positive within ALSPAC (e.g., 25yrs: 0.07 SD; 95% CI 0.04, 0.09). This association persisted within each 

UK Biobank age tertile in IVW and sensitivity models. LDL triglycerides demonstrated increasing effects 

of AD liability with age in ALSPAC then decreasing effects with age in UK Biobank. 

 

 

Figure 2 Forest plot showing the estimated effect of higher AD liability (including APOE) on main lipid 

metabolites. Effect size estimates for the first four time points are derived from ALSPAC (based on linear 
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regression models). The latter three are from UK Biobank (based on IVW MR models), stratified by age (39-53 

years, 53-61 years, 61-73 years). 

 

Genetic liability to AD and fatty acids 

When including APOE in the GRS, higher AD liability had a strong positive association with many fatty 

acid (FA) metabolites and an attenuated association with corresponding fatty acid ratios. The FA 

metabolites most strongly associated with higher AD liability were total FA, linoleic acid, omega-3 FA, 

omega-6 FA, polyunsaturated FA, monounsaturated FA, and saturated FA (Figure 3). Higher AD liability 

was associated with an increase in each of these FA metabolites at all seven time points, suggesting 

that these associations persist across the life course. Within ALSPAC, for these FA metabolites, as was 

observed with lipids, the strongest positive association was at 18 years old (e.g., total FA at 18yrs, 0.07 

SD; 95% CI 0.04, 0.10), except omega-3 FA (strongest ALSPAC association at 25yrs (0.06 SD; 95% CI 

0.03, 0.08)). In the oldest UK Biobank tertile, the effect of AD liability on these main FA estimates was 

decreased compared with the youngest tertile, consistently across models (IVW: e.g., total FAs, oldest: 

0.02 SD, 95% CI 0.01, 0.03, youngest: 0.06 SD, 95% CI 0.04, 0.08).  

 

The effect of liability to AD on the ratio of docosahexaenoic acid (DHA) to total FAs turned from 

negative to null with increasing age group across both cohorts, whilst the effect on the ratio of linoleic 

acid to total FAs remained consistent across all age groups.  
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Figure 3 Forest plot showing the estimated effect of higher AD liability (including APOE) on fatty acid 

metabolites. Effect size estimates for the first four time points are derived from ALSPAC (based on linear 

regression models). The latter three are from UK Biobank (based on IVW MR models), stratified by age (39-53 

years, 53-61 years, 61-73 years). 

 

Genetic liability to AD and non-lipid traits 

Glycolysis-related traits  
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The three glycolysis-related traits included in this platform are glucose, citrate, and lactate. In ALSPAC, 

effect sizes for these metabolites centre around zero, though the imprecision of confidence intervals 

means that the magnitude and direction of potential effects is unclear. In UK Biobank, IVW effect 

estimates tended to be more precise than ALSPAC for these traits, though they still largely crossed the 

null. Within the oldest UK Biobank tertile, all models showed an inverse effect of AD liability on citrate. 

In ALSPAC, associations of AD liability with lactate were more positive at older ages (25yrs: 0.04 SD; 

95% CI 0.01, 0.06), but the effect estimates for lactate in all UK Biobank age tertiles were negative 

(e.g., IVW, oldest: -0.01 SD; 95% CI -0.02, 0.00). 

 

Amino acids and inflammation 

Of all metabolite subcategories, amino acids (including the branched chain amino acids (BCAAs) 

isoleucine, leucine, and valine) demonstrated the weakest association with higher AD liability 

including APOE (Figure 4). There were no consistent positive associations with any amino acids at any 

time point in ALSPAC. At 16yrs, increased AD susceptibility was associated with slightly decreased 

levels of leucine (-0.03 SD; 95% CI -0.05, -0.005), valine (-0.03 SD; 95% CI -0.05, -0.01) and tyrosine (-

0.03 SD; 95% CI -0.06, -0.004). In UK Biobank, liability to AD had an inverse association with several 

amino acids (e.g., tyrosine, youngest tertile: -0.02 SD; 95% CI -0.03, 0.00). There was no association of 

higher AD liability with glycoprotein acetyls, a marker of inflammation, at any time point in ALSPAC or 

UK Biobank IVW models. However, estimates from weighted median and weighted mode models 

demonstrated weak positive associations of AD liability and glycoprotein acetyls in the youngest and 

intermediate UK Biobank tertiles (Supplementary Tables 8 and 9). 
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Figure 4 Forest plot showing the estimated effect of higher AD liability (including APOE) on glycolysis-related, 

amino acid and inflammatory traits. Effect size estimates for the first four time points are derived from ALSPAC 

(based on linear regression models). The latter three are from UK Biobank (based on IVW MR models), stratified 

by age (39-53 years, 53-61 years, 61-73 years). 
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DISCUSSION 

This study aimed to estimate the effects of genetic liability to AD on the circulating metabolome 

measured across early life and into adulthood, revealing potential early stages of AD pathophysiology. 

Prior studies were limited in their ability to determine whether metabolic perturbations were a cause 

or consequence of disease activity. However, given the young age of ALSPAC participants, we are 

confident that observed effects in this cohort precede clinical AD and are therefore not consequences 

of AD pathophysiology.  Our most striking finding is the profound and enduring influence of the APOE4 

isoform on lipid and fatty acid traits, which was evident already in childhood and persistent into later 

adulthood. There were notably null associations of AD liability with glycolysis- and inflammatory-

related traits, suggesting that AD liability is more specifically reflected in lipid metabolism, driven by 

APOE. 

 

It has been hypothesised that the association of higher AD liability (including APOE4) with lipid traits 

is via its effect on atherosclerosis. This is supported by both comparable enrichment of plasma lipid 

subtypes for AD and cardiovascular disease37 and demonstration here of the strongest positive 

associations being for the inherently proatherogenic traits LDL cholesterol, apolipoprotein B and ratio 

of apolipoprotein B to apolipoprotein A-138. It has also been shown that elevated LDL cholesterol is 

associated with increased cerebral amyloid deposition39. This may constitute an additional 

pathophysiological mechanism of lipids in AD, particularly in APOE4 carriers. 

 

We found evidence that associations of HDL-C and its major constituent apolipoprotein A-1 with 

higher AD liability were weakly negative. Observationally, and in MR studies, higher HDL-C is 

associated with lower AD risk40,41. Results from a previous prospective cohort study implicated lower 

plasma apolipoprotein A-1 with elevated risk of AD progression in ε4 carriers42. That study was limited 

by modest sample sizes and relatively short follow-up (mean 2.5±1.6 years). This study compliments 
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their findings as the strength of association of apolipoprotein A-1 with AD liability increases across the 

life course. 

 

Our study found a weak positive association between higher AD liability and sphingomyelins levels 

that was consistent across age groups. Sphingolipids are a class of lipids, of which sphingomyelins are 

members43. Study of post-mortem brains, CSF and plasma have implicated sphingomyelin 

perturbations in AD pathophysiology44, though prospective results are inconsistent. A recent targeted 

metabolomics study of blood and brain found, however, that increased SM levels correlated with AD 

severity, tracking disease progression from prodromal to preclinical stages45.  

 

We show that the effect of higher AD liability (including APOE4) on triglyceride levels in VLDL, HDL and 

total triglycerides weakens with age, which could reflect increased medication use with age (e.g., 

statins) or that these are metabolic signatures of prodromal AD but not the disease itself. The 

magnitude of causal associations are considerably less than what was observed for a recent 

untargeted lipid profiling study by Bernath et al. concluded that AD-mediated effects on triglycerides 

were specific to carriers of the ε4 allele46, supporting the results of this study. Elevated triglycerides 

in VLDL precede amyloid deposition in mouse models47, such amyloidosis being a hallmark of AD 

neuropathology. These results therefore exemplify the substantial effect of the APOE4 isoform on lipid 

metabolites.  

 

Except for several fatty acid traits, the associations between higher AD liability and other non-lipid 

metabolites were broadly null in our study. When including APOE4 in the GRS, strong positive 

associations were observed with total FAs, linoleic acid (LA), omega-6 FAs and polyunsaturated FAs. 

Corresponding FA ratios, which may better reflect FA biology27, demonstrated an attenuated, yet still 

positive association with higher AD liability.  Aside from functioning as membrane constituents and 

energy sources48, FAs mediate inflammation49, a process central to the pathogenesis of both CVD and 
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AD50,51. LA has previously been associated with the extent of AD neuropathology in a nontargeted 

metabolomics study52, though small sample size and confounding limit causal inference.  

 

As with lipid metabolites, the association between fatty acid concentrations and higher AD liability 

appears to be mediated by APOE – without this locus, all associations attenuated towards the null. 

Regarding clinical implications, we must be mindful that given the central-peripheral flux of FAs45, it is 

difficult to elucidate whether these peripheral/blood markers are representative of central/brain 

pathology. As such, future work should compare plasma metabolites with those in CSF and brain 

tissue.  

 

Associations between AD liability and glycolysis-related traits were generally null. Type 2 diabetes, 

defined as elevated plasma glucose, is hypothesised to be a risk factor for AD53, although MR studies 

to date have not supported any causal association54–56. Diabetes mechanisms mediate the pathological 

effects of the ε4 genotype57 and influence cerebral glucose metabolism58. Results from a prospective 

cohort study with several decades of follow-up additionally demonstrate that plasma glucose 

derangements are only evident in ε4 carriers from midlife onwards59. However, even in the oldest UK 

Biobank tertile, we observed little evidence of effect of AD liability on glucose. 

 

The association of AD liability with lactate was positive at older ages in ALSPAC, but inverse or null in 

UK Biobank age tertiles. Increased lactate in the CSF and brain has been associated with higher AD 

risk, the degree of perturbation correlating with extent of neurodegeneration60. In vitro evidence 

suggests that this trend may be ε4-mediated61, resulting from a ‘Warburg like’ endophenotype that is 

present in humans many decades before onset of AD62. The lack of consistency of effect of AD liability 

on lactate levels across different life-stages limits its clinical utility as a biomarker of early disease. 
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Evidence for the role of BCAAs in AD is inconclusive. Observationally, increased BCAA levels appear to 

protect against AD63, which is supported by our inverse effect estimates for AD liability on BCAAs in 

UK Biobank. Increased BCAAs have, however, been robustly associated with both increased insulin 

resistance and diabetes risk in MR analysis64,65. The absence of association between increased BCAAs 

and higher AD liability in the present study perhaps suggests that the link between BCAAs and AD is 

mechanistically distinct from pathways of glucose and insulin metabolism. This, however, contradicts 

results from a recent MR analysis that concluded those predisposed to raised plasma isoleucine levels 

are at an increased rather than decreased risk of AD66.  

 

Our analyses are underpinned by three core IV assumptions that must be satisfied for results to be 

valid. The first assumption of robust association between the IV and trait of interest was fulfilled given 

the large GWAS sample size and inclusion of SNPs relating to genes with known a priori biological 

function in relation to AD (APOE). The second assumption is that of no confounders of the IV and the 

outcome. This was addressed to the extent possible here by using a largely ancestrally homogenous 

population (>96% white ethnicity). The final assumption is that there is no association of genetic 

instruments with the outcome, except via the exposure of interest. Our UK Biobank results 

demonstrated consistency across pleiotropy-robust models, indicating that horizontal pleiotropy is 

unlikely to be causing the associations we see. 

 

STUDY LIMITATIONS  

A key limitation of this study is the modest analysis sample size for ALSPAC analyses, particularly at 

older ages, however our use of an allele score method did appear to enable relatively high statistical 

power and precision of exposure-outcome estimates. The lack of ancestral diversity in ALSPAC (96% 

white) and UK Biobank (only Europeans analysed) limits the generalizability of results to diverse 

populations, but does, however, limit the potential for confounding by population stratification. Given 

that the number of ε4 alleles is a stronger predictor of AD for those of European ancestry than those 
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of African American or Hispanic ancestry67, future studies must investigate the extent to which APOE4 

carrier status influences the metabolome for other populations. Despite the central-peripheral flux of 

metabolites via the blood-brain barrier, previous studies have noted that the AD molecular profiles of 

plasma and CSF are divergent68. Therefore, the extent to which inferences regarding central AD 

pathophysiology can be made from this study are potentially limited. Future work should therefore 

compare the effect of higher AD liability on plasma and CSF metabolites, although such data do not 

yet exist at scale. UK Biobank and the ALSPAC 8-year metabolite measurements were taken from 

nonfasted blood samples, whilst samples from all other timepoints were fasted, which potentially 

limits the comparability of UK Biobank and age 8 with the other ages. Another limitation is the 

targeted nature of the Nightingale metabolomics platform, which focuses on metabolites previously 

identified to be of clinical interest, most of which are lipids. An untargeted approach would allow 

discovery of unknown biomarkers, including those beyond the lipid classes, of AD liability. 

 

CONCLUSIONS  

The results of this study support a profound effect of APOE4 in producing an early metabolic signature 

of higher AD liability that persists throughout the life course and demonstrates that other AD risk 

variants have minimal effects of circulating metabolites. This signature constitutes elevated 

proatherogenic lipid traits, namely LDL cholesterol and its major protein, apolipoprotein B, in addition 

to sphingomyelins. APOE4-mediated effects are also observed for fatty acid traits, in particular omega-

6 FAs and linoleic acid. These AD-associated metabolic derangements begin in childhood, many 

decades before the emergence of disease, and persist into later adulthood when AD is more 

commonly diagnosed. 
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SUPPLEMENTARY MATERIAL 
 
Supplementary Tables 1-9 are in an excel file.  
 

 

Supplementary Figure 1 Flow chart to demonstrate eligibility criteria for inclusion to ALSPAC analyses 
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Supplementary Figure 2 Forest plot showing the estimated effect of higher AD liability (excluding APOE) on lipid 

metabolites. Effect size estimates for the first four time points are derived from ALSPAC (based on linear 

regression models). The latter three are from UK Biobank (based on IVW MR models), stratified by age (39-53 

years, 53-61 years, 61-73 years). 
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Supplementary Figure 3 Forest plot showing the estimated effect of higher AD liability (excluding APOE) on fatty 

acid metabolites. Effect size estimates for the first four time points are derived from ALSPAC (based on linear 

regression models). The latter three are from UK Biobank (based on IVW MR models), stratified by age (39-53 

years, 53-61 years, 61-73 years). 
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Supplementary Figure 4 Forest plot showing the estimated effect of higher AD liability (excluding APOE) on 

glycolysis-related, amino acid and inflammatory traits. Effect size estimates for the first four time points are 

derived from ALSPAC (based on linear regression models). The latter three are from UK Biobank (based on IVW 

MR models), stratified by age (39-53 years, 53-61 years, 61-73 years). 
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