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Abstract
Objectives: We propose a communication-efficient transfer learning approach (COMMUTE) that
efficiently and effectively incorporates multi-site healthcare data for training risk prediction models
in a target population of interest, accounting for challenges including population heterogeneity and
data sharing constraints across sites.
Methods: We first train population-specific source models locally within each institution. Using
data from a given target population, COMMUTE learns a calibration term for each source model,
which adjusts for potential data heterogeneity through flexible distance-based regularizations. In
a centralized setting where multi-site data can be directly pooled, all data are combined to train
the target model after calibration. When individual-level data are not shareable in some sites,
COMMUTE requests only the locally trained models from these sites, with which, COMMUTE
generates heterogeneity-adjusted synthetic data for training the target model. We evaluate COM-
MUTE via extensive simulation studies and an application to multi-site data from the electronic
Medical Records and Genomics (eMERGE) Network to predict extreme obesity.
Results: Simulation studies show that COMMUTE outperforms methods without adjusting for
population heterogeneity and methods trained in a single population over a broad spectrum of
settings. Using eMERGE data, COMMUTE achieves an area under the receiver operating charac-
teristic curve (AUC) around 0.80, which outperforms other benchmark methods with AUC ranging
from 0.51 to 0.70.
Conclusion: COMMUTE improves the risk prediction in the target population and safeguards
against negative transfer when some source populations are highly different from the target. In a
federated setting, it is highly communication efficient as it only requires each site to share model
parameter estimates once, and no iterative communication or higher-order terms are needed.
Keywords: Electronic health records, Multi-site study, Risk prediction, Synthetic data, Transfer
learning
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Introduction
Risk prediction models play an important role in precision medicine and clinical care, showing

great potential to assist clinical decision-making and enhance the quality of care delivered to

patients17. In recent years, growing efforts have been devoted to constructing institutional or

national biobanks, where individuals’ electronic health records (EHR) are linked with genomics,

imaging, and behavioral observations. For example, the UK Biobank is a prospective cohort of

over 500,000 samples with genetic data and health information49. In the United States, institutional

biobanks such as BioMe from the Icahn School ofMedicine at Mount Sinai1,4, BioVU at Vanderbilt

University41,46, and the Mass General Brigham (MGB) Biobank26 enroll increasing numbers of

participants every year to measure their genetic variants, biomarkers, metabolic data and a large

number of disease phenotypes. These datasets are valuable resources to assess individuals’ risks

of developing common and many complex diseases.

Despite the availability of multiple biobanks, one common challenge we face is the diminished

performance when applying models trained in one dataset to a different dataset, which is known as

the lack of model transferability and portability18. The heterogeneity in the underlying distribution

of data across different populations may explain such low portability. For example, compared to

many healthcare center-based biobanks, the UK Biobank has older participants with lower disease

prevalence acrossmany disease categories3. Another example is the lack of transferability of genetic

risk prediction models across ethnic groups13,34, resulting from the substantial heterogeneity in the

genetic architectures, linkage disequilibrium, and allele frequency13,34.

Practically, it is often of interest to train a risk prediction model for a particular population

(referred to as the target population hereafter), for example, a demographic sub-population or one

of the healthcare centers in a research network. Due to the lack of portability, a population-specific

training strategy is commonly used, whichmight require a substantial amount of data from the target

population to obtain relatively good model performance. However, training a model using only the

target data may lead to unsatisfactory performance in cases where limited data are observed from
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the target population. For example, the target population may be an underrepresented demographic

sub-population or a healthcare center with limited labeled data. Another strategy is to pool all

data together and train a unified model across all populations, in which case the sample size is

increased, but it fails to adjust for population-level heterogeneity. In other words, a model trained

in such a way is not particularly representative of the target population of interest but of the pooled

overall population. Such a unified training strategy might be problematic in cases where the target

population is underrepresented and potentially has different distributional characteristics from the

overall population. Methodologically, it is still a challenge to effectively and efficiently incorporate

heterogeneous data towards risk prediction in a target population while addressing other practical

issues such as data sharing constraints.

Regarding data sharing, some research networks adopt a centralized model where multi-site

individual-level data are de-identified and stored in a central data warehouse16,19,22,37. Although a

centralized model is ideal for analyzing multi-site data, it is less feasible in many settings due to data

privacy, storage, and management barriers25. Many networks, therefore, employ a federated model

where data remain locally in each site while only summary-level statistics are shared across sites

for collaborative data analysis5,24,48,64. The federated model helps construct a highly collaborative

community that attracts more participating sites and enables rapid development and deployment

of research projects across institutions. In addition, we also see the success of some flexible

hybrid models, especially when collaborations are built across networks56. Consequently, flexible

methods that can be efficiently implemented in different research networks are needed.

To overcome data sharing barriers, researchers developed distributed algorithms based on sum-

mary statistics for jointly training models across multiple datasets without sharing individual-level

data. For example, a series of algorithms were developed for regression models by sharing gradi-

ents of objective functions11,12,33,42,59. Other approaches involve sharing parameter estimates fitted

locally at each site7,28,63. However, most of the aforementioned work aims to train a unified model

across multiple datasets, ignoring heterogeneity across datasets. Federated learning methods were

developed for collecting and updating models between each client’s devices and a central server,
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which allows client-specific model components to account for differences in each client’s data40.

Nevertheless, these approaches often require iterative model updating across devices and the central

server32,33,47, which may be impracticable in research networks or cross-network collaborations

without required infrastructures for timely and efficient model updating. In many research net-

works, iterative communication across sites requires extensive effort and time. Thus, there is a

great need for communication-efficient algorithms that only require each site to share summary

statistics once11,12,42.

In this paper, we developed a communication-efficient transfer learning approach (COMMUTE)

which provides a flexible and robust framework for multi-site risk prediction. COMMUTE can

be applied in networks that employ centralized, federated, or hybrid data sharing models with at

most one round of communication across sites. Instead of a site-specific or a unified training

strategy, COMMUTE is built on a transfer learning algorithm6,31,38,58, which adjusts for between-

population heterogeneity through distance-based adaptive regularization. Our data-driven method

avoids negative transfer from sites that are substantially different from the target population, and

therefore it is robust to the level of heterogeneity across populations54,57.

Methods

Notation and problem setup

We consider the setting where there are multi-site data collected from  + 1 populations,

including one target population of interest and  source populations that are potentially helpful to

the training of a prediction model in the target population (indexed by : = 1, . . . ,  ). We consider

a general situation, where among the  source datasets, " can be directly combined with the target

dataset, and the remaining  − " datasets have data-sharing constraints that the individual-level

data can only be analyzed locally and only the summary-level information is shareable. Note that

" = 0 indicates a completely federated setting; 0 < " <  indicates a hybrid setting where partial

data can be pooled; and " =  indicates a centralized setting where all data are stored together.
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The target data has sample size = and the :-th dataset has sample size =: , where the total sample

size is # = = +∑ 
:=1 =: .

In the target population, we have the outcome variable. ∈ R= and a set of ? predictors - ∈ R=×?,

which follows some distribution, denoted by 5 (H, x). We consider a generic class of machine-

learning methods where fitting the model involves a loss function indexed by a set of parameters,

denoted by ! (b;., -) with b ∈ R<. For example, in the generalized linear models (GLM),

! (b;., -) is the negative log-likelihood function, and b corresponds to the regression coefficients

and over-dispersion parameters35; when using support vector machine (SVM), ! (b;., -) could

be the Hinge loss function and b represents the parameters of the kernel function9. We define the

target parameter # to be

# = arg min
b
�(.,-){! (b;., -)},

where the expectation is taken with respect to the distribution of the target data. With the target

data alone, we can obtain a target-only estimator by optimizing the target loss function, i.e.,

#̂target-only = arg min
b
! (b; -,. ). (1)

which might be improved when borrowing information from available source populations.

For the :-th source population, we observe the outcome variable .: ∈ R=: and the same set of

?-dimensional predictors -: ∈ R=:×? as in the target population. Similarly, define

8: = arg min
8
�(.: ,-: ){! (8;.: , -: )}

to be the source parameters, where the expectation is taken with respect to the distribution of data

at the :-th population, i.e., 5: (H, x). Due to population heterogeneity, the parameters {8: } :=1 and

# can be different. On the other hand, they may share certain similarities in their structures or

magnitudes such that information about 8: could guide the learning of #. Our goal is to leverage

such similarities in a data-driven way to improve the estimation of #, overcoming additional

challenges of data sharing.

To achieve this goal, we first need to characterize the similarity between the source and the target

5

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 28, 2022. ; https://doi.org/10.1101/2022.03.23.22272834doi: medRxiv preprint 

https://doi.org/10.1101/2022.03.23.22272834
http://creativecommons.org/licenses/by-nc-nd/4.0/


parameters. In previous work, such as Li et al. 30 , Tian and Feng 52 , Xu and Bastani 60 , it is assumed

that a source population : is helpful to the target when the difference # − 8: , is a sparse vector.

That is saying, most of the model parameters take the same value across populations, while only

a small subset of the parameters may take different values. A similar idea has been seen in many

network-based deep transfer learning methods where the target data are used to selectively retrain

(fine-tuning) some of the layers of pre-trained neural network models from a source population50.

In comparison to the existing work, our method allows more flexibility when characterizing the

similarity between # and 8: . Intuitively, if there exists some distance measure 3 (#,8: ) which

is small, 8: can be leveraged to provide additional information in the estimation of # through

imposing a similarity constraint 3 (#,8: ) ≤ ℎ. The smaller ℎ is, the source data would be more

helpful to the training of the target model as the parameter space is reduced by the similarity

constraint. In our work, we propose a flexible distance measure defined as 3 (#,8: ) = ‖# −8: ‖@,

where @ can take any positive numbers. Choosing @ = 0 leads to the similarity measure considered

in Li et al. 30,31 , Tian and Feng 52 , which quantifies how many parameters have identical values

across two populations. When @ = 2, it represents the Euclidean distance characterizing the

differences over all parameters. When ‖# − 8: ‖2 is small, it allows # − 8: to be a non-sparse

vector but the magnitude of the differences cannot be too big. In practice, one can flexibly choose

@ to better capture the differences in the model parameters across populations, which can be pre-

specified if prior knowledge on the structure of # − 8: is known, or it can be determined in a

data-driven way through cross validation. In addition, weighted distance measures can be designed

if prior knowledge is available regarding which parameters are more likely to be similar across two

populations.

Communication-efficient transfer learning (COMMUTE)

Our proposed approach, COMMUTE, involves three main steps (see Figure 1). In the following,

we keep a generic form of the risk prediction model, and use a penalized logistic regression model

as an example to introduce the method.
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Figure 1: Workflow of COMMUTE.

Step 1: Fit a model using data from each source population. The source-specific parameter es-

timate from the :-th site, denoted by 8̂: , can be obtained by minimizing the loss function

! (8; -: , .: ) determined by the risk prediction method. In the existence of additional assump-

tions on the model parameters, e.g., sparsity or other structured patterns, additional penalty terms

or constraints can be added to the optimization. A generic form is summarized as

8̂: = arg min
8
! (8; -: , .: ) + _:P(8), (2)

where P(·) is some penalty term (added when necessary) and _: is a tuning parameter that can be

selected through cross validation. Using a !1 penalized logistic regression as an example, one can

take ! (8; -: , .: ) =
∑=:
8=1 log{1 + exp(G)

8:
8)} − H8:G)8:8, where G8: are the predictors including the

intercept term for the 8-th individual in the :-th site, H8: is the outcome, and P(8) = ‖8‖1. In the

case where individual-level data from the :-th source population cannot be shared with the target,

only the source estimator 8̂: needs to be shared with the target site, a vector containing< numbers.

Step 2: Calibration of each source model using data from the target population. In this step,

we use the target data to estimate the parameter difference, denoted as %: = # − 8: . Specifically,
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we can learn %: through

%̂: = arg min
X:

! (8̂: + %: ; -,. ) + _′:Q(%: ) (3)

whereQ(%: ) is a penalty term depending on the similarity measure 3 (#,8: ) = ‖#−8: ‖@ = ‖%: ‖@

and _′
:
is a tuning parameter. When 3 (#,8: ) is small, the source estimator 8̂: can help reduce the

search space of the target parameters through the penalization on %: . For example, if we believe that

3 (#,8: ) = ‖%: ‖0 is small, we may choose Q(%: ) = ‖%: ‖0; or we may choose Q(%: ) = ‖%: ‖1, a

convex relaxation of the !0 penalty that also leads to sparse solutions53. With such penalization, the

source estimator 8̂: is used to guide the learning of the target parameter #. This step is performed

within the target site, so no extra communication across sites is needed.

Step 3: Estimation of the target parameter #. To estimate #, in the centralized setting, i.e., " =

 , we propose a transfer learning estimator, defined as

#̂TL = arg min
b

{
! (b; -,. )︸      ︷︷      ︸
target data

+
 ∑
:=1

! (b − %̂: ; -: , .: )︸                ︷︷                ︸
k-th source data

+_P(b)
}
, (4)

where _ is a tuning parameter. In this joint estimation, the calibration term %̂: from Step 2 is used

to adjust for the difference between the :-th source and the target. In comparison to training a

unified model using all the source and target data, i.e.,

#̂ = arg min
b

{
! (b; -,. )︸      ︷︷      ︸
target data

+
 ∑
:=1

! (b; -: , .: )︸         ︷︷         ︸
:-th source data

+_′P(b)
}
,

where _′ is a tuning parameter, the unified model ignores the fact that # is different from {8: } :=1.

Imagine that the :-th source population has a much larger sample size than other populations, #̂

will likely be close to 8: , instead of #.

In the federated or hybrid setting, i.e., 0 ≤ " <  , we cannot obtain #̂TL, since individual-level

data from  − " populations cannot be pooled with the rest of the " datasets. To tackle this

challenge, we propose to generate  −" sets of heterogeneity-adjusted synthetic data in the target

site. These synthetic datasets will then be combined with the target data and the " source datasets

to jointly estimate #.

Specifically, without loss of generality, we assume that the first " source datasets, denoted by

8
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: = 1, . . . , " , can be shared with the target. For each : ∈ {" + 1, . . . ,  }, we have obtained their

source estimator 8̂: and the calibration term %̂: from Steps 1-2. Using 8̂: and %̂: , we can compute

#̂: = 8̂: + %̂: , an estimator for the target parameter # that only incorporates information from the

:-th source. With some positive integer A, we then generate a synthetic dataset with a sample size

=: × A, where the ? predictors are obtained by random sampling from the target - (denoted by

-
syn
:

), and the outcome (denoted by. syn
:

) is generated by applying the prediction model with model

parameter #̂: .

Finally, the COMMUTE estimator can be obtained by jointly analyzing a combined data of the

target, the source and the synthetic data:

#̂COMMUTE = arg min
b

{
! (b; -,. )︸      ︷︷      ︸
target data

+
"∑
:=1

! (b − %̂: ; -: , .: )︸                ︷︷                ︸
source data

that can be shared

+
 ∑

:="+1
! (b; -syn

:
, .

syn
:
)︸              ︷︷              ︸

heterogeneity-adjusted
synthetic data

+_2P(b)
}
,

(5)

where _2 is a tuning parameter. When " =  , #̂COMMUTE is the same as #̂TL. A detailed algorithm

summarizing Steps 1 to 3 is shown in Algorithm 1.

Algorithm 1: the COMMUTE algorithm
Data: Target dataset {-,. }, source dataset {-: , .: } :=1, and replication number of the

synthetic data A.
Result: #̂COMMUTE
for : = 1, ...,  do

Compute 8̂: from equation (2).
Transmit 8̂: to the target site.

end
for : = 1, ...,  do

Compute %̂: from equation (3).
end
for : = " + 1, ...,  do

Randomly sample A × =: rows with replacement from - , denoted as -syn
:

.
Generate the synthetic outcome . syn

:
from -

syn
:

using the specified risk prediction
model with #̂: = 8̂: + %̂: .

end
Combine the target and the first " datasets, together with synthetic data and obtain
#̂COMMUTE using equation (5).

Similar ideas of creating synthetic data from summary statistics of external studies have been
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considered in association studies20,21, survey methodologies43,44,45 and causal inference51. Com-

pared to those methods, our approach allows heterogeneous underlying distributions and corrects

such cross-population heterogeneity before creating synthetic data. Compared to existing federated

learning methods that require iterative model updating, COMMUTE is more communication-

efficient as it only requires one round of communication for the source sites to share the model

estimates with the target site. Compare with methods that protect data privacy by generating and

sharing synthetic data which mimic the distribution of the original data8,10,39, we directly use

re-sampling since our synthetic data is generated within the target site (not to be shared across sites)

and privacy is therefore not a concern.

The optimal choice of A depends on the similarity between the target and the source populations.

As our numerical investigation suggests (See Figure S1 in the Supplementary Material), when the

discrepancy between the source and target parameters is low or moderate, increasing A improves the

performance of COMMUTE. When the difference is large, increasing A decreases the performance.

In both cases, increasing A reduces the gap in the performance between the federated version of

COMMUTEand the centralized version ofCOMMUTE (#̂)!), and the performance ofCOMMUTE

becomes stable as A continues to increase. In practice, if computationally allowed, we suggest

choosing a large A, assuming the source populations are helpful. Since this assumption might not

be true and some source populations might be highly different from the target, we introduce an

additional step to prevent negative transfer.

A safeguard to prevent negative transfer

When some of the source populations are highly different from the target population, including

the source may lead to performance worse than not including it. To prevent negative transfer,

we propose to first rank the  sites by the performance of source estimators 8̂: on the target

training data. We can then only include sites with performance higher than a certain threshold

which can be either pre-specified or determined by cross-validation. Another way is to sequentially

incorporate populations based on their rankings. For example, we set the first estimator as the

10
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target-only estimator #̂, which does not include any source population. We can then only include

the site whose model has the best performance on the target training data, and apply Algorithm

1 to obtain #̂
(1)
COMMUTE. Sequentially including more source populations, we can further obtain

#̂
(2)
COMMUTE, . . . , #̂

( )
COMMUTE. A small validation dataset can then be used to aggregate the models

and obtain the final estimator that has the best performance among these candidate models29,55.

Validation of COMMUTE

Simulation studies

We evaluate the performance of COMMUTE using simulated data generated under different

settings. We consider the case where we have a target site and three source sites. We generate

predictors of dimension ? = 2000 from multivariate Gaussian distributions with mean 0 and a

population-specific covariance matrix Σ: for the :-th population. We choose Σ: to be a block-wise

matrix with 20 blocks each of dimension 100 × 100 with an auto-regressive structure and the

correlation was generated from a Uniform distribution between (0.2, 0.8).

With the simulated predictors, in the three source populations, we generate binary outcomes as

Bernoulli random variables with probability Pr(. |x) = expit(x)8: ) for : = 1, 2, 3, respectively,

and similarly in the target population we generate Bernoulli random variables with probability

Pr(. |x) = expit(x) #). We set # to be sparse with 100 non-zero entries, which are generated from

a Uniform distribution between (−0.5, 0.5). To generate 8: , we generate %: to be a sparse vector

with ℎ: non-zero entries each with magnitude 0.5 and a randomly assigned sign from {−1, 1}. We

then obtain 8: = # − %: . By increasing ℎ: , we increase the number of parameters with different

values from #, representing the increasing heterogeneity between the :-th source and the target

population.

We evaluate the performance of the methods by varying the level of heterogeneity (ℎ: ) in each

source population, as well as the sample size =: , with the target sample size = = 500. For the level

of heterogeneity, we consider the following four settings:
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(A) All three source sites have low-level heterogeneity, ℎ1 = ℎ2 = ℎ3 = 20;

(B) All three source sites have moderate level heterogeneity, ℎ1 = ℎ2 = ℎ3 = 60;

(C) All three source sites have high level heterogeneity, ℎ1 = ℎ2 = ℎ3 = 120;

(D) Two source source have low-level heterogeneity, ℎ1 = ℎ2 = 20, and one has high level

heterogeneity, ℎ3 = 120.

We also consider two sample size settings:

1. =1 = 1000, =2 = 1500, =3 = 2000;

2. =1 = 2000, =2 = 3000, =3 = 4000.

We apply Algorithm 1 with the loss function of the logistic regression model. Given the sparse

setting, we choose P(·) = Q(·) = ‖ · ‖1. We choose A = 25. We compare the performance of

the proposed method with another four methods: (i) target-only (Target): estimator obtained from

equation (1); (ii) source estimators (Source): estimators obtained from equation (2); (iii) direct

aggregation (Direct): we split the target data into training and validation with a ratio of 4:1, and we

fit the target-only estimator using the training data, and use the validation data to learn a weighted

average of the target-only and the source estimates where weights are proportional to the inverse

of prediction errors evaluated in a validation data; and (iv) COMMUTE (Proposed): we consider

four different cases: federated version (" = 0); hybrid version where only the first source datasets

can be shared with the target (" = 1); hybrid version where the first two source datasets can be

shared with the target (" = 2); centralized version where all data can be pooled together (" = 3).

The same validation dataset as in the direct aggregation method is used for the additional step to

prevent negative transfer (as introduced in the previous section). For each method, we calculate the

average area under the operating characteristic curve (AUC) on an independent testing dataset of

size 1000 over 200 iterations.
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Application to the prediction of extreme obesity using data from eMERGE

We evaluate the performance of COMMUTE using multi-site data from the eMERGE net-

work obtained through the database of Genotypes and Phenotypes (dbGaP), where EHR-derived

phenotypes for 55,029 subjects from ten participating sites were linked with DNA samples from

biorepositories19. Among all subjects, 73% of the participants are White, 20% are African Amer-

ican (AA), 1% are Asian, and 6% are Unknown. We evaluate the performance of COMMUTE by

constructing risk prediction models for extreme obesity using demographic features and genotypic

data.

The extreme obesity phenotyping algorithm at eMERGE classifies each subject into either

“Case", “Control", or “Neither Case nor Control". We remove subjects with a “Neither Case

nor Control" status and only include subjects with verified case-control status. Excluding three

children’s hospitals, we initially obtain data from seven sites: Vanderbilt University, Marshfield

Clinic, Mayo Clinic, Northwestern University, Geisinger Health System, Icahn School of Medicine

at Mount Sinai (Mount Sinai), and Group Health Cooperative. Predictors include age, gender,

the top principal components (PCs) obtained from the genotypes, as well as single nucleotide

polymorphisms (SNPs) that are strongly associated with extreme obesity selected based on p-

values from a genome-wide association study (GWAS) and linkage disequilibrium. The screening

steps of SNPs are described in the Supplementary Material.

We define populations by race and site, and treat AA at Vanderbilt University as the target

population, where a target-only fitting strategy might have limited performance with a sample size

of = = 646. We include source populations with larger sample sizes than the target population.

The sample sizes of the qualified populations are listed in Table 1. Since eMERGE adopts a

centralized data sharing model where all individual-level data can be pooled together, we evaluate

the centralized transfer learning approach, which is the same as COMMUTE with " = 6. In

addition, we also evaluate the setting where we assume that individual-level data cannot be shared

across sites. In such a case, we have " = 1 as data from the Vanderbilt White source population

13

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 28, 2022. ; https://doi.org/10.1101/2022.03.23.22272834doi: medRxiv preprint 

https://doi.org/10.1101/2022.03.23.22272834
http://creativecommons.org/licenses/by-nc-nd/4.0/


are stored together with the target population.

Table 1: Sample size across data centers.

Target Source
1 2 3 4 5 6

Vanderbilt Vanderbilt Marshfield Mayo Northwestern Geisinger Mount
University University Clinic Clinic University Health System Sinai

White Case / 231 219 142 125 697 /
Total / 1523 1497 1321 1305 1023 /

African Case 197 / / / / / 235
American Total 646 / / / / / 1142

The target data are randomly split into training, validation and testing data, with an approximate

ratio of 8:2:3. In addition to the target testing dataset, we use the AA samples from Northwestern

University (sample size 167) as an external testing dataset which are not included in the training

to evaluate the portability of the fitted models. We apply Algorithm 1 with the loss function

! (8; -: , .: ) =
∑=:
8=1 log{1 + exp(G)

8:
8)} − H8:G)8:8 and P(·) = Q(·) = ‖ · ‖1. Over 20 iterations by

randomly selecting the training, validation and testing data, we present the result of averaged AUC

on the internal and the external testing data, respectively. We compare COMMUTE (with " = 1

and " = 6) to the target-only, source, and direct aggregation approach introduced in the simulation

study.

Results

Results of simulation studies

Figures 2 and 3 present AUC over 200 simulation replications over four scenarios, under two

different sample size configurations, respectively. In Panels A-C of the two figures, the three

source populations have the same ℎ: (level of heterogeneity). As expected, when the level of

heterogeneity increases, the performance of the source estimators on the target data decreases.

With low heterogeneity (Panel A), the performance of the source estimators increases with the

sample size. With a moderate to high level of heterogeneity, the performance of source estimators

may decrease as the sample size grows. With low to moderate heterogeneity (Panels A and B), the

14
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source estimators have higher AUC than the target-only estimator, while in the high heterogeneity

setting (Panels C), the source estimators have lower AUC than the target-only estimator.

Figure 2: Area under the operating characteristic curve (AUC) over 200 simulation replicates
with source sample sizes 1000, 1500, and 2000, respectively. The internal data always has = = 500
samples with dimension ? = 2000. We vary the level of heterogeneity in each source populations
with (A) all three source sites have low-level heterogeneity, ℎ1 = ℎ2 = ℎ3 = 20; (B) all three source
sites have high level heterogeneity, ℎ1 = ℎ2 = ℎ3 = 120; (C) two source source have low-level
heterogeneity, ℎ1 = ℎ2 = 20, and one has high level heterogeneity, ℎ3 = 120; and (D) two source
source have low-level heterogeneity, ℎ1 = ℎ2 = 20, and one has high level heterogeneity, ℎ3 = 120.
Target: targe-only estimator from equation (1); Source: source estimators from equation (2); Direct:
weighted average of target-only and source estimates; Proposed: COMMUTE(federated version,
" = 0; hybrid version when the first source datasets can be shared with the target, " = 1; hybrid
version when the first two source datasets can be shared with the target, " = 2; centralized version,
" = 3).
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Figure 3: Area under the operating characteristic curve (AUC) over 200 simulation replicates
with source sample sizes 2000, 3000, and 4000, respectively. The internal data always has = = 500
samples with dimension ? = 2000. We vary the level of heterogeneity in each source populations
with (A) all three source sites have low-level heterogeneity, ℎ1 = ℎ2 = ℎ3 = 20; (B) all three source
sites have high level heterogeneity, ℎ1 = ℎ2 = ℎ3 = 120; (C) two source source have low-level
heterogeneity, ℎ1 = ℎ2 = 20, and one has high level heterogeneity, ℎ3 = 120; and (D) two source
source have low-level heterogeneity, ℎ1 = ℎ2 = 20, and one has high level heterogeneity, ℎ3 = 120.
Target: targe-only estimator from equation (1); Source: source estimators from equation (2); Direct:
weighted average of target-only and source estimates; Proposed: COMMUTE(federated version,
" = 0; hybrid version when the first source datasets can be shared with the target, " = 1; hybrid
version when the first two source datasets can be shared with the target, " = 2; centralized version,
" = 3).

Across all settings, COMMUTE has higher performance than the target-only and source estima-

tors, as well as the direct aggregation approach. The performance of COMMUTE is relatively stable

with different " . For example, in Panel A of Figure 2, COMMUTE with " = 3 has the highest

average AUC around 0.83, while COMMUTE with " = 0 has AUC of around 0.81. In Panel C,

there is a slightly decreasing trend from " = 0 to " = 3, indicating that having individual-level

data does not lead to improved performance than just sharing parameter estimates when the level

of heterogeneity is high. Panels C and D show that COMMUTE is robust to the case where some

source populations are highly different from the target, and can incorporate information from the
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source populations that are truly helpful. Comparing Figure 2 to Figure 3, we see that the perfor-

mance of COMMUTE increases when sample sizes from source populations with low or moderate

levels of heterogeneity increase.

Predicting the risk of extreme obesity using eMERGE data

After screening, 2047 SNPs are included in the model in addition to age, gender and top PCs.

For the internal testing at Vanderbilt, as shown in Figure 4, the target-only estimator has an average

AUC of around 0.66. The six source models have AUC ranging from 0.50 to 0.63, where the

Geisinger model has the worst performance (with AUC of 0.50 indicating no prediction ability on

the target data), and the Marshfield model has the best performance on the target population. All

of the source estimators have lower performance compared to the target-only estimator, indicating

a substantial amount of heterogeneity across populations. The direct aggregation approach which

learns aweighted average of the target-only and source estimates shows nearly identical performance

compared to the target-only model. The hybrid version of COMMUTE with M=1 has an AUC

of around 0.78, comparable to the centralized version of COMMUTE with M=6 (AUC 0.80).

Compared to the target-only estimator, COMMUTE has around 12% improvement in AUC. When

testing on the external data at Northwestern, the performance of each method is relatively the same

as being tested at Vanderbilt. This application has shown that COMMUTE has improved prediction

accuracy than the compared methods, and it can efficiently incorporate information from the source

when individual-level data can not be shared across sites.
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Figure 4: Area under the operating characteristic curve (AUC) of the compared methods
for predicting extreme obesity using data from eMERGE. Target: model trained using data
from the target population, Vanderbilt African American (AA) only; Source: model trained using
data from each source population; Direct: weighted average of the target-only and the source
models; COMMUTE: proposed method. Each colored bar shows the average AUC over 10 random
replications, the black error bars on top of each colored bar show the 1st–3rd quantile of AUC.

Discussion
In this paper, we propose a transfer learning method, COMMUTE, that can be applied to multi-

site studies with centralized, federated, or hybrid data sharing models to improve risk prediction in

target populations. COMMUTE leverages the similarity across populations to calibrate the source

models, generating heterogeneity-adjusted synthetic data corresponding to source data that cannot

be directly shared. COMMUTE incorporates available source information to the target data to
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jointly estimate the model parameters. Our COMMUTE algorithm can safeguard against source

populations that are drastically different from the target, and it is communication efficient as each

site only needs to share information once with the target site. Through numerical experiments

and application to real-world multi-site data, we have illustrated the validity and feasibility of

COMMUTE for multi-site risk prediction.

Our method protects data privacy by exchanging only parameter estimates between sites. This

level of privacy protection is common in a collaborative research environment, where the risk

of membership inference or tracing attacks is low. For example, the Phenotype Knowledgebase

website, PheKB, is a collaborative environment for building and validating electronic algorithms

to identify characteristics of patients within health data. Researchers are encouraged to share their

models trained locally at PheKB to facilitate cross-site collaboration for algorithm development,

validation, and sharing for reuse27. Moreover, compared to federated algorithms that require

iterative sharing of information, such as the gradients of objective functions, COMMUTE has less

risk of being attacked by programs that can learn the distribution of individual-level data from the

shared gradients23. In practice, when necessary, our method can be combined with other privacy

protection techniques, such as differential privacy14,15 and data encryption2,62, to further improve

privacy protection. It is worth noticing that some of these approaches may compromise prediction

accuracy. Researchers need to balance the level of privacy protection with both the prediction

performance and the communication cost in the design of the algorithm.

One limitation of COMMUTE is that it requires all sites to observe the same predictors. In

cases where useful predictors for some sites are missing in other sites, the missing features could

be first imputed from models trained at other sites20,36,61. However, data heterogeneity across sites

and populations must be carefully accounted for when applying imputation methods.

COMMUTE is an effective tool to improve prediction performance in a target population. The

improvement is more significant when the target population has a smaller sample size than the

source populations. This indicates that COMMUTE can help reduce the gaps in the performance

19

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 28, 2022. ; https://doi.org/10.1101/2022.03.23.22272834doi: medRxiv preprint 

https://doi.org/10.1101/2022.03.23.22272834
http://creativecommons.org/licenses/by-nc-nd/4.0/


of prediction models across populations, which is caused by the limited representation of certain

minority and disadvantaged groups. As the current biobank data heavily over-represents European

ancestry populations13,34, it is a promising and meaningful future direction for us to study the utility

of COMMUTE for improving the fairness of risk assessment tools in precision medicine.

Conclusion
COMMUTE can incorporate models trained from multiple healthcare institutions to improve

the performance of risk prediction in a target population. COMMUTE is easy to implement and

communication efficient, requiring each site to share only the fitted model parameters. It is robust

to the level of heterogeneity across populations. COMMUTE is well-suited to be applied to multi-

site studies to train robust risk prediction models and address the lack of representation of certain

populations.
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