Systematic Review and Meta Analysis

Outcome of Gynecologic Cancer Patients With The Covid-19 Infection: A Systematic Review And Meta Analysis

Short title: Gynaecologic Cancer Patients With The Covid-19 Infection

I Gde Sastra Winata¹, Januar Simatupang², Arie A Polim³, Yakob Togar⁴, Advenny Elisabeth Tondang⁵

¹ Faculty of Medicine, Department of Obstetric and Gynecology, Udayana University, Denpasar, Bali, Indonesia.
² Faculty of Medicine, Department of Obstetric and Gynecology, Christian University of Indonesia, Jakarta, Indonesia.
³ Department of Obstetrics and Gynecology, School of Medicine and Health Sciences, Atmajaya Catholic University of Indonesia, Jakarta, Indonesia.
⁴ Morula IVF, Jakarta, Indonesia

ORCID ID of All Authors:
I Gde Sastra Winata: https://orcid.org/0000-0001-6142-960X
Januar Simatupang: https://orcid.org/0000-0002-8952-7671
Arie A Polim: https://orcid.org/0000-0001-5876-4968
Yakob Togar: https://orcid.org/0000-0001-6554-6379
Advenny Elisabeth Tondang: https://orcid.org/0000-0002-7703-4220

Acknowledgements: We thank the staff of Gynecology Oncology (Sanglah Hospital, Faculty of Medicine, Udayana University, Denpasar, Bali, Indonesia), staff of Reproductive Endocrinology and Infertility (Morula IVF), (School of Medicine and Health Sciences, Atmajaya Catholic University of Indonesia, Jakarta, Indonesia), and staff of Department of Obstetric and Gynecology (UKI Hospital, Faculty of Medicine, Christian University of Indonesia, Jakarta, Indonesia) to make this research collaboration possible.

Correspondence to: Yakob Togar, MD. Jl.Haji Achyar No 10. Duren Sawit, Jakarta 13440,
vincentharlingcute@gmail.com, vincent_harlling@yahoo.com

Disclaimers: None Declared.

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
Synopsis

This is a systematic review and meta analysis study that presents pooled evidence of outcome among gynecologic cancer patients infected with the Covid-19 infection. We manage to gather 49 studies involving 1994 gynecologic cancer patients with Covid-19, 220967 non cancer patients with Covid-19, 4080990 cancer patients without Covid-19 and 28658 non gynecologic cancer patients with Covid-19 for analysis. Meta analysis shows reduction of Covid-19 death with gynecologic cancer patients vs overall other cancer, lung cancer, and hematologic cancer (OR 0.84, CI 0.72-0.97, p 0.02), (OR 0.52, CI 0.43-0.63, p <0.0001), (OR 0.65, CI 0.49-0.87, p 0.003) respectively. On the contrary, increased risk of Covid-19 death occur to gynecologic cancer patients vs infected non cancer, non Covid cancer patients, and infected breast cancer patients (OR 3.06, CI 2.32-4.04, p <0.0001), (OR 12.21, CI 8.39-17.77, p <0.0001), (OR 1.51, CI 1.20-1.90, p 0.0004) respectively.

Analysis from SARS-Cov-2 infection shows lower infection with gynecologic cancer patients vs hematologic cancer cohort (OR 0.71, CI 0.56-0.89, p 0.003). We hope the result of this meta analysis will be useful to providers practicing in cancer centers and tertiary cancer referral hospitals thus better practices and care services given to gynecologic cancer patients infected with / without the Covid-19 during the ongoing global pandemic can be achieved.

To our knowledge this is the first systematic review and meta analysis which emphasizes on reporting the outcome of gynecologic cancer patients with the Covid-19 infection. We also found no publication bias across 49 studies we have gathered and used as meta analysis data.
Abstract

Objective: Cancer is comorbidity, which can lead to progressive worsening of Covid-19 with increased mortality. This is a systematic review and meta-analysis to get evidence of adverse outcomes of Covid-19 in gynecologic cancer.

Methods: Searches through PubMed, Google Scholar, ScienceDirect, and medRxiv to find articles on the outcome of gynecologic cancer with Covid-19 (24 July 2021-19 February 2022). Newcastle-Ottawa Scale tool used to evaluate the quality of included studies. Pooled odds ratio (OR), 95% confidence interval (CI), random-effects model were presented. This study was registered to PROSPERO (CRD42021256557).

Results: We accepted 49 studies with (1994 gynecologic cancer with Covid-19). Covid-19 infection was lower in gynecologic cancer vs hematologic cancer (OR 0.71, CI 0.56-0.89, \(p < 0.003 \)). Severe Covid and death were lower in gynecologic cancer vs lung and hematologic cancer (OR 0.36, CI 0.16-0.80, \(p = 0.01 \)), (OR 0.26, CI 0.10-0.67 \(p = 0.005 \)), (OR 0.52, CI 0.43-0.63, \(p < 0.0001 \)), (OR 0.65, CI 0.49-0.87, \(p = 0.003 \)) respectively. Increased Covid death is seen in gynecologic cancer vs breast, non-covid cancer, and non-cancer covid (OR 1.51, CI 1.20-1.90, \(p = 0.0004 \)), (OR 12.21, CI 8.39-17.77, \(p < 0.0001 \)), (OR 3.06, CI 2.32-4.04, \(p < 0.0001 \)) respectively.

Conclusion: Gynecologic cancer had increased Covid-19 adverse outcomes compared to non-cancer, breast cancer, non-metastatic, and Covid-19 negative population. Gynecologic cancer had lowered Covid-19 adverse outcomes compared to other cancer types, lung cancer, and hematologic cancer. Lack of age and comorbidities stratification due to limited data were limitations. These findings may aid health policies and services during the ongoing global pandemic.

Keywords: COVID-19, Critical care outcome, Female genital neoplasms, Hospitalization, Morbidity, Mortality.
INTRODUCTION

The Covid-19 pandemic has changed the way of health care providers around the world to manage care provided to their patients. The pandemic has also proven to shift the attitude of standard practice and procedure between providers and patients, for example, to reduce gynecologic cancer patients visiting the hospital as possible because the risk of getting infected with Covid-19 is increased regarding their comorbidities. Despite this circumstance, gynecologic cancer patients are still often required to perform routine hospital visits for treatments or other medical procedures under guidance made by gynecological cancer societies during the Covid-19 pandemic. The burden of cancer incidence and mortality are still increasing around the world. According to Global Cancer Statistic: 2020 for gynecologic cancer, there are 604,127, 417,367, 313,959, 45,240, and 17,908 new cases for cancer of cervix uteri, corpus uteri, ovary, vulva, and vagina respectively. Most concerns are coming from these patients about how they may proceed to seek or continue their cancer treatment and surveillance during the Covid-19 pandemic time whether they should continue or delay. Studies are showing various results on increased mortality and severity among cancer patients infected with Covid-19. Systematic review and meta-analysis studying the outcome of cancer patients with Covid-19 show 2.1-4% proportion of cancer patients among those infected with Covid-19, additionally compared to non-cancer with Covid-19 greater amount of mortality and severity are observed in cancer population with Covid-19. However studies and data pertaining to the outcome of gynecologic cancer patients with Covid-19 are still lacking. We are now entering the third year of the Covid-19 pandemic after the first confirmed case was announced in December 2019 in Wuhan, Hubei Province, The People’s Republic of China. Several SARS-CoV-2 variants of concerns listed by WHO (World Health Organization) pose challenges to mitigate the pandemic as these variants often increase transmission rate and severity. The world has been experiencing wave of active case surges by these variants and on 26 November 2021 the WHO designated the variant Omicron (B.1.1.529) as an addition to the list. Thus we attempt to review the literature and quantify the effect of the SARS-Cov-2/Covid-19 infection among gynecologic cancer patients whether the risk of infection, hospitalization, severity, and mortality are increased than non-gynecologic cancer population.

MATERIALS AND METHODS

We conducted this systematic review and meta-analysis according to Preferred Reporting Items for Systematic Reviews and Meta-Analyses/PRISMA statement. This study and its protocol were registered to PROSPERO (CRD42021256557).
Eligibility Criteria

We took into consideration of studies with observational cohort study, case-control, cross-sectional, case report, and case series design that evaluate the outcome of gynecologic cancer patients infected with Covid-19 from the year 2019. Each study ought to report Covid-19 associated infection, hospital admissioin, mortality, severity, or admission to the ICU provided both in the main result or supplementary data. We exclude studies other than the English language, review or guidelines, and the inconceivable result of the sought outcome.

Comparator(s) / Control.

Database and Literature Search

Study articles were systematically searched through PubMed/Medline, ScienceDirect, Google Scholar, and medRxiv. Relevant articles had been screened from 24 July 2021-19 February 2022. Reference searches from retrieved articles citation lists were identified if any were needed. Boolean operators technique used for Pubmed/Medline search with ("COVID-19" or "2019-nCoV" or "SARS-CoV" or SARS-CoV2 or 2019-nCov or "2019 coronavirus" or covid19) AND (gynecology or gynaecology) AND (tumor or malignancy or cancer) AND (outcomes or outcome) AND (gyn* tum* or gyn *malign* or gyn* cancer) AND (cancer surgery or oncolig* surger*) AND (brachytherapy or radiotherapy). We used “Gynecologic cancer AND Covid-19” with Google Scholar, Science Direct, and medRxiv. Two authors (YT & AET) separately handled the literature search. Findings were accumulated and stored in Mendeley and Zotero for management and automated duplicate identification. Thorough stepwise screening from title and abstract was then conducted to determine possible article inclusion. Potentially eligible studies were then evaluated for in-depth full-text review. Each author would consult senior authors (JS, AAP, & IGSW) to resolve any differences found during the literature's selection process.

Data Extraction and Quality Assessment

Two authors (YT & AET) extracted data independently and stored them in The Microsoft Excel spreadsheet. Data then discussed for an agreement. Name of authors, year of publication, country, type of studies, study period, number of patients, comparators, and target conditions were collected. The NOS / Newcastle-Ottawa Scale will be used by authors to assess the quality of cohort and case-control study, and The Joanna Briggs Institute (JBI) Critical Appraisal Checklist for an analytical cross-sectional study. Two authors (YT & AET) performed the assessment and results were discussed with the first author (IGSW).
Meta-Analysis Outcome

The main outcome of interest were Covid-19 mortality and severity. Covid-19 severity is defined as either ICU admission, ARDS, or need for mechanical ventilation. Covid-19 infection and hospitalization were decided as secondary outcomes.

Data Analysis & Synthesis

We performed data analysis mainly using Review Manager 5.4.1 (RevMan 5.4.1) by Cochrane collaboration. Additional synthesis if any were needed then performed with STATA-16. We synthesized the dichotomous outcome from each study with an odds ratio (OR). The random-effects model (DerSimonian and Laird) was used to present pooled OR with 95% CI (Confidence Interval) and the result of overall effect (p). We addressed the presence of heterogeneity with I² as 0% to 40%: might not be important; 30% to 60%: may represent moderate heterogeneity; 50% to 90%: may represent substantial heterogeneity; 75% to 100%: considerable heterogeneity. We performed subgroup analysis by cancer type, presence of metastatic disease, and cancer treatment. Sensitivity analysis would be performed by dividing multi-center/single-center studies and removing/including the latest study period if concerns were raised of patients population duplication thus we could present robust pooled evidence.

RESULTS

A total of 49 studies involving the Covid-19 positive population, among them are 1994 gynecologic cancer patients, 220967 non-cancer patients, and 28658 other cancer type patients. 4080990 cancer patients were found to be Covid-19 free. Study selection and summary of included studies were presented in Figure 1 and Table 1 respectively. The risk of bias of each study was shown in Fig. S1 and Fig. S2.

Overall Covid-19 Events

36 studies provided data on overall Covid-19 death (1660 gynecologic cancer, 507874 overall control population). Death was not statistically significant between gynecologic cancer and control (OR 1.31, CI 0.85-2.01, p 0.22, I² 83%) Fig. S3. 9 studies available for overall Covid-19 severity (195 gynecologic cancer, 1748 overall control population). Severity was not statistically significant versus control (OR 0.83, CI 0.50-1.39, p 0.49, I² 10%) Fig. S4. Overall hospitalization from Covid-19 available from 4 studies (880 gynecologic cancer, 103466 overall control population). Hospitalization was comparable between gynecologic cancer and control (OR 0.93, CI 0.46-1.87, p 0.83, I² 92%) Fig. S5. Lastly, 20 studies provided data on overall Covid-19 infectivity (99601 gynecologic cancer, 8311468...
Covid-19 infection was comparable between gynecologic cancer and control (OR 0.97, CI 0.81-1.15, \(p \) 0.69, \(I^2 \) 47%) \textbf{Fig. S6}. Due to heterogeneity among overall Covid-19 events, it was then succeeded as subgroup analysis.

Gynecologic Cancer VS Other Cancer

Covid-19 infection was equivalent between gynecologic cancer and other cancer gathered from 8 studies (OR 1.02, CI 0.85-1.24, \(p \) 0.80, \(I^2 \) 62%) \textbf{Fig. S7}. Gynecologic cancer had fewer Covid-19 associated death compared to other cancer according to 27 studies (OR 0.84, CI 0.72-0.97, \(p \) 0.02, \(I^2 \) 4%) \textbf{Figure 2}. Covid-19 associated severity was not statistically significant from 6 studies between gynecologic cancer and other cancer (OR 0.56, CI 0.30-1.03, \(p \) 0.06, \(I^2 \) 0%) \textbf{Fig. S8}. Lastly, data from 2 studies showed non statistical significance from Covid-19 hospitalization in gynecologic cancer patients compared to other cancer (OR 0.73, CI 0.50-1.16, \(p \) 0.10, \(I^2 \) 82%) \textbf{Fig. S9}.

Gynecologic Cancer VS Non-Cancer

Covid-19 infection among gynecologic cancer and non cancer population was comparable from 5 studies (OR 1.06, CI 0.70-1.62, \(p \) 0.78, \(I^2 \) 53%) \textbf{Fig. S10}. Data from 10 studies revealed death from Covid-19 was higher in gynecologic cancer than non cancer patients (OR 3.06, CI 2.32-4.04, \(p \) <0.0001, \(I^2 \) 28%) \textbf{Figure 3}. Lastly, severe Covid-19 was not statistically significant in gynecologic cancer than non cancer patients from 2 studies (OR 1.85, CI 0.77-4.44, \(p \) 0.17, \(I^2 \) 0%) \textbf{Fig. S11}.

Gynecologic Cancer VS Non-Covid

Data represented from 4 studies revealed that gynecologic cancer patients were experiencing higher Covid-19 associated death in comparison to other cancer patients without Covid-19 infection (OR 12.21, CI 8.39-17.77, \(p \) <0.0001, \(I^2 \) 6%) \textbf{Figure 4}.

Cancer Treatment Group

Data from 9 studies showed among whose receiving cancer treatment, Covid-19 infection was not statistically significant in gynecologic cancer patients compared to other cancer (OR 0.74, CI 0.54-1.02, \(p \) 0.06, \(I^2 \) 0%) \textbf{Fig. S12}. Covid-19 death was comparable in among cancer treatment between gynecologic cancer and other cancer gathered from 8 studies (OR 0.90, CI 0.41-1.96, \(p \) 0.78, \(I^2 \) 3%) \textbf{Fig. S13}. Severe Covid-19 was not statistically significant in gynecologic cancer than other cancer who were receiving cancer treatment gathered from 5 studies (OR 0.76, CI 0.15-3.90, \(p \) 0.75, \(I^2 \) 33%) \textbf{Fig. S14}. According to 4 studies, gynecologic cancer with cancer treatment compared to whose not receiving cancer treatment, Covid-19 death was equivalent between the two (OR 1.06, CI 0.56-2.01, \(p \) 0.85, \(I^2 \) 0%) \textbf{Fig. S15}. Lastly from 4
studies available, severity from Covid-19 was not statistically significant in gynecologic cancer who had cancer treatment than who had none (OR 0.36, CI 0.09-1.42, \(p = 0.14, I^2 = 44\% \)) Fig. S16.

Cancer Stage and Metastatic Cancer

3 studies provided data on metastatic status. Gynecologic cancer with metastasis was having increased Covid-19 death than those with localized cancer (OR 1.53, CI 1.06-2.21, \(p = 0.02, I^2 = 0\% \)) Figure 5. Contrary, among metastatic diseases, death was not statistically significant between gynecologic cancer compared to other cancer (OR 0.77, CI 0.54-1.11, \(p = 0.17, I^2 = 0\% \)) Fig. S17.

Gynecologic cancer VS Lung Cancer

13 studies provided data on Covid-19 infectivity, infection was not statistically significant in gynecologic cancer than lung cancer (OR 0.85, CI 0.61-1.18, \(p = 0.33, I^2 = 73\% \)) Fig. S18. Data from 28 studies revealed that gynecologic cancer had fewer Covid-19 death than lung cancer patients (OR 0.52, CI 0.43-0.63, \(p < 0.0001, I^2 = 4\% \)) Figure 6A. Data from 6 studies showed that gynecologic cancer was having less severity from Covid-19 than lung cancer (OR 0.36, CI 0.16-0.80, \(p = 0.01, I^2 = 0\% \)) Figure 6B.

Gynecologic cancer VS Breast Cancer

Data from 13 studies showed gynecologic cancer and breast cancer were equivalent on having Covid-19 infection (OR 1.07, CI 0.94-1.22, \(p = 0.30, I^2 = 18\% \)) Fig. S19. Interestingly from 24 studies, gynecologic cancer was experiencing higher Covid-19 death compared to breast cancer patients (OR 1.51, CI 1.20-1.90, \(p = 0.0004, I^2 = 21\% \)) Figure 7A. Covid-19 severity was not statistically significant from 7 studies between gynecologic cancer and breast cancer (OR 0.83, CI 0.40-1.72, \(p = 0.62, I^2 = 0\% \)) Fig. S20. Lastly, data from 2 studies showed gynecologic cancer was experiencing higher hospitalization from Covid-19 compared to breast cancer (OR 1.52, CI 1.18-1.96, \(p = 0.001, I^2 = 0\% \)) Figure 7B.

Gynecologic cancer VS Hematologic Cancer

Data available from 8 studies revealed gynecologic cancer was having less infection of Covid-19 compared to hematologic cancer patients (OR 0.71, CI 0.56-0.89, \(p = 0.0003, I^2 = 67\% \)) Figure 8A. Data also showed that gynecologic cancer was experiencing fewer Covid-19 death compared to hematologic cancer from 22 studies (OR 0.65, CI 0.49-0.87, \(p = 0.003, I^2 = 45\% \)) Figure 8B. Lastly, 4 studies also showed that gynecologic cancer was having less severity from Covid-19 compared to hematologic cancer.
(OR 0.26, CI 0.10-0.67, \(p \) 0.005, \(I^2 \) 0\%) Figure 8C.24,25,32,53

Gender

Age

Comorbidities

Sensitivity Analysis

We performed sensitivity analysis by reproducing each outcome synthesis to pre-specified single center to multi-center studies, furthermore excluding overlapped study periods associated with its study centers thus only one center with the most recent study period was included Table S1. After the exclusion, 4 studies showed the non-statistical significance of severe Covid-19 among those receiving cancer treatment in gynecologic cancer than other cancer patients (22 gynecologic cancer, 256 other cancer, OR 1.18, CI 0.19-7.49, \(p \) 0.86, \(I^2 \) 36\%).25,32,44,46

After the exclusion, 4 studies showed severe Covid-19 between gynecologic cancer and breast cancer was comparable (49 gynecologic cancer, 134 breast cancer, OR 0.95, CI 0.29-3.15, \(p \) 0.93, \(I^2 \) 21\%).25,32,46,52 Aside from these, the remainder of calculated OR from reproducing each outcome synthesis by exclusion were within good accordance.

Publication Bias

We found no publication bias within our included studies though at first, we identified an asymmetrical funnel plot; it was caused solely by heterogeneity nonetheless (Fig. S21-24). After subgroup identification, the funnel plow was corrected and the calculated Egger & Begg’s test for overall Covid death, severity, and hospitalization were \(p \) 0.1701, \(p \) 1.5674 respectively. For data associated with Covid-19 infection, the values were \(p \) 0.2109, \(p \) 1.7157 respectively.

DISCUSSION

We believe this is the first comprehensive meta-analysis done regarding the outcome of Covid-19 to the gynecologic cancer population. With the 1994 Covid-19 positive gynecologic cancer that we amassed, we hope we provide new insight into how the global pandemic is affecting practice and service affecting gynecologic cancer. Several meta-analyses showed the prevalence for cancer with Covid-19 infection were 2-4\%, Covid-19 mortality also higher in the cancer patients cohort.5-7,61-65 In this meta-analysis gynecologic cancer patients is at increased risk of Covid-19 death compared to the non-cancer population (OR 3.06, CI 2.32-4.04, \(p \) <0.0001, \(I^2 \) 28\%), most studies also support this finding by providing evidence of greater Covid-19 adverse outcome in cancer patients.5-7,61-65 Contrary to the “N3C” multicenter study from the United States, our result present a
significant increased of Covid-19 death in Covid-19–Positive gynecologic cancer than Covid-19-Negative other cancer types (OR 3.06, CI 2.32-4.04, \(p < 0.0001 \), \(I^2 \) 28%).\(^{66}\) Our finding shows gynecologic cancer with metastatic disease has an increased Covid-19 death compared to whose cancer are localized (OR 1.53, CI 1.06-2.21, \(p \) 0.02, \(I^2 \) 0%), most studies also report identical outcomes to ours.\(^{65,67,68}\) Our analysis also shows gynecologic cancer is associated with higher Covid-19 death and hospitalization compared to breast cancer patients (OR 1.51, CI 1.20-1.90, \(p \) 0.0004, \(I^2 \) 21%), (OR 1.52, CI 1.18-1.96, \(p \) 0.001, \(I^2 \) 0%) respectively. Other meta-analyses, as well as studies done by “CC19” and the “N3C” also supported this finding.\(^{62,66,67}\) Our analysis present that gynecologic cancer patients have lower Covid-19 death compared to overall other cancer types (OR 0.84, CI 0.72-0.97, \(p \) 0.02, \(I^2 \) 4%), further analysis shows that Covid-19–Positive gynecologic cancer patients have fewer adverse outcome compared to Covid-19–Positive lung and hematologic cancer. Our findings are (OR 0.52, CI 0.43-0.63, \(p < 0.0001 \), \(I^2 \) 4%), (OR 0.36, CI 0.16-0.80, \(p \) 0.01, \(I^2 \) 0%), (OR 1.52, CI 1.18-1.96, \(p \) 0.001, \(I^2 \) 0%) for Covid-19 associated death, severity, and hospitalization versus lung cancer respectively. Meanwhile versus hematologic cancer (OR 0.71, CI 0.56-0.89, \(p \) 0.0003, \(I^2 \) 67%), (OR 0.65, CI 0.49-0.87, \(p \) 0.003, \(I^2 \) 45%), (OR 0.26, CI 0.10-0.67, \(p \) 0.005, \(I^2 \) 0%) for Covid-19 infectivity, death, and severity respectively. The “TERAVOLT” study and the one conducted by Luo et al. also support our finding by a high burden of Covid-19 associated adverse outcomes among lung cancer patients.\(^{69,70}\) Other meta-analyses show lung cancer with Covid-19 have 32.9% case fatality rate (378 lung cancer), compared to non-lung cancer population the Covid-19 death among lung cancer is also higher (92 lung cancer, 554 control, OR 1.83, CI 1.00-3.37, \(p \) 0.05, \(I^2 \) 19%), (78 lung cancer, 482 control, RR 1.46, CI 1.84-2.52, \(p \) 0.7, \(I^2 \) 48.1%).\(^{5,62,63}\) Lastly, most studies also support our findings on the increased Covid-19 adverse outcome in hematologic cancer population with 34.2% case fatality rate (480 hematologic cancer), (120 hematologic cancer, 758 control, OR 2.39, CI 1.17-4.87, \(p \) 0.02, \(I^2 \) 49%) in other meta analyses.\(^{62,63,65,68}\) We believe our meta-analysis results correspond to several studies that present the safety of continuing gynecologic cancer care and service during the global pandemic. Safety protocols have been published for gynecologic cancer patients who are seeking treatment and some even recommend implementation of ERAS (Enhanced Recovery After Surgery).\(^{2,71,72}\) Data from the French Society for Pelvic and Gynecological Surgery (SCGP) and the French (FRANCOGYN) Group reveal there are changes in cancer management strategy during the pandemic time and from 181 gynecologic cancer patients, 8 tested positive of Covid-19.\(^{72}\) Multicenter study from three New York City hospitals also show a similar result, among 302 gynecologic cancer patients, 117 experienced a COVID-19-related treatment modification, 19 have positive Covid-19 result among them 3 are asymptomatic, 11 are having mild symptoms, 3 are hospitalized, and 2 died.\(^{74}\)
Lastly, data from the United Kingdom, Turkey, and Italy show that while maintaining gynecologic cancer treatment during the pandemic time the Covid-19 infection rate is found at a low level, 1/289 is Covid-19 positive and 1 post-operative death suspected of Covid-19 (UK), 2/200 is suspected with Covid-19 but neither was positive for COVID-19 on polymerase chain reaction testing (Turkey), and 1/930 is Covid-19 positive (Italy).75-77 We hope these findings will be useful among gynecologist-oncologists in cancer centers or tertiary cancer referral centers who provide care to gynecologic cancer patients during the ongoing Covid-19 pandemic.

Limitations
Limitations from our analysis are, we cannot perform specific gynecologic cancer type, age, and associated comorbidities due to limited data.

Conflict of Interest
None declared.

Availability of data, code, and other materials
The report which of the following are publicly available and they can be found at the supplementary material.

Figure 1. Study Flow Diagram.

Figure 2. Forest plot subgroup analysis Gyn-Onco VS Other Cancer, Covid-19 Death.

Figure 3. Forest plot subgroup analysis Gyn-Onco VS Non-Cancer, Covid-19 Death.

Figure 4. Forest plot subgroup analysis Gyn-Onco Covid VS Other cancer non-covid, Covid-19 Death.

Figure 5. Forest plot subgroup analysis Covid-19 death, Gyn-Onco metastasis VS no metastasis.

Table 1. Characteristics of included studies.
REFERENCES

Figure 1: Study Flow Diagram.

Identification of studies via databases and registers
- Records identified from PubMed, Science Direct, Google Scholar, medRxiv (n = 32167)

Identification of studies via other methods
- Records excluded by automation tools (n = 32735)

Screening
- Records after duplicates removed (n = 6432)
- Records screened (n = 333):
 - Full text assessed for eligibility (n = 58)
 - Reports excluded:
 - Non English text (n = 13)
 - Irrelevant to outcome of interest (n = 262)

Included
- Studies included in meta analysis (n = 49)
Figure 3. Forest plot subgroup analysis: Gym-Onco vs. Non Cancer, Covid-19 Death.
Figure 4. Forest plot subgroup analysis: Gyn-Onco Covid vs. Other cancer non-covid, Covid-19 Death.

<table>
<thead>
<tr>
<th>Study or Subgroup</th>
<th>Gyn-Onco Covid</th>
<th>Other Cancer Non Covid</th>
<th>Odds Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Events</td>
<td>Total</td>
<td>Events</td>
</tr>
<tr>
<td>Ayhan A et al (3)</td>
<td>0</td>
<td>45</td>
<td>3</td>
</tr>
<tr>
<td>Liu H et al</td>
<td>5</td>
<td>17</td>
<td>143</td>
</tr>
<tr>
<td>Misra A et al</td>
<td>1</td>
<td>2</td>
<td>36</td>
</tr>
<tr>
<td>Roel D et al</td>
<td>61</td>
<td>435</td>
<td>3356</td>
</tr>
<tr>
<td>Total (95% CI)</td>
<td>501</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total events</td>
<td>67</td>
<td>3540</td>
<td></td>
</tr>
</tbody>
</table>

Heterogeneity: Tau² = 0.02; Chi² = 3.19, df = 2 (P = 0.08); * = 0%
Test for overall effect: Z = 13.06 [P = 0.00001]
Figure 5. Forest plot subgroup analysis for COVID-19 death, Gyn-Onco metastasis vs. no metastasis.

<table>
<thead>
<tr>
<th>Study or Subgroup</th>
<th>Gyn-Onco Metastasis</th>
<th>No Metastasis</th>
<th>Odds Ratio (M-H, Random, 95% CI)</th>
<th>Heterogeneity Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bernard et al.</td>
<td>41 Events, 119 Total</td>
<td>663 Events, 2652 Total</td>
<td>1.42 [0.87, 2.31]</td>
<td>tau² = 0.03, I² = 0%</td>
</tr>
<tr>
<td>de Mero AC et al.</td>
<td>5 Events, 10 Total</td>
<td>91 Events, 912 Total</td>
<td>2.72 [0.78, 9.03]</td>
<td></td>
</tr>
<tr>
<td>LHH et al.</td>
<td>3 Events, 7 Total</td>
<td>3 Events, 3 Total</td>
<td>6.44 [0.21, 144.10]</td>
<td></td>
</tr>
<tr>
<td>Total (95% CI)</td>
<td>49 Events, 139 Total</td>
<td>2652 Events, 2652 Total</td>
<td>1.53 [1.05, 2.21]</td>
<td></td>
</tr>
</tbody>
</table>

Favours (Gyn-Onco Meta) Favours (No Meta)
<table>
<thead>
<tr>
<th>Study or Subgroup</th>
<th>Gyn-Onco Covid Events</th>
<th>Total</th>
<th>Lung Cancer Covid Events</th>
<th>Total</th>
<th>Weight</th>
<th>M-H. Random, 95% CI</th>
<th>Odds Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dai M et al.</td>
<td>2</td>
<td>0</td>
<td>12</td>
<td>22</td>
<td>16.4%</td>
<td>0.20 [0.05, 0.96]</td>
<td></td>
</tr>
<tr>
<td>de Melo AC et al.</td>
<td>3</td>
<td>22</td>
<td>0</td>
<td>7</td>
<td>2.7%</td>
<td>3.63 [1.12, 10.81]</td>
<td></td>
</tr>
<tr>
<td>Jin et al.</td>
<td>1</td>
<td>15</td>
<td>8</td>
<td>29</td>
<td>13.0%</td>
<td>0.07 [0.03, 0.63]</td>
<td></td>
</tr>
<tr>
<td>Bang K et al.</td>
<td>2</td>
<td>10</td>
<td>21</td>
<td>81</td>
<td>23.8%</td>
<td>0.48 [0.05, 2.42]</td>
<td></td>
</tr>
<tr>
<td>Tian J et al.</td>
<td>8</td>
<td>15</td>
<td>18</td>
<td>23</td>
<td>31.5%</td>
<td>0.33 [0.08, 1.31]</td>
<td></td>
</tr>
<tr>
<td>Zhang L et al.</td>
<td>0</td>
<td>3</td>
<td>4</td>
<td>7</td>
<td>5.9%</td>
<td>0.11 [0.00, 2.94]</td>
<td></td>
</tr>
<tr>
<td>Total (95% CI)</td>
<td>73</td>
<td>149</td>
<td>100.0%</td>
<td>16</td>
<td>0.36 [0.16, 0.80]</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total events: 16

Heterogeneity: Tau² = 0.01; QH² = 2.42; df = 9 (P = 0.70); I² = 0%

Test for overall effect: Z = 2.50 (P = 0.01)
Figure 7. Forest plot subgroup analysis: Gyn-Onc V8 Breast Cancer, (A) Covid-19 death, (B) Covid-19 hospitalisation.
<table>
<thead>
<tr>
<th>Study or Subgroup</th>
<th>Gyn-Onco Covid Events</th>
<th>Gyn-Onco Covid Total</th>
<th>Breast Cancer Covid Events</th>
<th>Breast Cancer Covid Total</th>
<th>Weight</th>
<th>M-H, Random, 95% CI</th>
<th>Odds Ratio M-H, Random, 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aitken et al.[1]</td>
<td>3</td>
<td>4</td>
<td>17</td>
<td>18</td>
<td>1.0%</td>
<td>1.15[0.11, 13.38]</td>
<td></td>
</tr>
<tr>
<td>Onkwa et al.</td>
<td>178</td>
<td>322</td>
<td>433</td>
<td>435</td>
<td>99.0%</td>
<td>1.52[1.18, 1.96]</td>
<td></td>
</tr>
<tr>
<td>Total (95% CI)</td>
<td>101</td>
<td>326</td>
<td>965</td>
<td>100.0%</td>
<td>1.52</td>
<td>1.18[1.05, 1.96]</td>
<td></td>
</tr>
</tbody>
</table>

Heterogeneity: $I^2 = 0.30$; $Q = 0.05$, $df = 1$, $P = 0.80$, $P = 0.05$
Test for overall effect: $Z = 3.25$ ($P = 0.001$)

<table>
<thead>
<tr>
<th>Study or Subgroup</th>
<th>Gyn-Onco Events</th>
<th>Gyn-Onco Total</th>
<th>Hemato-Onc Events</th>
<th>Hemato-Onc Total</th>
<th>Weight</th>
<th>Odds Ratio M-H, Random, 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Angeli et al.</td>
<td>6</td>
<td>977</td>
<td>10</td>
<td>1015</td>
<td>4.0%</td>
<td>0.37 [0.15, 0.83]</td>
</tr>
<tr>
<td>Lattannese et al.</td>
<td>33</td>
<td>3386</td>
<td>50</td>
<td>25657</td>
<td>12.8%</td>
<td>0.68 [0.43, 1.01]</td>
</tr>
<tr>
<td>Kwon et al.</td>
<td>119</td>
<td>2993</td>
<td>321</td>
<td>5937</td>
<td>12.8%</td>
<td>0.72 [0.58, 0.90]</td>
</tr>
<tr>
<td>Li et al.</td>
<td>17</td>
<td>233</td>
<td>50</td>
<td>681</td>
<td>3.7%</td>
<td>0.91 [0.51, 1.60]</td>
</tr>
<tr>
<td>Riet et al.</td>
<td>436</td>
<td>19007</td>
<td>513</td>
<td>27637</td>
<td>22.0%</td>
<td>0.92 [0.81, 1.05]</td>
</tr>
<tr>
<td>Russell et al.</td>
<td>10</td>
<td>326</td>
<td>33</td>
<td>426</td>
<td>5.8%</td>
<td>0.33 [0.11, 0.47]</td>
</tr>
<tr>
<td>Shi et al.</td>
<td>9</td>
<td>68</td>
<td>49</td>
<td>237</td>
<td>3.4%</td>
<td>0.59 [0.27, 1.36]</td>
</tr>
<tr>
<td>Wang et al.</td>
<td>50</td>
<td>49490</td>
<td>360</td>
<td>265030</td>
<td>17.2%</td>
<td>0.91 [0.88, 1.22]</td>
</tr>
<tr>
<td>Total (95% CI)</td>
<td>97740</td>
<td>405489</td>
<td>100.0%</td>
<td></td>
<td></td>
<td>0.71 [0.56, 0.89]</td>
</tr>
</tbody>
</table>

Total events: 680, 1431

Heterogeneity: Tau² = 0.06, Chi² = 21.36, df = 7 (P = 0.003), I² = 87%
Test for overall effect Z = 2.90 (P = 0.004)
Meta-Analysis Table

<table>
<thead>
<tr>
<th>Study or Subgroup</th>
<th>Gyro-Circ-Cone</th>
<th>Gyro-Circ-Cone</th>
<th>Odds Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Events</td>
<td>Total</td>
<td>Events</td>
</tr>
<tr>
<td>Angello et al.</td>
<td>1</td>
<td>6</td>
<td>11</td>
</tr>
<tr>
<td>Barde C et al.</td>
<td>2</td>
<td>12</td>
<td>5</td>
</tr>
<tr>
<td>Bernard et al.</td>
<td>54</td>
<td>185</td>
<td>470</td>
</tr>
<tr>
<td>Casas et al.</td>
<td>0</td>
<td>11</td>
<td>3</td>
</tr>
<tr>
<td>de Milan GC et al.</td>
<td>8</td>
<td>22</td>
<td>8</td>
</tr>
<tr>
<td>De Meo et al.</td>
<td>21</td>
<td>57</td>
<td>26</td>
</tr>
<tr>
<td>Duarte et al.</td>
<td>6</td>
<td>75</td>
<td>36</td>
</tr>
<tr>
<td>Fang et al.</td>
<td>0</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>Fernendes et al.</td>
<td>28</td>
<td>126</td>
<td>10</td>
</tr>
<tr>
<td>Garnes et al.</td>
<td>39</td>
<td>222</td>
<td>121</td>
</tr>
<tr>
<td>Jia et al.</td>
<td>1</td>
<td>15</td>
<td>18</td>
</tr>
<tr>
<td>Lee et al.</td>
<td>2</td>
<td>45</td>
<td>30</td>
</tr>
<tr>
<td>Li et al.</td>
<td>2</td>
<td>10</td>
<td>5</td>
</tr>
<tr>
<td>Li et al.</td>
<td>1</td>
<td>17</td>
<td>23</td>
</tr>
<tr>
<td>Medeiros et al.</td>
<td>4</td>
<td>12</td>
<td>10</td>
</tr>
<tr>
<td>OnCovid Study Group</td>
<td>24</td>
<td>115</td>
<td>70</td>
</tr>
<tr>
<td>Remazuzum et al.</td>
<td>2</td>
<td>13</td>
<td>8</td>
</tr>
<tr>
<td>Roel E et al.</td>
<td>2</td>
<td>436</td>
<td>117</td>
</tr>
<tr>
<td>Shi et al.</td>
<td>4</td>
<td>9</td>
<td>20</td>
</tr>
<tr>
<td>Shim et al.</td>
<td>0</td>
<td>17</td>
<td>0</td>
</tr>
<tr>
<td>Tian et al.</td>
<td>2</td>
<td>15</td>
<td>5</td>
</tr>
<tr>
<td>Yang et al.</td>
<td>0</td>
<td>9</td>
<td>5</td>
</tr>
</tbody>
</table>

Total (95% CI):

<table>
<thead>
<tr>
<th>Gyro-Circ-Cone</th>
<th>Hemato-Circ-Cone</th>
</tr>
</thead>
<tbody>
<tr>
<td>1420</td>
<td>4521</td>
</tr>
</tbody>
</table>

Total events:

<table>
<thead>
<tr>
<th>Gyro-Circ-Cone</th>
<th>Hemato-Circ-Cone</th>
</tr>
</thead>
<tbody>
<tr>
<td>2681</td>
<td>1720</td>
</tr>
</tbody>
</table>

Heterogeneity: Test: $q^2 = 0.14,
$I^2 = 30.40, d.f. = 21 (p = 0.01), I^2 = 45.66$.

Test for overall effect: $Z = 2.06 (p = 0.043)$
<table>
<thead>
<tr>
<th>Study or Subgroup</th>
<th>Gyn-Onco Covid Events</th>
<th>Total</th>
<th>Hemato-Onco Covid Events</th>
<th>Total</th>
<th>Weight</th>
<th>Odds Ratio M-H, Random, 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dai N et al.</td>
<td>2</td>
<td>8</td>
<td>4</td>
<td>8</td>
<td>19.8%</td>
<td>2.33 [0.84, 2.77]</td>
</tr>
<tr>
<td>de Mala AC et al.</td>
<td>3</td>
<td>32</td>
<td>2</td>
<td>34</td>
<td>42.9%</td>
<td>0.44 [0.10, 1.84]</td>
</tr>
<tr>
<td>Jee J et al.</td>
<td>1</td>
<td>15</td>
<td>23</td>
<td>71</td>
<td>20.3%</td>
<td>0.15 [0.02, 1.22]</td>
</tr>
<tr>
<td>Tian J et al.</td>
<td>6</td>
<td>15</td>
<td>1</td>
<td>17</td>
<td>17.0%</td>
<td>0.10 [0.01, 1.03]</td>
</tr>
<tr>
<td>Total (95% CI)</td>
<td></td>
<td>60</td>
<td></td>
<td>125</td>
<td>100.0%</td>
<td>0.26 [0.10, 0.67]</td>
</tr>
<tr>
<td>Total events</td>
<td>14</td>
<td></td>
<td>47</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Heterogeneity: Tau² = 0.01; Ch² = 1.43, df = 3 (P = 0.96); I² = 0%. Test for overall effect: Z = 2.73 (P = 0.005).