A shared genetic signature for common chronic pain conditions and its impact on biopsychosocial traits

Scott F. Farrell PhD1,2,3, Pik-Fang Kho PhD4,5,6, Adrián I. Campos PhD7, Miguel E. Rentería PhD8, Rutger M. J. de Zoete PhD9, Michele Sterling PhD1, Trung Thanh Ngo PhD1,10† & Gabriel Cuéllar-Partida PhD10†*

Author affiliations:

1. RECOVER Injury Research Centre, The University of Queensland, Herston QLD, Australia
2. NHMRC Centre of Research Excellence: Better Health Outcomes for Compensable Injury, The University of Queensland, Herston QLD, Australia
3. Tess Cramond Pain & Research Centre, Royal Brisbane & Women’s Hospital, Herston QLD, Australia
4. Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford CA, USA
5. Molecular Cancer Epidemiology Laboratory, Department of Genetics & Computational Biology, QIMR Berghofer Medical Research Institute, Herston QLD, Australia
6. School of Biomedical Sciences, Queensland University of Technology, Brisbane QLD, Australia
7. Institute for Molecular Bioscience, The University of Queensland, St Lucia QLD, Australia
8. Genetic Epidemiology Laboratory, Department of Genetics & Computational Biology, QIMR Berghofer Medical Research Institute, Herston QLD, Australia
9. School of Allied Health Science & Practice, The University of Adelaide, Adelaide SA, Australia

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
10. Diamantina Institute, The University of Queensland & Translational Research Institute, Woolloongabba QLD, Australia

† These authors contributed equally to this work

* Current address: 23andMe Inc., Sunnyvale CA, United States of America

Correspondence to:

Dr Scott Farrell
RECOVER Injury Research Centre — Surgical, Treatment & Rehabilitation Service (STARS | Level 7), 296 Herston Rd, Herston QLD 4029, Australia.
E: Scott.Farrell@uq.edu.au | P: +61 7 334 64791 | F: +61 7 334 69136

Dr Trung Ngo
RECOVER Injury Research Centre — Surgical, Treatment & Rehabilitation Service (STARS | Level 7), 296 Herston Rd, Herston QLD 4029, Australia.
E: Trung.Ngo@uq.edu.au | P: +61 42 111 7258

Running Title: Biopsychosocial genetic signature of chronic pain
Abstract

Background: The multifactorial heterogenous nature of chronic pain with its multiple comorbidities presents a formidable challenge in disentangling the aetiology underlying patient symptoms.

Methods: Here, we performed genome-wide association studies (GWAS) of eight types of regional chronic pain using UK Biobank data (N=4,037–79,089 cases; N=239,125 controls), followed by bivariate linkage disequilibrium-score regression and latent causal variable analyses to determine (respectively) their genetic correlations and genetic causal proportion (GCP) parameters with 1,492 other complex traits.

Findings: We report evidence of a shared genetic signature in common regional chronic pain types, with their genetic correlations and causal directions being broadly consistent across a wide array of biopsychosocial traits. Furthermore, we identified 5,942 significant genetic correlations, of which 570 trait pairs showed evidence of a likely causal association (|GCP| > 0.6; 5% false discovery rate), including 488 traits contributing to chronic pain while 82 were affected by pain. A range of somatic pathologies (e.g., musculoskeletal, visceral), psychiatric factors (e.g., depression, trauma, anxiety, mania, bipolar disorder), socioeconomic factors (e.g., occupation) and other medical comorbidities (e.g., cardiovascular disease) contributed to an increased risk of regional chronic pain. Conversely, each chronic pain type contributed to various other traits such as increased medication use (e.g., analgesics) and risk of ischaemic heart disease and depression.

Interpretation: Findings of this data-driven study, through comprehensive analysis of a vast range of biopsychosocial factors, are indicative of a common genetic signature underlying eight regional chronic pain types. We identify a broad range of traits with genetic causal effects upon chronic
pain, which may inform development of novel diagnostic and therapeutic strategies, as well as provide convergent support for various existing approaches.
Introduction

Despite the enormous research effort into the aetiology of chronic pain, common musculoskeletal conditions such as back pain and neck pain remain a clinical and scientific challenge. Over the past decade however, large-scale genome-wide association studies (GWAS) have made inroads towards elucidating the biological pathways and complex traits contributing to a wide range of conditions such as neurological, psychiatric and cardiometabolic disorders.\(^1\) While such studies have provided evidence for genetically supported therapeutic (drug) targets and mechanisms,\(^2,3\) the application of statistical genetics methods to rheumatological\(^4,5\) and chronic pain conditions\(^6-9\) as a strategy towards disentangling their causal mechanisms requires further comprehensive and concerted effort.

Previous clinical and epidemiological studies have found a range of psychiatric,\(^10\) lifestyle\(^11\) and socioeconomic factors\(^12\) associated with an increased risk of chronic pain. Medical conditions such as obesity and cardiovascular diseases are also common comorbidities.\(^13\) Large-scale GWAS have identified specific genetic loci in various chronic pain conditions (e.g., back pain\(^7\) & widespread pain\(^8\)) and demonstrated shared genetic bases with various biopsychosocial traits (e.g., depression\(^7-9\)). However, the nature of causal relationships between chronic pain conditions and such factors remains to be comprehensively examined.

Here we investigated the genetic correlations and causal relationships between eight types of regional chronic pain and a comprehensive range of biological, psychological/psychiatric and social traits. In the largest phänome-wide study of chronic pain to date, we leveraged GWAS summary statistics in the Complex Traits Genetics Virtual Lab (CTG-VL — http://genoma.io)\(^14\)
to delineate the putative genetic causal directions across common chronic pain conditions and >1,400 other traits/disorders.

Materials and Methods

Discovery GWAS Datasets for Chronic Pain

An overview of the analysis pipeline employed in the present study is shown in Figure 1. We performed GWAS of regional chronic pain types using the UK Biobank resource (application number 25331). The UK Biobank holds research ethics approval from the North West Multi-centre Research Ethics Committee (Manchester, United Kingdom). All participants provided written informed consent.

Chronic pain was defined using self-report answers to the following questions: *Have you had [back pains / neck or shoulder pains / hip pains / knee pains / abdominal pains / facial pains / headaches / pain all over the body] for more than 3 months?* (Questionnaire field ID: 6159). These questions could be answered with *Yes, No, Don’t know, or Prefer not to answer.* Participants who responded *Yes* to a question were defined as cases for that specific chronic pain type (i.e., chronic back pain, chronic widespread pain [pain all over the body] etc.). We defined controls as participants who denied experiencing any pain for more than three months (N=239,125). Participants who preferred not to answer were excluded from the study. Sample sizes of each GWAS were as follows: back pain (N=79,089); neck/shoulder pain (N=72,216); hip pain (N=41,677); knee pain (N=77,996); abdominal pain (N=21,285); facial pain (N=4,037); headache (N=39,283); widespread pain (N=6,063). Sample characteristics are further detailed in Supplementary Table S1.
We performed GWAS using REGENIE (v1·0·6·2)15 to test associations between the chronic pain types and genetic variants. REGENIE is a GWAS method that implements a logistic mixed model, whereby a genetic relationship between individuals is modelled as a random effect to account for cryptic relatedness. Covariates for the association analysis comprised sex, age, genotyping array and the top 10 principal components derived from genetic data. We used quality control procedures comprising exclusion of variants with: (i) minor allele frequency (MAF) < 0·005; (ii) imputation quality < 0·6; and (iii) deviation from Hardy-Weinberg equilibrium (P-value < 1 × 10-5). Subsequently, 11,172,285 single nucleotide polymorphisms (SNPs) remained for analysis. Participant data were excluded if their genotype-derived principal components 1 and 2 were more than six standard deviations from those of the 1000 Genomes European population. Following quality control, up to 441,088 participants remained in the GWAS.

Genetic Correlations

Genetic correlations were estimated between the regional chronic pain types and a range of psychological, social and lifestyle traits. Cross-trait bivariate linkage disequilibrium (LD) score regression was used — a method that leverages the expected relationship between LD and GWAS association statistics to estimate genetic correlations across traits accounting for potential sample overlap across studies,16 as implemented in CTG-VL.14 CTG-VL is a publicly available web platform compiled with 1,492 GWAS summary statistics that is used for running analyses across a range of complex traits and disorders (mostly from UK Biobank releases). CTG-VIEW (https://view.genoma.io) is a data aggregator that enables direct queries, visualisations and storage of VL analysis results (and that from other data resources).
A genetic correlation (\(r_G\)) ranges from\(-1\) to \(1\) and quantifies the genome-wide genetic concordance between a pair of traits. Genetic correlation estimates approaching \(1\) or \(-1\) indicate (respectively) that a proportion of genetic variants have concordant or divergent effects on both traits. Conversely, genetic correlation estimates that approach \(0\) indicate there is little genetic concordance between the traits or that the genetic predictors of the traits are largely independent. A Benjamini-Hochberg false discovery rate (FDR < 5\%) procedure was applied across genetic correlations for complex traits with each chronic pain type GWAS to account for multiple testing.

Latent Causal Variable Analyses

For trait pairs with non-zero genetic correlation (FDR < 5\%), we employed latent causal variable (LCV) analyses to determine if the genetic correlation reflects a causal relationship or horizontal pleiotropy by estimating genetic causal proportion (GCP).\(^\text{17,18}\) The LCV method is robust to horizontal pleiotropy, which is ubiquitous in complex traits. LCV analyses can be conceptualised as assuming a latent ‘causal’ variable that mediates the genetic correlation of two traits. Using mixed fourth moments of the bivariate effect size distribution across all SNPs in both GWAS, LCV estimates the posterior mean for GCP, which indicates the degree to which one trait is correlated with the latent ‘causal’ variable. GCP estimates range from \(-1\) to \(1\): high positive values (GCP > 0·6) indicate greater partial genetic causality for Trait A (i.e., a chronic pain type) on Trait B (i.e., psychological / social / lifestyle trait); whereas negative values (GCP < -0·6) indicate greater partial genetic causality for Trait B on Trait A. That is, GCP > 0·6 indicates that chronic pain likely has a causal effect on another particular trait, whereas GCP < -0·6 indicates a particular trait likely has a causal effect on chronic pain. Benjamini-Hochberg false discovery rate (FDR < 5\%) was applied across GCPs for complex traits with each chronic pain type GWAS.
Data Sharing

Complex trait GWAS summary statistics are publicly available. Links to reference and download each of these are available in CTG-VL (https://vl.genoma.io) and CTG-VIEW (https://view.genoma.io). Complete GWAS summary statistics and results from downstream analyses for all the chronic pain types reported in the current study (Supplementary Table S1) are available at CTG-VIEW.

Results

Genetic Correlations and Latent Causal Variable Analyses

For each of the eight regional chronic pain types, details of significant genetic correlations with putative causal relationships are summarised in Figures 2–8 and Supplementary Figures S1 & S2, while rG and GCP data are reported in Supplementary Tables S2–S9. Complete genetic correlation and LCV analysis results for all 1,492 traits are presented in Supplementary Tables S10–S17.

From 11,932 trait pairs, we identified 5,942 significant genetic correlations corroborating many reported phenotypic associations from previous clinical studies, of which 570 trait pairs showed evidence of a causal association (|GCP| > 0.6; 5% false discovery rate). Of these, 488 traits had genetic casual effects on chronic pain, while the remaining 82 traits were affected by pain.

Comparisons of rG and significant GCP results across the eight regional chronic pain types are presented in Figures 2 & 3. Overall, the direction of the genetic correlations between the complex traits and chronic pain were broadly consistent across all eight pain types. There were eight
instances where the direction of genetic causal relationships (denoted by GCP > 0.6 or < -0.6) differed between the chronic pain types (Supplementary Table S18). Additional rG estimates for the eight chronic pain types are presented in Supplementary Table S19, including significant genetic correlations between each type, whereby the analysis method also accounts for the overlapping samples.

Key Results Across Chronic Pain Types

Significant rG (5% FDR) and GCP estimates (< -0.6; 5% FDR) were observed for musculoskeletal pathologies, showing genetic causal effects on chronic back, neck/shoulder, hip, knee, abdominal, headaches and widespread pain, including local sites (e.g., coxarthrosis of the hip & chronic hip pain rG [S.E.] = 0.42 [0.06]; GCP [S.E.] = -0.90 [0.08]) as well as remote sites (e.g., other intervertebral disc disorders & chronic knee pain rG [S.E.] = 0.61 [0.12], GCP [S.E.] = -0.79 [0.16]) (Figures 4–8, Supplementary Figures S1 & S2, Supplementary Tables S2–S9). Cardiovascular disease-related traits affected each of the chronic pain types (e.g., heart failure contributes to back pain [rG (S.E.) = 0.22 (0.09); GCP (S.E.) = -0.73 (0.16)] and hip pain [rG (S.E.) = 0.30 (0.11); GCP (S.E.) = -0.62 (0.24)]), while certain chronic pain types (i.e., neck/shoulder, abdominal, facial & widespread pain) also affected cardiovascular traits such as ischaemic heart disease (neck/shoulder pain rG [S.E.] = 0.30 [0.04], GCP [S.E.] = 0.71 [0.22]; facial pain rG [S.E.] = 0.26 [0.09], GCP [S.E.] = 0.64 [0.22]). Several chronic pain types (back, neck/shoulder, hip, knee, abdominal & headaches) contributed to medication use for cholesterol, blood pressure, diabetes or exogenous hormones. Chronic headaches and widespread pain also impacted the use of analgesics (i.e., paracetamol, ibuprofen, aspirin; and paracetamol,
respectively), while the use of various medications (e.g., analgesics, cardiovascular drugs) affected chronic back, neck/shoulder, hip, knee, abdominal, headache and widespread pain.

Psychological traits and psychiatric diagnoses also had genetic causal effects on chronic pain types. Notably: (i) depression and anxiety-related traits increased the risk of chronic back, neck/shoulder, hip, knee, abdominal, headache and widespread pain; (ii) mania-related traits increased the risk of chronic back, neck/shoulder, hip, knee, facial and widespread pain; and (iii) substance abuse/addiction-related traits increased the risk of chronic back, neck/shoulder, hip, knee, abdominal, facial and widespread pain. Traits concerning bipolar disorder and psychosis respectively increased the risk of hip, knee and widespread pain; and of neck/shoulder, knee and facial pain. Chronic back pain, facial pain and headaches had genetic causal effects upon traits concerning depression, anxiety and mania (significant rG [5% FDR] and GCP > 0.6 [5% FDR]).

Traits specific to occupations demonstrated genetic causal contributions to back, neck/shoulder, hip, knee, abdominal and widespread pain (e.g., receptionist & chronic back pain rG [S.E.] = 0.38 [0.17]; GCP [S.E.] = -0.97 [0.04]), while traits relating to work environment increased the risk of all eight chronic pain types (e.g., ‘Workplace had a lot of diesel exhaust: Often’ and chronic widespread pain rG [S.E.] = 0.60 [0.15]; GCP [S.E.] = -0.81 [0.15]).

Region Specific Summaries

Additional results detailing region specific summaries of key findings for each pain type are included in Supplementary File.
Discussion

The multifactorial and dynamic nature of chronic pain conditions means that assessing aetiological relationships is challenging, due to the large sample sizes and long follow-up timeframes required for multivariate longitudinal analysis. Large-scale genetic datasets adequately powered for GWAS along with statistical genetics methods developed for investigating causality (e.g., LCV, Mendelian randomization [MR]) present a way forward for this challenge. The primary findings of this data-driven study provide quantitative genetic evidence for a range of shared biopsychosocial factors demonstrating causal effects upon eight types of regional chronic pain. Certain clinical factors (e.g., musculoskeletal pathology, medical comorbidities), psychological factors (e.g., depression, trauma, anxiety, mania) and socioeconomic factors (e.g., occupation) increased the risk of chronic pain types. The results also indicated genetic causal effects of chronic pain upon other factors such as increased medication use and increased risk of cardiovascular disease and depression. The current study provides characterisation of multidimensional casual traits contributing to chronic pain and has narrowed down a range of genetically supported risk and protective factors for chronic pain. It also lays the foundation for further translational studies to identify the underlying causal genetic variants and pathophysiological pathways for novel diagnostic and therapeutic targets.

Overall, the directions of genetic correlations were consistent across an array of biopsychosocial traits and the eight types of regional chronic pain. The vast majority of significant genetic causal directions between them were also consistent with just a small minority differing across the chronic pain types. Genetic correlations were observed between each of the eight chronic pain types, indicating genome-wide overlap between variants associated with the different types of regional
chronic pain, with the analysis method accounting for the overlapping UK Biobank samples. These findings likely represent novel, large-scale quantitative evidence of a shared genetic signature for chronic pain spanning eight types of regional chronic pain, which builds upon recent studies and earlier proposals pursuing this empirical demonstration. Traits implicated in our findings may represent candidates for patient classification, risk stratification and pain phenotyping in clinical management of chronic pain conditions. Further, the proposition of a shared genetic signature underlying different types of regional chronic pain invites further investigation of genetic risk for chronic pain, which may have potential applications for genetic stratification of patients in clinical trials, to allow targeting of patients most at risk of developing chronic pain.

Based on the precedent for genetically supported therapeutic targets, traits with genetic causal effects identified in our study may represent potential treatment targets in management of chronic pain, providing convergent support for established approaches for treatment (e.g., weight-loss in knee osteoarthritis) or prevention of chronic pain (e.g., targeting post-traumatic stress after injury), as well as insight for development of emerging strategies (e.g., dietary).

Our results provide corroborating genetic evidence that musculoskeletal pathologies (e.g., intervertebral disc disorders in back pain, coxarthrosis in hip pain) and visceral pathologies (e.g., renal & ureteric calculi) contribute to chronic pain. We also found genetic causal effects of painful pathologies at remote sites upon regional chronic pain types (e.g., shoulder impingement on chronic hip pain), consistent with the concept of a shared genetic signature and associated predisposition to chronic pain. Similarly, facial pain demonstrated genetic evidence of contributing to nerve-related pathologies (including mononeuropathies and carpal tunnel syndrome), which
may reflect genetic mechanisms common to trigeminal neuralgia and other neuropathic pain conditions.

Not surprisingly, our results indicate that certain chronic pain types (i.e., headaches & widespread pain) contribute to the use of analgesic medications (i.e., paracetamol, ibuprofen, aspirin; and paracetamol, respectively). Interestingly, various drugs used in the treatment of pain (e.g., opioids, non-steroidal anti-inflammatory drugs, antidepressants), cardiovascular disease (e.g., statins, beta-blockers) and gastro-oesophageal reflux showed an effect of increased risk for various chronic pain types. While some of these effects could reflect a genetic correlation between pain and problematic opioid use, the effect of medication increasing the risk of chronic pain may also be attributable to an indirect causal effect. An unobserved trait (e.g., symptom or disease), which increases the likelihood of both medication use and a chronic pain type, could create an apparent casual effect between that medication and the pain type. That is, medication use (e.g., analgesics) could simply serve as a proxy for conditions that cause pain or that are commonly co-morbid to chronic pain. For instance, statins and beta-blockers may serve as proxies for cardiovascular disease, while antidepressants may reflect the relationship between chronic pain and depression, or conversely, the use of antidepressants to treat chronic pain conditions.

Our findings indicate that, while pain conditions and psychological factors such as depression are frequently co-morbid at a phenotypic level, the pattern of causal relationships between them are heterogenous across the various chronic pain types. For instance, we observed genetic evidence of causal relationships between depression-related traits and chronic headaches and back pain across both directions (i.e., a proportion of relationships are pain → depression and others are depression
In contrast, depression-related traits exclusively showed effects on chronic neck/shoulder, hip, knee, abdominal and widespread pain (i.e., depression → pain only [Supplementary Tables S3–6, S9]). Conversely, chronic facial pain increased the risk of seeking care for depression (i.e., pain → depression only [Supplementary Table S7]). These findings are broadly consistent with other genetic studies of complex traits concerning depression and chronic pain, which have shown: (i) genetic correlations between depression-related traits and various pain conditions \(^7,^9,^30\); and (ii) genetic causal relationships between chronic pain and depression, spanning both depression → pain pathways \(^30,^31\) and pain → depression pathways \(^8,^30\). Taken together, the current study’s results and previous findings \(^8,^30,^31\) raise further intriguing hypotheses, such as either or both causal directions may exist on a patient sub-group basis, \(^23\) which may even change over time as their condition/comorbidities further develop. Our LCV results also implicate a history of trauma or stress, including death of a close relative in last two years, being adopted as a child, sexual assault, marital separation and military service, as genetic causal factors for various chronic pain types. Phenotypic studies have reported that previous trauma \(^32\) or post-traumatic stress \(^33\) are risk factors for the development of chronic pain. Our LCV results provide independent converging evidence for targeting post-traumatic stress symptoms in the treatment of pain, such as recently reported in a randomised controlled trial of whiplash-associated disorder, \(^26\) which showed reductions in pain and disability through improvements in stress, depression and post-traumatic stress. \(^27\) In addition to depression and trauma, traits concerning anxiety, psychosis, bipolar disorder and mania showed genetic causal effects on several chronic pain types. Socioeconomic traits (particularly related to occupation) also demonstrated genetic causal effects on a range of chronic pain types, which are discussed in further detail in Supplementary File. Broadly, our findings infer that traits associated with lower socioeconomic status have a causal
impact upon increased regional chronic pain risk, which could suggest that interventions targeting socioeconomic inequality may have beneficial downstream effects on the community burden of chronic pain.

Various medical conditions such as cardiovascular, gastrointestinal, respiratory and haematological diagnoses demonstrated genetic correlations and genetic causal relationships with chronic pain types. Notably, cardiovascular-related traits showed heterogeneous associations with chronic pain types. For example, the results revealed that heart failure contributes to chronic back and hip pain, whereas neck/shoulder and facial pain increased the risk of ischaemic heart disease. Numerous cardiovascular risk factors showed genetic causal contributions to chronic pain such as obesity (i.e., hip, knee & widespread pain), low-density lipoprotein/Apolipoprotein B (i.e., back, neck/shoulder, hip & knee pain) and triglycerides (i.e., facial & widespread pain). These findings are consistent with the MR results of Mocci et al.31 indicating a causal effect of coronary artery disease upon pain susceptibility, as well as phenotypic correlations between chronic pain and cardiovascular diagnoses and mortality,13 which may reflect other associations between chronic pain and cardiac risk factors such as low physical activity.11

Strengths, Limitations and Further Research

The present study employed LCV analyses to delineate traits with evidence of genetic causal contributions across eight chronic pain types. From a total pool of >11,900 trait pairs, it was distilled down to <5% with the vast majority (488/570) showing genetic causal effects on chronic pain. This analytical strategy employing large-scale comprehensive data has characterised a broad range of genetically supported risk and protective factors for types of regional chronic pain.
A limitation of our study is the minimal clinical details used in our definition of regional chronic pain: a self-report questionnaire regarding presence of pain for >3 months at a body site. This minimal phenotyping approach however allows acquisition of large-scale data with sufficient power for GWAS. As the chronic pain and complex trait GWAS data were mostly derived from the UK Biobank, we employed LCV analysis rather than a more traditional approach (e.g., MR) because overlapping samples in the latter can bias estimates towards the confounded associations. A limitation of the LCV approach is the inability of this method to detect bidirectional relationships between two individual traits (e.g., chronic pain → Trait A and Trait A → chronic pain).

Further work is required such as: (i) genetic epidemiology studies collecting data on more specific chronic pain diagnoses and clinical traits (e.g., pro- and anti-nociceptive phenotypes, medication/treatment responses\(^{22}\)); (ii) replication with other large genotyped datasets\(^4,7\) including population samples with non-European ancestry; (iii) employing genomic structural equation modelling to identify other underlying latent factors\(^35\) with a focus on the traits delineated in the current study (e.g., musculoskeletal & visceral pathologies, psychiatric disorders, occupation, cardiovascular disease & analgesic use); (iv) incorporating genetic risk stratification of placebo/control groups in randomised clinical trials of chronic pain interventions\(^2,3,22\) and (v) investigating gene-environment interactions and epigenetic mechanisms in chronic pain (e.g., early life stress, physical activity)\(^{36}\).
Conclusion

We have provided large-scale quantitative evidence for a common genetic basis underlying chronic pain across body regions. Our LCV analysis of >1,400 biopsychosocial complex traits has identified a broad range of traits with genetic causal effects upon chronic pain. This provides convergent evidence for certain existing approaches to treatment of chronic pain conditions (e.g., targeting psychological factors or obesity) and may inform development of novel diagnostic and therapeutic strategies.

Funding

AIC was supported by a UQ Research Training Scholarship from The University of Queensland. PFK was supported by an Australian Government Research Training Program Scholarship from Queensland University of Technology (QUT). RECOVER Injury Research Centre (MS, SFF) receives unrestricted grant funding from the Motor Accident Insurance Commission (Queensland). The funders had no role in the design or interpretation of this study. This research was initially carried out at the Translational Research Institute (TRI), Woolloongabba, QLD 4102, Australia. TRI is supported by a grant from the Australian Government. SFF, TTN & GC-P conceived the study. TTN & GC-P co-supervised the study. AIC & MER performed the GWAS. SFF performed downstream analyses with support from GC-P. All authors contributed to interpretation of results. SFF, TTN & GC-P wrote the manuscript with feedback from all coauthors.

Conflicts of Interest

GC-P contributed to this study while employed at The University of Queensland. He is now an employee of 23andMe, Inc. and he may hold stock or stock options from the company.
References

Figures

Figure 1: Phenome-wide analysis pipeline for eight types of regional chronic pain with 1,492 other complex traits. Genome-wide association studies (GWAS) were performed for chronic back, neck/shoulder, hip, knee, abdominal, facial, headache and widespread pain. These results and publicly available GWAS summary statistics for 1,492 complex traits were uploaded into the Complex Traits Genetics Virtual Lab (CTG-VL), which along with CTG-VIEW was used to perform cross-trait linkage disequilibrium-score (LD-score) regression and latent causal variable analyses to respectively calculate genetic correlations (r_G) and genetic causal proportions (GCP). The 570 traits with significant GCPs were categorised as per Figures 4–7 (x-axis) and Supplementary Tables S2–S9. This strategy enables the identification and targeting of genetically supported risk and protective factors for chronic pain types in further translationally focused studies.
Bivariate linkage disequilibrium score regression (FDR <5%)
— Genetic correlations (r_G) between 8 chronic pain conditions &
other complex traits (11,936 trait pairs) yielded 5,942 significant r_G

Latent causal variable analyses (FDR <5%)
of 5,942 r_G yielded 570 traits pairs with
significant genetic causal proportion (GCP)
GCP > 0.6 — chronic pain condition affects other trait
GCP < -0.6 — trait affects chronic pain condition
Figure 2: Scatterplot matrix showing the genetic correlations (r_G) between chronic pain types and 1,492 complex traits across the eight regional chronic pain types. The genetic correlations were broadly consistent across these types, which indicates the genetic variants specific to each of the 1,492 complex traits had consistent correlations (positive or negative) with the genetic variants associated with each of the chronic pain types. This pattern of results points toward a shared genetic basis common to these chronic pain types, which may partly account for both an increased risk of developing chronic pain (more generally) and its commonly comorbid biopsychosocial traits.
Figure 3: Scatterplot matrix showing significant genetic causal proportions (GCPs) between the chronic pain types and 1,492 complex traits across the eight regional chronic pain types, wherein the LCV analysis method took into account the overlapping samples. There were eight instances where the direction of causal relationships (denoted by GCP > 0·6 or < -0·6) differed between the pain types as detailed in Supplementary Table S18. These included family history/social traits, psychological traits (e.g., concerning mania/irritability), musculoskeletal pathology and other clinical traits. The otherwise broadly consistent direction of causal relationships with complex traits across these common chronic pain types suggests that a shared genetic basis common to these chronic pain types encompasses causal relationships with a range of traits.
Figure 4: Genetic correlations (r_G) for traits with significant genetic causal proportion (GCP) estimates indicative of a causal effect upon regional chronic pain types (GCP < -0.6, 5% false discovery rate) are shown across the range of complex trait categories (x-axis). Data are presented for (A) chronic back pain, (B) neck/shoulder pain, (C) hip pain and (D) knee pain. A broad range of traits demonstrate evidence of genetic causal effects on the pain types — notably those concerning psychological and socioeconomic factors, musculoskeletal pathology, medication use and addiction contribute to increased risk of chronic pain.
Figure 5: Genetic correlations (r_G) for traits with significant genetic causal proportion (GCP) estimates indicative of a causal effect upon regional chronic pain types (GCP < -0.6, 5% false discovery rate) are shown across the range of complex trait categories (x-axis). Data are presented for (A) chronic abdominal pain, (B) facial pain, (C) headaches and (D) widespread pain. A broad range of traits demonstrate evidence of genetic causal effects on these pain types (e.g., psychological, gastrointestinal & socioeconomic factors contributed to increased risk of abdominal & widespread pain and headache).
Figure 6: Genetic correlations (r_G) for traits with significant genetic causal proportion (GCP) estimates indicative of being affected by chronic pain (GCP > 0.6, 5% false discovery rate) are shown across the range of complex trait categories (x-axis). Data are presented for (A) chronic back pain, (B) neck/shoulder pain, (C) hip pain and (D) knee pain. While there are fewer instances of these regional chronic pain affecting other traits than vice versa (Fig. 4), these results suggest chronic pain has genetic causal effects contributing to increased medication use, cardiovascular disease and other factors (e.g., depression).
Traits Affected by Back Pain (GCP > 0.6)

N = 79,089 Cases
N = 239,125 Controls

- Arthrosis
- Talking therapy for depression
- No medications for cholesterol, blood pressure, diabetes, or exogenous hormones
- Nil trauma/stress in prior 2 years

Traits Affected by Neck/Shoulder Pain (GCP > 0.6)

N = 72,216 Cases
N = 239,125 Controls

- Ischaemic heart disease
- Infectious & parasitic diseases
- Other specific/unspecified arthritis
- No medications for cholesterol, blood pressure, diabetes, or exogenous hormones

Traits Affected by Hip Pain (GCP > 0.6)

N = 41,677 Cases
N = 239,125 Controls

- No medications for cholesterol, blood pressure, diabetes, or exogenous hormones

Traits Affected by Knee Pain (GCP > 0.6)

N = 77,996 Cases
N = 239,125 Controls

- Chronic neck/shoulder pain
- No medications for cholesterol, blood pressure, diabetes, or exogenous hormones

All rights reserved. No reuse allowed without permission. (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. The copyright holder for this preprintthis version posted March 14, 2022. ; https://doi.org/10.1101/2022.03.13.22272317 doi: medRxiv preprint
Figure 7: Genetic correlations (rG) for traits with significant genetic causal proportion (GCP) estimates indicative of being affected by chronic pain (GCP > 0.6, 5% false discovery rate) are shown across the range of complex trait categories (x-axis). Data are presented for (A) chronic abdominal pain, (B) facial pain, (C) headaches and (D) widespread pain. Notably, facial pain showed effects on a wide range of traits including diet patterns, psychological factors (e.g., increased depression, anxiety) and increased risk of neurological conditions, whereas abdominal pain particularly contributed to increased risk of cardiovascular disease. Chronic headache had genetic effects contributing to increased analgesic use and psychological issues (e.g., depression). Widespread pain affected a range of traits, such as increased risk of surgical complications, analgesic use and disability parking permit use.
Traits Affected by Abdominal Pain (GCP > 0.6)

- Chest pain during physical activity
- Hypertension
- Coronary artery disease
- Stopped smoking as health precaution
- No cardiovascular disease
- No medications for cholesterol, blood pressure, diabetes, or exogenous hormones

Traits Affected by Facial Pain (GCP > 0.6)

- Leg fat percentage
- High cholesterol
- Ground coffee
- Eggs, dairy, wheat, sugar
- No major dietary changes in the last 5 years

Traits Affected by Headache (GCP > 0.6)

- Speech-reception-threshold (SRT) estimate (right) (hearing test)
- Paracetamol
- Ibuprofen
- Aspirin
- No medications for pain relief, constipation, heartburn

Traits Affected by Widespread Pain (GCP > 0.6)

- Duration of vigorous activity
- Grandchild in household
- Chronic neck/shoulder pain
- Paracetamol
- Pain in throat and chest

All rights reserved. No reuse allowed without permission.
Figure 8: Causal architecture plots presenting the relationships of various traits with (A) chronic back pain, (B) neck/shoulder pain and (C) hip pain. Each dot represents a genetic correlation (r_G). The colour of a dot indicates whether the genetic correlation is positive (red) or negative (blue). The x-axis denotes the genetic causal proportion (GCP) estimate and the y-axis denotes the GCP absolute Z-score (i.e., statistical significance). The red dashed line shows the threshold for statistical significance (5% false discovery rate). Traits that have a genetic causal effect on chronic pain are on the left side of the plot (with respect to 0 on the x-axis, GCP <-0.6, black text), while traits causally affected by chronic pain are on the right side (GCP >0.6, green text). Selected traits are labelled for illustrative purposes — spanning clinical, biological, psychological and socioeconomic measures. Full details of all significant genetic causal relationships are provided in Supplementary Tables S2, S3 & S4. Causal architecture plots for the other regional chronic pain types are presented in Supplementary Figures S1 & S2.
Supplementary Tables

Supplementary Table S1: Distribution of chronic pain across body sites, sex and prevalence in the sample.

Supplementary Table S2: Genetic correlation (r_G) and genetic causal proportion (GCP) results for traits with significant causal relationships with chronic back pain.

Supplementary Table S3: Genetic correlation (r_G) and genetic causal proportion (GCP) results for traits with significant causal relationships with chronic neck/shoulder pain.

Supplementary Table S4: Genetic correlation (r_G) and genetic causal proportion (GCP) results for traits with significant causal relationships with chronic hip pain.

Supplementary Table S5: Genetic correlation (r_G) and genetic causal proportion (GCP) results for traits with significant causal relationships with chronic knee pain.

Supplementary Table S6: Genetic correlation (r_G) and genetic causal proportion (GCP) results for traits with significant causal relationships with chronic abdominal pain.

Supplementary Table S7: Genetic correlation (r_G) and genetic causal proportion (GCP) results for traits with significant causal relationships with chronic facial pain.
Supplementary Table S8: Genetic correlation (rG) and genetic causal proportion (GCP) results for traits with significant causal relationships with chronic headaches.

Supplementary Table S9: Genetic correlation (rG) and genetic causal proportion (GCP) results for traits with significant causal relationships with chronic widespread pain.

Supplementary Table S10: Genetic correlation (rG) and genetic causal proportion (GCP) results for 1,492 traits with chronic back pain.

Supplementary Table S11: Genetic correlation (rG) and genetic causal proportion (GCP) results for 1,492 traits with chronic neck/shoulder pain.

Supplementary Table S12: Genetic correlation (rG) and genetic causal proportion (GCP) results for 1,492 traits with chronic hip pain.

Supplementary Table S13: Genetic correlation (rG) and genetic causal proportion (GCP) results for 1,492 traits with chronic knee pain.

Supplementary Table S14: Genetic correlation (rG) and genetic causal proportion (GCP) results for 1,492 traits with chronic abdominal pain.

Supplementary Table S15: Genetic correlation (rG) and genetic causal proportion (GCP) results for 1,492 traits with chronic facial pain.
Supplementary Table S16: Genetic correlation (rG) and genetic causal proportion (GCP) results for 1,492 traits with chronic headache.

Supplementary Table S17: Genetic correlation (rG) and genetic causal proportion (GCP) results for 1,492 traits with chronic widespread pain.

Supplementary Table S18: Traits demonstrating contrary directions of causal relationships between chronic pain types.

Supplementary Table S19: Genetic correlation (rG) results between chronic pain types.
Supplementary Figures

Supplementary Figure S1: Causal architecture plots presenting the relationships of various traits with (A) chronic knee pain, (B) widespread pain and (C) headaches. Each dot is a data point representing a genetic correlation (r_G). The colour of a dot indicates whether the genetic correlation is positive (red) or negative (blue). The x-axis denotes the genetic causal proportion (GCP) estimate and the y-axis denotes the GCP absolute Z-score (i.e., statistical significance). The red dashed line shows the threshold for statistical significance (5% false discovery rate). Traits that have a genetic causal effect on chronic pain are on the left side of the plot (with respect to 0 on the x-axis; GCP < -0.6, black text), while traits causally affected by chronic pain are on the right side (GCP > 0.6, green text). Selected traits are labelled for illustrative purposes — spanning clinical, biological, psychological and socioeconomic measures. Full details of all significant genetic causal relationships are provided in Supplementary Tables S5, S8 & S9.

Supplementary Figure S2: Causal architecture plots presenting the relationships of various traits with (A) chronic abdominal pain and (B) facial pain. Each dot is a data point representing a genetic correlation (r_G). The colour of a dot indicates whether the genetic correlation is positive (red) or negative (blue). The x-axis denotes the genetic causal proportion (GCP) estimate and the y-axis denotes the GCP absolute Z-score (i.e., statistical significance). The red dashed line shows the threshold for statistical significance (5% false discovery rate). Traits that have a genetic causal effect on chronic pain are on the left side of the plot (with respect to 0 on the x-axis; GCP < -0.6, black text), while traits causally affected by chronic pain are on the right side (GCP > 0.6, green text). Selected traits are labelled for illustrative purposes. Full details of all significant genetic causal relationships are provided in Supplementary Tables S6 & S7.