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Abstract—We have developed a two-module pipeline for the 

detection of SARS-CoV-2 from chest X-rays (CXRs). Module 1 is 
a traditional convnet that generates masks of the lungs 
overlapping the heart and large vasa. Module 2 is a hybrid convnet 
that preprocesses CXRs and corresponding lung masks by means 
of the Wavelet Scattering Transform, and passes the resulting 
feature maps through an Attention block and a cascade of 
Separable Atrous Multiscale Convolutional Residual blocks to 
produce a class assignment as Covid or non-Covid. Module 1 was 
trained on a public dataset of 6395 CXRs with radiologist 
annotated lung contours. Module 2 was trained on a dataset of 
2362 non-Covid and 1435 Covid CXRs acquired at the Henry Ford 
Health System Hospital in Detroit. Six distinct cross-validation 
models, were combined into an ensemble model that was used to 
classify the CXR images of the test set. An intuitive graphic 
interphase allows for rapid Covid vs. non-Covid classification of 
CXRs, and generates high resolution heat maps that identify the 
affected lung regions. 
 

Index Terms—Covid-19, wavelets, convolutional neural 
networks, segmentation 

I. INTRODUCTION 
A critical step in the fight against COVID-19 (henceforth 

referred to as ‘Covid’) pandemic is the screening of infected 
patients and the rapid recognition of those affected by Severe 
Acute Respiratory Syndrome CoronaVirus 2 (SARS-CoV-2). 
The main method used to detect Covid infection is the reverse 
transcriptase-polymerase chain reaction (RT-PCR). The main 
methods to screen for SARS-CoV-2 are chest X-ray (CXR) and 
computed tomography (CT) [1]. While CTs provide greater 
diagnostic accuracy, CXRs are more readily available and 
enable rapid triaging of patients. Recently, an initiative was 
championed by Cohen et al. [2] to provide a public repository 
of Covid and other respiratory distress syndrome cases with 
annotated chest x-ray images. Many medical centers, including 
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ours, have developed proprietary repositories of Covid CXRs. 
Given the wide availability of both private and public data, a 
multitude of diagnostic systems based on Convolutional Neural 
Networks (CNNs) have been designed for automated Covid 
diagnosis from CXRs, in binary or multi-class assignments. It 
would not do justice to the countless number of reports that 
have been published as part of this effort to mention some and 
not others, and we refer the reader to some recent reviews [3-6] 
of the major accomplishments in this field.  

Due to the still limited number of Covid CXRs available for 
training, a common characteristic of all proposed methods has 
been the adoption of transfer learning from a variety of CNNs 
(i.e., VGG, ResNet, DenseNet, DarkNet, SqueezeNet, 
Inception, Xception, each in multiple implementations of 
different depths) pre-trained on the collection of ImageNet 
(https://www.image-net.org/) data covering classes such as 
cars, fruits, horses, etc., but unfortunately not radiological 
images. Various authors have claimed that one or the other of 
these pre-trained CNNs gave the best results with their database 
of Covid images. In general, the use of CNNs with fewer layers 
has the advantage of lower hardware requirements, easier 
hyperparameters tuning, and shorter training times compared to 
their deeper counterparts. In fact, a survey of Covid detection 
performance of 15 different CNNs of 5 different architectures 
found that deeper pre-trained neural networks do not perform 
better than shallow networks [6].  

Most of the published methods claim a high level of accuracy 
(>90%) for binary classification (Covid vs. non-Covid), and a 
somewhat lower accuracy (between 80% and 90%) for 
multiclass classification. All typically show superior or 
comparable performance to other reference methods considered 
at some point ‘state of the art’. However, some studies 
presented only the training accuracy (i.e., [7]), while others 
performed image augmentation before the train/test split (i.e., 
[8]), leading to some augmented versions of training images to 
leak in the test set. This situation suggests that one key 
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unresolved problem in the development of effective systems for 
automated Covid diagnosis from CXRs is the lack of a 
universally accepted repository of images (as training, 
validation, and test sets), and the fact that most existing studies 
use training sets of limited-size, leading to poor generalization 
of their models to unseen data. A separate issue is the 
interpretability of the models with respect to the pertinent 
pathological signs in the CXR images. In fact, as impressive as 
the results of many studies have been in terms of classification 
statistics, the resulting saliency maps (usually calculated as 
Gradient Weighted Class Activation Maps (Grad-CAM) [9]) 
have been rather disappointing with activation areas often 
extending over both lung and non-lung regions of the CXRs 
(see, for example, Figure 10 in [3], Figs. 8-9 in [10], Fig. 5 in 
[11]), casting doubts on whether the reported classification 
performance is based on the recognition of particular SARS-
CoV-2 features of the lungs texture or some other information 
(age, body shape, bone structure, sex, race, patient positioning, 
radiographic projection, etc.) associated with increased 
susceptibility to Covid infection or with specific protocols 
followed with Covid patients. With respect to this point, it is 
worth noting that deep learning systems trained to interpret X-
rays and CT scans have shown a remarkable capacity to identify 
their subjects as Asian, Black, or White [12]. A similar 
conclusion was reached in [13-16], where it was noticed that 
although sometimes saliency maps highlight the lung fields as 
important, most often also highlight regions outside the lung 
fields, which act as confounds. These confounds are often 
laterality markers that originate during the CXR acquisition, 
which differ in style between Covid and non-Covid datasets. In 
other cases the saliency maps also indicate the image edges, the 
position of the patient shoulder and clavicle, the diaphragm and 
the cardiac silhouette as important for SARS-CoV-2 detection, 
although these regions are not used by radiologists to assess for 
Covid. With some datasets, similar classification results were 
obtained using the original CXRs or CXRs in which the lungs 
regions were uniformly blackened, and the classifiers was 
trained only on the outer part of the image [14]. Reliance on 
confounds from non-lung regions of the CXRs helps explain the 
previously observed poor generalization performance of most 
Covid detection models to unseen data from outside datasets. In 
addition to these factors, there are often also problems with the 
quality itself of the saliency maps. The poor multifocal 
discrimination of Grad-CAMs produced in some studies is 
likely to originate from the fact that traditional CNN 
architectures produce a progressive shrinking of the spatial 
dimensions of the feature maps, so that either the Grad-CAM 
maps are calculated at low resolution in the final layers of the 
network, and must be re-expanded to the original image 
resolution, or they are calculated at higher resolution in earlier 
layers, which however contains information very different from 
the downstream layers that lead to the classification output.  
Altogether, it is highly unlikely that in real life clinicians are 
going to accept a black-box model that comes with great 
classification statistics, but produces uninterpretable saliency 
maps. On this basis, it appear that the clinical efficacy of many 
proposed system for automated Covid diagnosis from CXRs 
will remain uncertain until further studies are undertaken by 
experienced radiologists to interpret the high-level features 
extracted from these systems.  

In this study we did not aim to show that our Artificial 
Intelligence (AI) system for automatic Covid diagnosis from 
CXRs is better than other competing systems based on some 
classification statistics. Rather, our goal is to present the 
strategy we have adopted to circumvent the systematic 
problems that may invalidate the effective use of deep learning 
methods in the radiological detection of SARS-CoV-2 cases. 
Since lung segmentations were already shown to improve 
Covid detection in several studies [11, 13, 15-20], we designed 
our network so that classification would be based solely on the 
lung features of CXRs and would not rely on transfer learning 
from network trained on non-radiological images of predefined 
dimensions. It was also required that Grad-CAM maps would 
be informative and of sufficiently high resolution, so that 
discrete areas of the lungs could be clearly identified as having 
undergone Covid associated texture changes. We further aimed 
to develop a system that would be production ready, capable of 
differentiating patients from previously unseen images within 
seconds or less using only inexpensive personal computers or 
hand-held devices, and with an intuitive graphic interphase 
displaying the saliency maps produced by the model.  

Here we present CXR-Net, a two-module AI pipeline for 
SARS-CoV-2 detection. Module 1 is based on Res-CR-Net 
[21], a convolutional neural network (CNN) that departs from 
the popular encoder-decoder U-Net architecture [22]. The idea 
behind the U-Net architecture is that segmentation can be 
conceptually decomposed in two operations: (1) semantic 
content extraction in the encoder arm of the neural network 
(NN), and (2) progressive addition/replacement of the extracted 
semantic content to the original size image in the decoder arm 
of the NN. However, it is intuitively hard to understand why 
these two operations cannot proceed smoothly and 
progressively in a pixel-wise fashion, without the need for first 
shrinking and then re-expanding the concept field. In our 
previous work on the semantic segmentation of microscopy 
images [21] we have shown that Res-CR-Net offers comparable 
or superior performance to U-net(s) in segmentation tasks. 
Furthermore, since its layers contain no pooling or up-sampling 
operations, the spatial dimensions of the feature maps at each 
layer remain unchanged with respect to those of the input 
images and of the segmentation masks used as labels or 
predicted by the network. For this reason, CXR-Net Module 1 
(which is derived from Res-CR-Net) is completely modular, 
with residual blocks that can be proliferated in a straight down 
linear fashion as needed, and it can process images of any size 
and shape without changing layers size and operations, as 
required by U-Net. Finally, the significantly smaller number of 
parameters in CXR-Net Module 1 vs. U-Nets reduces the risk 
of overfitting the training set, while achieving comparable 
segmentation accuracy. Module 1 was trained on datasets of 
antero-posterior and postero-anterior (AP/PA) CXRs with 
radiologist annotated lung contours to generate masks of the 
lungs that do not overlap the heart and large vasa.  

The observation that deeper neural networks pre-trained on 
ImageNet images usually perform more poorly than shallow 
networks on Covid classification tasks [6] suggests that transfer 
of highly specialized learning from non-radiological to 
radiological images may actually be deleterious. One 
alternative is to train a completely new network on just the 
database of Covid and non-Covid CXRs, with the initial layers 
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of the network learning the general features of the X-ray 
images. The other alternative is to replace the image 
generalization provided by traditional transfer learning with the 
generalization provided by a wavelet based multiresolution 
analysis layer [23], whose coefficients are not trained and thus 
are not biased/optimized for classes of non-radiological images. 
For this reason, Module 2 was designed as a hybrid convnet in 
which the initial convolutional layers with learned coefficients, 
or the stem of a pre-trained network with its coefficient frozen, 
are replaced by a layer with fixed coefficients provided by the 
Wavelet Scattering Transform (WST) [24, 25]. Module 2 takes 
as inputs the patients’ CXRs and corresponding lung masks 
calculated by Module 1, and produces as outputs a class 
assignment (Covid vs. non-Covid) and high resolution heat 
maps that identify the affected lung regions. Module 2 does not 
depend on previously trained models, and therefore is not 
constrained to predefined image dimensions before training.  

CXR-Net was implemented using Keras [26] deep learning 
library running on top of TensorFlow 2.2 [27]. It is publicly 
available at https://github.com/dgattiwsu/CXR-Net. g-CXR-
Net, a graphic application for both Unix and Windows platforms 
using CXR-Net segmentation and classification engine is 
publicly available at https://github.com/dgattiwsu/g-CXR-Net. 

 

II. CXR-NET MODULE 1: LUNG SEGMENTATION 

A. CXRs and lung segmentation sources 
All CXRs and lung masks were derived from the V7-Darwin 

dataset (https://darwin.v7labs.com/v7-labs/covid-19-chest-x-
ray-dataset). This dataset contains 6500 images of CXRs and 
CTs. 5863 images are from the Kaggle dataset 
(https://www.kaggle.com/paultimothymooney/chest-xray-
pneumonia/data). In addition to several images of normal lungs, 
the dataset includes 1970 images of viral pneumonia, 2816 
images of bacterial pneumonia, 17 images of Pneumocystis 
pneumonia, 23 images of fungal pneumonia, 2 images of 
Chlamydophila pneumonia, and 11 images of unidentified 
pneumonia. Additional 517 cases of Covid pneumonia are 
sourced from a collaborative effort 
(https://github.com/ieee8023/covid-chestxray-dataset). Lung 
segmentations in this dataset were performed by human 
annotators and include lung opacities behind the heart. The final 
dataset (henceforth referred to as the V7 dataset) used to train 
Module 1 was derived from the V7-Darwin dataset by removing 
all sagittal views and CT scans. It consists of 6395 AP/PA 
CXRs, whose corresponding lung masks include the heart and 
large vasa contours. The dataset was split into a training and a 
validation set, with 6191 and 204 image/mask pairs, 
respectively. The original database contained 6209 unique 
patients, and sample selection avoided the inclusion of CXRs 
from the same patient in both the training and validation set. 
After the split, the training set contained 6018 unique patients, 
and the validation set contained 191 unique patients. 

B. Image resizing and ground truth labels.  
In order to be compatible with the image format used locally 

for archiving, all CXRs from the V7 dataset and the 
corresponding lung masks were resized to 300´340 pixels. This 
sizing is similar to that used in [6] to survey the Covid detection 

performance of 15 different CNNs of 5 different architectures. 
It is usually extremely challenging to differentiate pathological 
lesions in medical X-ray images, and image enhancement is 
often used to improve the lesions visibility. In our case, CXRs 
were histogram equalized to minimize differences in 
contrast/brightness within the dataset. When only a mask of the 
lung region was available, a complementary mask of the non-
lung regions was generated. At the end of this pre-processing 
step, all images and ground truth binary masks were of 
dimensions (300´340´1), with 2 masks (one for each class, 
lung and non-lung) per image.  

C. Data augmentation.  
Each pair of image and ground truth mask(s) was sheered 

(0°-15° range) or rotated at random angles (0°-90° range), 
shifted with a random center (0-10% range), vertically or 
horizontally mirrored, and randomly scaled in/out (0-10% 
range). The parts of the image left vacant by the transformation 
were filled in with reflecting padding. During training, images 
in a batch were not shuffled, but each image underwent a 
different type of augmentation as determined by the 
consecutive calls of a random number generator starting from a 
fixed initial seed. Since augmentation was carried out after the 
splitting of training and validation sets, the model’s 
performance with the validation set was not biased to identify 
augmentation features.  

Fig. 1. Module 1 architecture. n residual CONV RES blocks are repeated 
in a linear path along which the dimensions of the intermediate feature 
maps remain identical to those of the input image and of the output mask(s). 
The residual path of a CONV RES block consists of three parallel branches 
of separable/atrous convolutions that produce feature maps with the same 
spatial dimensions as the original image. Parallel branches inside the 
residual block are concatenated before adding them to the shortcut 
connection. A Spatial Dropout layer follows each residual block. In this 
study we have used 6 CONV RES blocks, each with kernel sizes of [3,3], 
[5,5], [7,7], and dilation rates of [1,1], [3,3], [5,5], respectively, with 16 
filters in each residual branch, and 48 filters in the shortcut branch.  
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D. Architecture.  
A flowchart of Module 1 architecture is shown in Fig. 1, (see 

also for more details Supplementary Information Fig. S1). 
Module 1 is a residual network that uses depthwise separable 
atrous convolutions with multi-scale kernels in the residual 
path [28]. As stressed in [28, 29], the rationale for using 
multiple kernel sizes and dilations is to extract object features 
at various receptive field scales. In Module 1, Convolutional 
Residual Block (CONV RES BLOCK, Fig. 1) are repeated in a 
linear path along which the dimensions of the intermediate 
feature maps remain identical to those of the input image and of 
the output mask(s). In this study we used a weighted Tanimoto 
loss [30] for training. Weights were derived with a contour 
aware scheme, by replacing a step-shaped cutoff at the edges of 
the mask foreground with a raised border that separates 
touching objects of the same or different classes [31]. The 
unweighted Dice coefficient [32] was used as the metric to 
evaluate segmentation accuracy.  

E. Training.  
Module 1 was trained with the V7 dataset using the Adam 
optimizer [33] in its default Tensorflow parameterization. Other 
hyperparameters were left unchanged from those identified 
during the testing of Res-CR-Net with microscopy images [21], 
the only difference being that the final Long Short Term 
(LSTM) memory block of Res-CR-Net was removed from the 
architecture of Module 1 to decrease the training time with the 
large number of images in the V7 dataset. Since no 
hyperparameter tuning was carried out, the validation set 
effectively acted as a test set. Based on the trend of the 
validation loss and accuracy (Fig. 2), training was stopped after 
100 epochs. The total number of parameters refined was 
58,309. Each epoch consisted of 516 training batches of 12 
images each, and 17 validation batches also of 12 images each. 
Run time was 2.814 s/batch (forward + backward propagation), 
322 ms/batch (forward propagation only) using 2 Nvidia Tesla 
V100 GPUs of Wayne State University High Performance 
Computing (WSU-HPC) grid. Memory usage was 13.82 
Gb/batch. The number of million floating point operations per 
second (MFLOPS) in a forward pass was 11,485. 

In every epoch, the network trained on 6192 different 
augmented images, and the corresponding augmented masks as 
labels. Upon training, Module 1 achieved ~94% segmentation 
accuracy on the images of the validation set. The training 
history showed no overfitting of the training vs. the validation 
set (Fig. 2). The segmentation task was to identify the regions 
occupied by the lungs with exclusion of the skeletal structures 
visible in the CXR, but including cardiovascular components 
and opacities due to underlying pathologies (Fig. 3). Module 1 
performed very well with the V7 training and validation 
datasets, achieving a score of 0.96 with respect to each of the 
metrics used to evaluate the network performance. These were: 

 

𝐷𝑖𝑐𝑒	𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 = !∗#$
(!∗#$&'$&'()

  

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = #$
(#$&'$)

 , 𝑅𝑒𝑐𝑎𝑙𝑙 = #$
(#$&'()

  

𝐹*	𝑠𝑐𝑜𝑟𝑒 = 	
!∗+,-./0/12∗,-.344
+,-./0/12&,-.344

  
 

where:	TP = true	positive, FP = false	positive, FN = false	negative  

 
F. Generation of lung masks for the HFHS dataset. 

Module 1 trained on the V7 dataset was used to generate lung 
masks for the CXRs in a dataset of AP/PA CXRs from non-
Covid and RT-PCR confirmed Covid patients acquired at the 
Henry Ford Health System (HFHS) Hospital in Detroit (the 
‘HFHS dataset’). All non-Covid CXRs were from pre-Covid 
era (2018-2019), and included images from both normal lungs 
and lungs affected by non-Covid pneumonia or other lung 
pathologies. HFHS CXR images were resized to 300´340 
pixels and histogram equalized to minimize differences in 

Fig. 2. Training and validation weighted Tanimoto Loss and Accuracy (as 
Dice Coefficient) vs. epochs for Module 1 processing of V7 images. 

Fig. 3. Examples of lung segmentation from the V7 validation subset. Left 
panels, CXR, Center panels, ground truth mask, Right panels, Module 1 
predicted mask thresholded at 0.5 value. Rows a-c show three cases in 
which the mask is very similar to the ground truth mask. Row d shows a 
case in which the predicted mask includes areas of the images that belong 
to the abdomen.  

Fig. 4. Examples of lung segmentation in CXR images from the HFHS 
dataset. CXRs were labeled by radiologists as Covid or non-Covid. 
Module 1 generated floating point lung masks are shown next to each 
CXR. 
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contrast/brightness within the datasets, prior to passing through 
CXR-Net Module 1 to calculate the corresponding masks of the 
lung regions. At the end of this pre-processing step, all images 
and masks were of dimensions (300´340´1). Example of CXRs 
from this dataset, and the corresponding lung masks generated 
by Module 1 are shown in Fig. 4. In all cases, mask values were 
kept in the original [0,1] floating point range representing the 
probability of an image region to be part of the lungs, without 
thresholding the mask at 0.5 value for conversion to a binary 
mask. Module 1 performance with the previously unseen CXRs 
of the HFHS dataset was very good, as judged by visual 
inspection of the masks, although in this case lung contours 
validated by radiologists were not available.  

III. CXR-NET MODULE 2: COVID VS. NON-COVID 
CLASSIFICATION 

A. CXRs sources 
CXR-Net Module 2 was trained against 2265 CXRs from 

1313 unique patients (1417 non-Covid, of which 1075 from 
unique patients, 848 Covid, of which 238 from unique patients), 
and tested against 1532 CXRs from 895 unique patients (945 
non-Covid, of which 735 from unique patients, 587 Covid, of 
which 160 from unique patients)), all from the HFHS dataset. 
CXRs were split into training and test set by avoiding inclusion 
of CXRs from the same patient in both sets. CXRs were resized 
to 300´340 pixels and histogram equalized. Module 1 
calculated lung masks values were in the [0,1] floating point 
range. Both training (2265 CXRs) and test images (1532 CXRs) 
were standardized to the common mean and standard deviation 
of the training set. The training set, was further split for 6-fold 
cross-validation into 6 distinct sets of 1887 training images and 
378 validation images, keeping in each set the same ratio of 
Covid to non-Covid images of the entire set of 2265 images. 
During training, CXRs were further assigned weights 
accounting for class imbalance (Covid vs. non-Covid).  

B. Architecture 
Module 2 is a hybrid convnet in which the first convolutional 

layer is a layer with fixed coefficients provided by the Wavelet 
Scattering Transform (WST) [24, 25]. A scattering network 
belongs to the class of CNNs whose filters are fixed as wavelets 
[34]. Thus, an important distinction between the scattering 
transform and a deep learning framework is that the filters are 
defined a priori as opposed to being learned. The construction 
of the scattering network relies on few parameters and is stable 
to a large class of geometric transformations [35], making its 
output a suitable generic representation of an image. A wavelet 
scattering framework enables the derivation from image data of 
low-variance features insensitive to translations of the input on 
a user-defined invariance scale; in the 2D case, they are also 
insensitive to rotations. The scattering framework uses 
predefined wavelet and scaling filters. Efficient algorithms for 
the 2D scattering transform have been implemented as a NN 
layer in Keras/Tensorflow via the Kymatio software [36]. 

A wavelet is an integrable and localized function in the 
Fourier and space domain, with zero mean. A family of 
wavelets is obtained by dilating a complex mother wavelet 𝜓 as 
𝜓5,7  where 𝑗 is a dilation scale and 𝜃 a rotation. J and L are 
integers parameterizing the dilation scale and the angular range. 

A scattering transform (J being its spatial scale) generates 
features in an iterative fashion. Given a grayscale image 𝑥, and 
a local averaging filter 𝜑8 with a spatial window of scale 28, we 
obtain the zeroth order scattering coefficients of 𝑥 as: 

𝑆9𝑥 = 𝐴8𝑥 = 𝑥 ∗ 𝜑8 (1) 

(where ∗ indicates here convolution). This operation leads to a 
down-sampling of scale 28. For example, in the case of a 
grayscale image of dimensions 𝑁 ×𝑁, 𝑆9𝑥 is a feature map of 
resolution 𝑁 28⁄ × 𝑁 28⁄  with a single channel. The zeroth 
order scattering transform is invariant to translations smaller 
than 28 (which for this reason is often referred to as the 
invariance scale of the transform), but also results in a loss of 
high frequencies, which are necessary to discriminate signals. 
However, the information is recovered when computing the 
coefficients in the next stage. Each stage consists of three 
operations: 
 
1) Take the wavelet transform of the input data with each 
wavelet filter in the filter bank.  

A wavelet transform, 𝑊, is the convolution of a signal with 
a family of wavelets, with an appropriate down-sampling. The 
first order wavelet transform of 𝑥 is: 

𝑊*𝑥 = 𝑥 ∗ 𝜓5!,7! (2) 

2) Take the modulus of each of the filtered outputs.  
3) Average each of the moduli with the scaling filter 𝜑8.  
 
Thus, the first order scattering coefficients can be calculated as: 

𝑆*𝑥 = 𝐴8|𝑊*|𝑥 = E𝑥 ∗ 𝜓5!,7!E ∗ 𝜑8 (3) 

In a grayscale image (i.e., a CXR from Fig. 4), 𝑆*𝑥 is a 
feature map of resolution 𝑁 28⁄ × 𝑁 28⁄  with JL channels. The 
use of averaging also in this first order, generates invariance to 
translation up to 28. To recover some of the high-frequencies 
lost due to the averaging applied on the first order coefficients, 
we apply a second wavelet transform 𝑊! (with the same filters 
as 𝑊*) to each channel of the first-order scatterings, before the 
averaging step. This leads to the second-order scattering 
coefficients, calculated as:  

𝑆!𝑥 = 𝐴8|𝑊!||𝑊*|𝑥 = FE𝑥 ∗ 𝜓5!,7!E ∗ 𝜓5",7"F ∗ 𝜑8 (4) 

In our grayscale image example, 𝑆!𝑥 is a feature map of 
resolution 𝑁 28⁄ × 𝑁 28⁄  with 𝐽(𝐽 − 1)𝐿! channels. The energy 
of higher order scatterings rapidly converges to 0. Thus, for 
most applications, a framework with two wavelet filter banks is 
sufficient. For this reason, the final scattering coefficient 𝑆8𝑥, 
which are the low-variance features derived from the image, 
correspond to the concatenation of the order 0, 1 and 2 
scattering coefficients. 𝑆8𝑥 is a feature map with 1 + 𝐽𝐿 +
!
"𝐽(𝐽 − 1)𝐿

! channels, down-sampled by a factor of 28 with 
respect to the original image. This representation has proven to 
linearize small deformations of images, to be non-expansive, 
and almost complete [35, 37], which makes it an ideal input to 
a deep convolutional network. An example, with J=2 and L=6, 
of the wavelets for each scales and angles that would be used 
for an image 𝑥 of dimensions 30 × 34 (1/10 of those used in 
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this study) is shown in Fig. 5a. The corresponding scattering 
transform tree is shown in Fig. 5b. The WST should not be 
confused with the Discrete Wavelet Transform (DWT), a 
different wavelet based technique that was recently used in 
another hybrid convnet designed for Covid detection [38]. 
DWT is an earlier technique developed by Mallat [23] to 
analyze signals into progressively finer nested octave bands. 
Later on, the same Mallat proposed WST [35] as a more 
effective multiresolution image analysis technique for deep 
learning systems. In early attempts to construct a hybrid 
convnet we also used the DWT, but found that the WST offered 
superior performance, in agreement with Mallat’s 
recommendation. 

A flowchart of the architecture of CXR-Net Module 2 in the 
default configuration of the pipeline (see Table 2, Section 
labeled Module 1+2) is shown in Fig. 6. Module 2 takes as 
inputs the patients’ CXRs and corresponding floating point lung 
masks (with [0,1] range representing the probability of an 
image region to be part of the lungs) calculated by Module 1, 
and produces as outputs a class assignment (Covid vs. non-
Covid). For input images of dimensions 300 × 340, the 
WAVELET SCATTERING TRANSFORM (WST) block 
(whose coefficients are not trainable, and determined only by 
the scale J and the number of rotations L), with J=2 and L=6 
produces two outputs with down-sampling by 28 = 4. The 1st 
output is a feature map of dimensions 75 × 85 × 50. The first 
49 channels are the scattering transform. The 50th channel is 
the down-sampled floating point mask (Fig. 7). The 2nd output 

is a binary mask of dimensions 75 × 85 × 1 of the lung regions 
derived from the corresponding floating mask by thresholding 
at 0.5 and down-sampling by 28. These outputs are passed to an 
ATTENTION block [39, 40] that calculates a map representing 
a cross attention between the lung masks and the input CXR 
image (Supplementary Information Fig. S2). This map is 
concatenated to the wavelet scattering transform output from 
the WST block producing a feature map of dimensions 
75 × 85 × 51. Upon passing through a Spatial Dropout and a 
Batch Normalization layer this map becomes the input to a 
residual CONV RES block (of the same architecture as 
described for Module 1) repeated 3 times in a linear path along 
which the dimensions of the intermediate feature maps remain 
identical to those of the input map. For these blocks, we have 

Fig. 5. Wavelet scattering transform. Panel a: Wavelets for each  scales and 
angles used for the transform of an image 𝑥 of dimensions 30 × 34 with 
J=2 and L=6. Color saturation and color hue denote complex magnitude 
and complex phase, respectively. Panel b: a tree showing the calculation of 
the different channels of the scattering transform. Boxes with red outline 
represent the wavelet transform of the image with each wavelet filter and 
with modulus applied. The purple dashed arrows represent the averaging 
operation; the averaging filter is shown in the box with purple outline. The 
corresponding scattering coefficients for orders 0, 1, and 2 are shown in the 
boxes with blue outline. Additional scattering coefficients derived from the 
wavelet transform of the input image 𝑥 with the 2nd  bank of wavelet filters 
are not shown. 

Fig. 6. Module 2 architecture (default configuration, Table 1). Panel a: 
overall architecture. Panel b: details of the WST BLOCK. Panel c: details 
of the ATTENTION BLOCK. The box labeled ‘Cross-Attention on rows 
and columns’ consists of two MultiHeadAttention layers working with the 
query, key, and value matrices for rows attention, and their transpose for 
columns attention. Panel d: details of the CONV RES blocks used in this 
module. In this case we have used 3 CONV RES blocks, each with kernel 
size of [3,3], and dilation rates of [1,1], [2,2], [3,3], respectively, with 17 
filters in each residual branch, and 51 filters in the shortcut branch. 
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used a kernel size of [3,3] with dilation rates of [1,1], [2,2], 
[3,3], respectively, with 17 filters in each residual branch, and 
51 filters in the shortcut branch. The final CONV RES block 
outputs a feature map of dimensions 75 × 85 × 2, with 
channels corresponding to the Covid and non-Covid classes. 
Both channels are first multiplied by the binary mask of the lung 
region (2nd input to the CONV RES blocks), then globally 
averaged before passing to a Softmax layer for Covid vs. non-
Covid classification. The ATTENTION block requires the 
training of ~1,100 parameters. The CONV RES blocks require 
the training of fewer than 20,000 parameters. It is worth noting 
that another type of residual network using depthwise 
separable atrous convolutions with multi-scale kernels in the 
residual path, named ‘Dilated and Depthwise separable 
Convolutional Neural Network (DDCNN)’ has been proposed 

recently by Li et al. [10] for the diagnosis of Covid-19 from 
CXRs. However, while DDCNN progressively reduces the 
spatial dimensions of the feature maps as they pass through 
several pooling layers, the feature maps of CXR-Net Module 2 
retain the same dimensions  (75 × 85 × 51) of the input image 
(as downsized by the WST block), with the exception of the 
feature map produced by the last block, which is of dimensions 
75 × 85 × 2, as it is used for binary classification (Fig. 6). 

C. Training  
In separate runs, different components of CXR-Net were 

selectively included/excluded in order to ascertain their relative 
contribution to the final classification performance of the 
pipeline (Table 1). The following CXR-Net architecture 
configurations were evaluated:  

  
1.  Default configuration (Table 1, Section labeled ‘CONF 1’, 

Supplementary Information Fig. S3): Module 2 was trained 
with Module 1 generated lung masks. In this case Module 1 
had its parameters frozen, and only the parameters of 
Module 2 were progressively refined. The final Covid vs. 
non-Covid classification represents the outcome from both 
modules acting sequentially. 

2.  Training as in 1., but without the ATTENTION block in 
Module 2 (Table 1, Section labeled ‘CONF 2’, 
Supplementary Information Fig. S4). The feature map 
channel produced by this block (Fig. 6c) was replaced with 
a channel containing the binary mask of the lungs.  

3.  Training as in 1., but with the WST block in Module 2 
replaced by a CONV RES block (Table 1, Section labeled 
‘CONF 3’, Supplementary Information Fig. S5).  

4.  Training as in 1., but with the WST block in Module 2 
replaced by 2 CONV RES blocks (Table 1, Section labeled 
‘CONF 4’, Supplementary Information Fig. S6). 

5.  Module 2 was trained without lung masks calculated by 
Module 1 (Table 1, Section labeled ‘CONF 5, 
Supplementary Information Fig. S7): in this case also the 
ATTENTION block was removed, as it uses the lung masks, 
and the channel produced by this block (Fig. 6c) was 
replaced with a channel with all pixels equal to 1. However, 
lung masks are optionally still used to calculate heat maps. 

 
In all cases, individual models were trained with 6-fold cross-

validation with the HFHS training set of 2265 CXRs. Several 
hyperparameters (see Supplementary Information Table S1) 
were fine-tuned to achieve optimal convergence and 
classification performance of the entire pipeline in its default 
configuration (Table 1, CONF 1). The same hyperparameters 
were then used for the training of all alternative configurations 
of the network shown in Table 1. Each epoch processed 145 
batches of 13 training images and 29 batches of 13 validation 
images. The augmentation strategy was similar to that already 
described for the training of Module 1, with the notable 
difference that both training and validation images, and their 
corresponding masks (if used) calculated by Module 1, were 
augmented, and thus, in each epoch, the network trained on 
1885 (145 ´ 13) different augmented images/masks, and was 
validated against 377 (29 ´ 13) different augmented 
images/masks. Based on the trend of the validation loss and 
accuracy, training was stopped after 200 epochs in each 

Fig. 7. Wavelet Scattering Transform. An example of the feature map of 
dimensions 75 × 85 × 49 produced by the Wavelet Scattering Transform 
Block. The top-left panel is the down-sampled input CXR, the bottom right 
panel is an extra channel with the down-sampled floating point mask. All 
other panels represent the transform output at different scales and rotations 
of the analytical wavelet.  
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validation run. Individual models derived from each run were 
then combined into an ensemble model (Supplementary 
Information Fig. S8) without averaging their layers 
coefficients. In our default pipeline (Table 1, CONF 1) the final 
ensemble model contained a single WST block followed by 6 
parallel branches, each with 1 ATTENTION and 3 CONV RES 
blocks. The random selection of the training and validation 
images in each run is shown in Fig. 8a. The training and 
validation loss and accuracy for each run are shown in Fig. 8b. 
Receiver-Operating Characteristic (ROC) curves for the 
validation images in each run are shown in Fig. 8c; a confusion 
matrix combining all validation images is shown in Fig. 8d. 
The Covid vs. non-Covid classification performance of the 
ensemble model with the non-augmented test sets of 1532 
CXRs is displayed in terms of ROC curves and Confusion 
Matrices in Figs. 8e,f.  

One-way analysis of variance (Anova) (Fig. 9, 
Supplementary Information Table S2) of the 6 cross-validated 
training runs with different Module 2 configurations, reveals 
that the ATTENTION block does not contribute significantly 
to the F1 score or the ROC area under the curve (auc), although 
some small positive effect can still be appreciated in the 
performance of the ensemble model (Table 1, compare CONF 
1 and 2). For this reason, until further tests with outside data 
clarify whether this block is useful or not, we retain it in the 
default configuration of the network (Table 1, CONF 1). 
Instead, statistically significant differences are noted between 
the default configuration and the configurations in which either 
the WST block is removed and replaced by 1 or 2 CONV RES 
blocks (Table 1, CONF 3 and 4), or lung masks are not used 
(Table 1, CONF 5). In particular, removing the WST block 
degrades the F1 and ROC values, as we would expect from the 
loss in image generalization akin to transfer learning provided 
by the WST. This loss is insufficiently replaced by adding more 
convolutional layers to the network. In contrast, somewhat 
unexpectedly, removing the use of lung masks significantly 
improves the F1 and ROC values. We have further investigated 
the meaning of the latter result through the use of Grad-CAM 
saliency (heat) maps [9].  

D. Heat maps 
Grad-CAM saliency maps [9] often suffer from low resolution, 
and thus fail to differentiate multifocal lesions within an image. 
CXR-Net Module 2 feature maps retain the same spatial 
dimensions and resolution throughout all layers, including the 
final convolutional layer that is used to generate the saliency 
maps. The two channels of this layer contain the predictions for 

TABLE 1. PERFORMANCE OF DIFFERENT CXR-NET CONFIGURATIONS 
  CONF 1: Module 1 masks + Module 2 

 Single Model Ensemble model  
Parameters 20,467 122,802 
Memorya 0.408 Gb/batch – 20.14 Mb/batch 30.37 Mb/batch 
MFLOPSc 253.652 1,454.363 
Eval. timeb 453 ms/batch 564 ms/batch 
 Mean (std) of 6 models Ensemble model 
 Validation set Test set Test Set 
Accuracy 0.813 (0.020) 0.756 (0.015) 0.789 
Precision 0.740 (0.056) 0.693 (0.052) 0.739 
Recall 0.793 (0.089) 0.676 (0.081) 0.693 
F1 score 0.759 (0.025) 0.678 (0.019) 0.715 
ROCAUC 0.895 (0.007) 0.828 (0.005) 0.852 

 
CONF 2: Module 1 masks + Module 2 without attention 

 Single Model Ensemble model  
Parameters 19,441 116,646 
Memorya 0.406 Gb/batch – 20.08 Mb/batch 30.02 Mb/batch 
MFLOPS 241.808 1,383.295 
Eval. timeb 442 ms/batch 526 ms/batch 
 Mean (std) of 6 models Ensemble model 
 Validation set Test set Test Set 
Accuracy 0.824 (0.017) 0.768 (0.008) 0.786 
Precision 0.770 (0.040) 0.729 (0.007) 0.756 
Recall 0.768 (0.050) 0.627 (0.033) 0.649 
F1 score 0.767 (0.022) 0.674 (0.019) 0.698 
ROCAUC 0.895 (0.018) 0.825 (0.011) 0.849 

 
CONF 3: Module 1 masks + Module 2 with WST block replaced by 

1 CONV RES block 
 Single Model Ensemble model  
Parameters 22,753 136,518 
MFLOPS 263.284 1,578,636 
Memorya 0.537 Gb/batch – 2.76 Mb/batch 11.83 Mb/batch 
Eval. timeb 164 ms/batch 273 ms/batch 
 Mean (std) of 6 models Ensemble model 
 Validation set Test set Test Set 
Accuracy 0.770 (0.027) 0.733 (0.015) 0.763 
Precision 0.670 (0.046) 0.651 (0.023) 0.696 
Recall 0.762 (0.049) 0.651 (0.022) 0.675 
F1 score 0.711 (0.040) 0.651 (0.017) 0.685 
ROCAUC 0.847 (0.021) 0.793 (0.017) 0.820 

 
CONF 4: Module 1 masks + Module 2 with WST block replaced by 

2 CONV RES blocks 
 Single Model Ensemble model  
Parameters 31,423 188,538 
MFLOPS 365.429 2,191.505 
Memorya 0.711 Gb/batch – 3.26 Mb/batch 14.41 Mb/batch 
Eval. timeb 193 ms/batch 326 ms/batch 
  Mean (std) of 6 models Ensemble model 
 Validation set Test set Test Set 
Accuracy 0.746 (0.017) 0.716 (0.012) 0.742 
Precision 0.621 (0.036) 0.608 (0.022) 0.635 
Recall 0.833 (0.036) 0.739 (0.045) 0.768 
F1 score 0.710 (0.022) 0.666 (0.010) 0.695 
ROCAUC 0.851 (0.017) 0.796 (0.017) 0.822 

 
CONF 5: Module 2 only (no masks, no attention) 

 Single Model Ensemble model  
Parameters 19,441 116,646 
MFLOPS 241.801 1,383.282 
Memorya 0.406 Gb/batch – 20.08 Mb/batch 26.02 Mb/batch 
Eval. timeb 382 ms/batch 474 ms/batch 
 Mean (std) of 6 models Ensemble model 
 Validation set Test set Test Set 
Accuracy 0.782 (0.021) 0.774 (0.008) 0.792 
Precision 0.658 (0.050) 0.665 (0.032) 0.681 
Recall 0.888 (0.055) 0.837 (0.058) 0.860 
F1 score 0.753 (0.016) 0.739 (0.008) 0.760 
ROCAUC 0.897 (0.009) 0.875 (0.090) 0.895 
         

Table 1: Complexity measures (parameters, mflops, memory, eval. time) 
are shown for Module 2 contribution only. The contribution from Module 
1 (section II, E, above) must be added to obtain the computational 
complexity of the entire pipeline. aThe 1st memory value reported for the 
single model reflects the space needed for both forward and back-
propagation (training) with a batch of images of the training set. The 2nd 
memory value reflects the space needed for just forward propagation 
(‘evaluation’) with a batch of images of the test set. Since all the 
coefficients of the ensemble model are frozen, only the memory space 
needed for forward propagation is reported. bEvaluation time refers to the 
time required for forward propagation with a batch of images of the test 
set, and with all calculations split between 2 Tesla V-100 GPU cards. In all 
cases, evaluation of either the validation or the test set by a single model 
or the ensemble model was carried out with the original non-augmented 
images. cMFLOPS, million floating point operations per second.  
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the CXR image probability of being Covid or non-Covid, 
respectively, summing to 1. We generate Grad-CAM maps 
from both channels. When Grad-CAM maps were generated by 
Module 2 in the configuration  that uses lung masks (Table 1, 
CONF 1), texture alterations in the lung regions of the CXRs 
(leftmost column in Fig. 10) were readily identified as the ‘hot’ 
regions of the saliency maps (middle column in Fig. 10). In 

contrast, when Grad-CAM maps were generated by Module 2 
in the configuration that does not use masks (Table 1, CONF 
5), despite the apparently superior classification performance of 
this configuration, the hot regions of the maps were mostly 
located outside the lung regions (i.e., diaphragm, shoulder, 
labels, image edges). This observation is consistent with similar 
observations in [13, 14, 16], suggesting that in the absence of 
information from lung segmentation the network relies heavily 
on confounding features that originate during the CXR 
acquisition, or that systematically differ between Covid and 
non-Covid datasets. This interpretation is confirmed by an 
analysis of the distribution of the class probabilities predicted 
with the test set when Module 2 operates with or without lung 
masks (Fig. 11). In its default configuration (Table 1, CONF 1) 
the ensemble model of CXR-Net predicts significantly better 
non-Covid than Covid CXRs (Fig. 11a). In the absence of 
information from lung masks, predictions for the Covid class 
present the highest median and the smallest variability of all 
configurations, while the median of the predictions for the non-
Covid class is decreased and its variability increased (Fig. 11b). 
This behavior is exactly what would be expected if the Covid 
class is confounded by systematic ‘Covid’ signals (markings, 
age, sex, race, position, etc.) in the non-lung regions of CXRs, 
while the non-Covid class, being simply assembled from a 
variety of pre-Covid era CXRs, is heterogenous with respect to 
non-lung regions. The ‘outliers’ distributions also supports this 
interpretation. In fact, when only the lung regions are 
considered (Fig. 11a), many CXRs from pre-Covid era that 
contains features of pneumonia similar to SARS-CoV-2 are 
predicted as non-Covid with very low probability. When both 
lung and non-lung regions are considered (Fig. 11b) the 
contribution of pneumonia features in non-Covid CXRs is 
diluted in the set, lowering the median and decreasing the 
number of outliers. Covid patients whose non-lung regions do 
not contain common systematic features appears as outliers.  
E. Graphic interphase 

We have developed g-CXR-Net [41], a graphic front-hand for 
CXR-Net ensemble model, which adopts the Python tkinter 
package as interface to the Tk GUI toolkit (https://www.tcl.tk/ ), 
and is compatible with most personal computer platforms (Fig. 

Fig. 8. CXR-Net training (default configuration, Table 1, CONF 1). Panel 
a: partition of 2265 CXRs into 6 randomly selected train (blue) and 
validation (orange) subsets (rows ‘0-5’). Cyan and brown sections (row 
labeled ‘class’) display the Covid +/– partition. A multicolor row (row 
labeled ‘group’) displays the partition between patients. Panel b: loss and 
categorical accuracy in the 6 training and validation sets. Panel c: 
validation ROC curves for each run (circles), and mean validation ROC 
curve for all 6 runs (continuous line). Panel d: confusion matrix for the 
combined validation sets. Panels e,f: ROC curve and confusion matrix for 
the ensemble model predictions with non-augmented 1532 CXRs of the 
test set.  

Fig. 9. Anova based comparison graph of 6 cross-validated models with 
different Module 2 configurations (Table 1), using images in the test 
set.  Each group mean and interval are represented by a full circle 
symbol, and a line extending out from the symbol. The first group mean 
and interval are highlighted in blue. The intervals for the other groups 
that do not intersect with the interval for group 1 mean, are highlighted 
in red. F1 score: 2 groups have means different from groups 1 (p=4.04e-
9). ROC auc: 3 groups have means different from groups 1 (p=8.20e-12). 
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12). CXR images of any size in dicom format are classified as 
Covid or non-Covid, and lung heat maps are generated in 
seconds on a desktop, laptop, or hand-held device.   

IV. LIMITATIONS OF THE STUDY 
CXR-Net features a dual-module architecture for the 

sequential segmentation of the lung fields in AP/PA CXRs, and 
their classification as either non-Covid (normal or other non-
Covid pathology) or SARS-CoV-2. We have shown that lung 
segmentation is necessary to avoid an artifactual identification 
of Covid cases on the basis of systematic features of non-lung 
regions that may be common in CXRs of Covid patients. For 
this reason, despite the higher classification performance of 
Configuration 5 (Table 1, CONF 5), we recommend 
Configuration 1 as the preferred architecture. However, it 
should be noted  that the lung segmentations provided by 

Module 1 are still very inaccurate when a pathologic 
consolidation of the lung tissue produces areas with pixel 
intensity comparable to those of non-lung tissues. In extreme 
cases, an entire affected lung can be excluded from the mask of 
both lungs, leaving in the mask only the unaffected lung, and 
thus leading to an incorrect classification. This is a serious 
problem, for which a variety of solutions have been proposed. 
Carvalho Souza et al. [42] have used a first NN to derive an 
initial segmentation that excludes lung opacities, and a second 
NN to reconstruct the lung regions “lost” due to pulmonary 
abnormalities. Selvan et al. [43] have treated high opacity 
regions as missing data and designed an image segmentation 
network that utilizes a generative model based on a variational 
encoder for data imputation. Motamed et al. [20] and Munawar 
et al. [15] have used generative adversarial networks (GANs) 
for both lung segmentation and classification. In this case, the 
GAN generator is trained to generate a segmented mask of a 
given input CXR. The discriminator distinguishes between a 
ground truth and the generated mask, and updates the generator 
through the adversarial loss measure. Despite these efforts, 
when patients’ pathologies lower the contrast between lungs 
and surroundings in the CXR, the segmentation task remains 

Fig. 11. Anova based scatter and box plots of the distributions of Covid vs 
non-Covid prediction probabilities assigned by the ensemble model of 
CXR-Net in different configurations. a. Module 1 masks + Module 2 
(Table 1, CONF 1). b. Module 2 only (Table 1, CONF 5). Red dots and 
boxes show the predicted probabilities of being Covid for CXRs that are 
truly Covid. Blue dots and boxes show the predicted probabilities of being 
non-Covid for CXRs that are truly non-Covid. Medians of the distributions 
are shown as yellow lines. 

Fig. 10. Ensemble model predictions for some CXRs in the HFHS test set. 
The leftmost column shows the input CXRs and labels (positive for Covid 
and negative for non-Covid) based on image analysis and RT-PCR. The 2nd 
and 3rd columns from the left show the model assigned positive and 
negative scores, and the corresponding Grad-CAM maps calculated using 
lung masks (Table 1, CONF 1). The 4th and 5th columns from the left show 
the model assigned positive and negative scores, and the corresponding 
Grad-CAM maps calculated without using lung masks (Table 1, CONF 5). 
The top 3 rows shows a correct positive assignment by both models. The 
4th row shows a CXR labeled positive, but assigned as negative by both 
models. The 5th row shows a CXRs labeled positive, but incorrectly 
assigned as negative when the lung masks are used. The bottom 3 rows 
shows CXRs labeled negative, and similarly assigned by both models.  
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very challenging, and a generally accepted strategy to improve 
the outcome has not been identified yet.  

Module 2 is a hybrid convnet that uses the Wavelet 
Scattering Transform (WST) of the input image [24, 25, 34] as 
the first layer. Since the coefficient of the WST block are not 
learned, Module 2 requires the refinement of only ~21,000 
parameters for images of dimensions 300 × 340. For this 
reason, in this study we could combine without parameter 
averaging the models derived from 6 cross-validated runs into 
a single ensemble model (Supplementary Information Fig. S8) 
of only ~123,000 parameters. In our experience, retaining the 
individual Module 2 validation models as parallel paths, rather 
than averaging their refined coefficients, improves the final 
classification performance of the ensemble model 
(Supplementary Information Table S1). Currently, the kernel 
sizes of the convolution operations inside the CONV RES 
blocks of Module 2 are optimized for the feature maps produced 
by the WST block. We have found that using CXR input images 
larger than 300 × 340 only slows down training without 
improving classification. However, were a user to opt for larger 
images, a manual optimization of the kernels inside the CONV 
RES block would be required. Future releases of the pipeline 
will adapt automatically the kernel sizes to the dimensions of 
the input images.  

The subset of non-Covid CXRs used in this study was 
selected out of the HFHS archive of images from pre-Covid era, 
and contains images of normal lungs as well as lungs affected 
by non-Covid pathologies, some of which, however, resemble 
Covid pneumonia. Since the current model was trained only on 
the Covid and non-Covid subset of images, it allows for a fast 
identification of Covid cases based on a simple binary choice. 
However, this type of training is also expected to increase the 
number of false negative attributions. Furthermore, while the 
pipeline can be easily modified for CXR classification into 
normal and various lung pathologies by increasing the number 
of channels of the last convolutional layer of Module 2, we can 
expect that, as classes multiply, the performance of the 
pretrained model will drop [44]. This is an issue of general 
importance in automated Covid detection from CXRs, because 
Covid progression entails at least three distinct stages (early 

infection, pulmonary phase, and hyper-inflammation phase) 
with distinct radiological features [45-49]. Unfortunately, while 
the HFHS database contains information on the time difference 
between the date of confirmed Covid diagnosis and the date of 
CXR acquisition, it does not contain annotations about the 
disease stage, or alteration in specific lung zones that would 
support the stage assignment. As a consequence, CXRs 
acquired at some late hospitalization time, which may contain 
features of recovery from Covid, are labeled the same way as 
others acquired at an earlier time, showing severe pulmonary 
involvement. Additional work will be required to include in the 
HFHS database appropriate metadata that report the exact stage 
of the disease in addition to the mere diagnosis.  

A different problem in the HFHS database is represented by 
the fact that the Covid subset is still significantly smaller than 
the non-Covid subset. To relieve this problem, during training 
CXR-Net uses traditional techniques of data augmentation 
based on image rotation, sheering, shifting, scaling, and 
mirroring. However, it has been reported that synthetic normal 
and Covid CXRs produced by GANs can be utilized to enhance 
further the performance of Covid detection [50, 51], and these 
methods will be implemented in future releases of the pipeline.  
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