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Abstract 1 

 2 

Magnetic resonance imaging is a fundamental tool in the diagnosis and management of 3 

neurological diseases such as multiple sclerosis (MS). New portable, low-field MRI scanners 4 

could potentially lower financial and technical barriers to neuroimaging and reach underserved 5 

or disabled populations. However, the sensitivity of low-field MRI for MS lesions is unknown. 6 

We sought to determine if white matter lesions can be detected on a 64mT low-field MRI, 7 

compare automated lesion segmentations and total lesion burden between paired 3T and 64mT 8 

scans, and identify features that contribute to lesion detection accuracy. In this prospective, 9 

cross-sectional study, same-day brain MRI (FLAIR, T1, and T2) scans were collected from 36 10 

adults (32 women; mean age, 50 ± 14 years) with known or suspected MS using 3T (Siemens) 11 

and 64mT (Hyperfine) scanners at two centers. Images were reviewed by neuroradiologists. MS 12 

lesions were measured manually and segmented using an automated algorithm. Statistical 13 

analyses assessed accuracy and variability of segmentations across scanners and systematic 14 

scanner biases in automated volumetric measurements. Lesions were identified on 64mT scans in 15 

94% (31/33) of patients with confirmed MS. The smallest lesions manually detected were 5.7 ± 16 

1.3 mm in maximum diameter at 64mT vs 2.1 ± 0.6 mm at 3T. Automated lesion burden 17 

estimates were highly correlated between 3T and 64mT scans (r = 0.89, p < 0.001). Bland-18 

Altman analysis identified bias in 64mT segmentations (mean = 1.6 ml, standard error = 5.2 ml, 19 

limits of agreement = -19.0–15.9 ml), which over-estimated low lesion burden and under-20 

estimated high burden (r = 0.74, p < 0.001). Visual inspection revealed over-segmentation was 21 

driven by flow-related hyperintensities in veins on 64mT FLAIR. Lesion size drove 22 

segmentation accuracy, with 93% of lesions >1.0 ml and all lesions >1.5 ml being detected. 23 

These results demonstrate that in established MS, a portable 64mT MRI scanner can identify 24 

white matter lesions, and disease burden estimates are consistent with 3T scans. 25 

 26 

Keywords 27 

 28 

Low-field MRI, portable MRI, point-of-care MRI, Hyperfine, multiple sclerosis, white matter 29 

lesion 30 
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Highlights 1 

 2 

● Paired, same-day 3T and 64mT MRI studies were collected in 36 patients  3 

● 64mT MRI showed 94% sensitivity for detecting any lesions in established MS cases 4 

● The diameter of the smallest detected lesion was larger at 64mT compared to 3T 5 

● Disease burden estimates were strongly correlated between 3T and 64mT scans 6 

● Low-field MRI can detect white matter lesions, though smaller lesions may be missed 7 

 8 

 9 

 10 

 11 

 12 

 13 

 14 

 15 

 16 

 17 

 18 

 19 

 20 

 21 

 22 

 23 

 24 

 25 

 26 

 27 

 28 

 29 
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1. Introduction 1 

 2 

Multiple sclerosis (MS) is a complex inflammatory and degenerative disease of the central 3 

nervous system (1). MS causes demyelinating lesions, typically assessed using magnetic 4 

resonance imaging (MRI). Imaging features related to white matter lesions (WML), such as 5 

number, volume, and dissemination in space and time, are key diagnostic criteria of MS (2) and 6 

determine treatment courses and clinical trial eligibility (3). Early diagnosis leads to better 7 

clinical outcomes, including delayed disease progression and reduced severity (4). 8 

 9 

Although MS affects ~800,000 people in the United States (5) and likely >2.5 million people 10 

globally (6), the significant cost, infrastructure, and technical requirements associated with 11 

traditional high-field-strength MRI limit access to imaging worldwide (7). The scarcity is 12 

particularly felt in low-resource, sparsely populated, and rural areas (8). As the lack of diagnostic 13 

imaging can lead to delayed diagnosis and treatment, which result in worsening health disparities 14 

(9), there is renewed interest in low-field MRI, which employs magnets with a field strength of 1 15 

tesla (T) or lower, as a lower-cost and potentially portable alternative to high-field MRI (10). 16 

 17 

Recent improvements in hardware as well as image reconstruction and processing algorithms 18 

(11) have made low-field MRI promising in contexts where modest resolution is sufficient for 19 

diagnostic purposes (12). The clinical utility of portable low-field MRI has already been 20 

demonstrated for bedside monitoring in intensive care settings, where patients may not be stable 21 

enough to transport for traditional imaging (13–15). In the outpatient treatment of diseases such 22 

as MS, portable low-field MRI has the potential to lower barriers to accessing MRI technology 23 

and allow more frequent monitoring of disease activity (16), however its sensitivity and accuracy 24 

have not been explored. In particular, WML to background signal intensities and size thresholds 25 

for detection are unknown. 26 

 27 

In this study, we assessed the feasibility of portable low-field MRI for MS lesion identification 28 

and lesion burden estimation. We collected paired same-day brain MRI from adults with MS at 29 

3T and 64mT at two different institutions and compared lesion detection using both manual and 30 

automated measurements. We anticipated that MS lesions would be detectable at 64mT, though 31 
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sensitivity to small lesions would likely be reduced. Finally, we explored a simple approach for 1 

super-resolution imaging of small lesions based on multi-acquisition image averaging. 2 

 3 

2. Materials and Methods 4 

 5 

2.1 Participants & Imaging 6 

 7 

Among adult outpatients undergoing clinical 3T brain MRI for known or suspected MS between 8 

October 2020 and April 2021, 36 patients (Fig. 1) were recruited at site A (N=21) and site B 9 

(N=15). All patients received same-day 3T and 64mT MRI. Demographic information was 10 

collected from clinical notes and included age, sex, race, clinical phenotype, disease duration, 11 

Expanded Disability Status Scale (EDSS), and current disease modifying therapy (Table 1). This 12 

study was approved by each site’s institutional review board, and patients provided written, 13 

informed consent.  14 

 15 

 Total (N = 36) Site A (N = 21) Site B (N = 15) 

Age (years) 49.6 ± 14.2 45.3 ± 13.6 * 55.7 ± 12.7 * 

Sex (women/men) 32/4 19/2 13/2 

Race/ethnicity 
(White/Black/Hispanic) 

26/9/1 14/7/0 12/2/1 

Disease duration 
(years) 

13.7 ± 11.2 10.2 ± 9.6 * 18.5 ± 11.5 * 

EDSS (0–10) 1.5 (IQR = 2.0) 1.5 (IQR = 2.0) 2.0 (IQR = 1.25) 

Phenotype  RRMS (18), CIS (1), 
NMO (1), RIS (1) 

RRMS (10), SPMS (2), 
CIS (1), ITM (1), PPMS 
(1) 

Current disease modifying 
therapy 

 ocrelizumab (9), 
natalizumab (2), other 
(6), none (4) 

dimethyl fumarate (6), 
ocrelizumab (3), other 
(3), none (6) 

 16 

Table 1. Patient Demographics. Demographic information and clinical history for 36 17 

consecutive MS patients included in the study. An asterisk indicates a significant difference 18 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 13, 2022. ; https://doi.org/10.1101/2022.03.11.22272272doi: medRxiv preprint 

https://doi.org/10.1101/2022.03.11.22272272
http://creativecommons.org/licenses/by/4.0/


Page 6 of 35 

between sites. Abbreviations: Expanded disability status scale (EDSS), relapsing-remitting 1 

multiple sclerosis (RRMS), primary progressive multiple sclerosis (PPMS), and secondary 2 

progressive multiple sclerosis (SPMS), clinically isolated syndrome (CIS), radiologically 3 

isolated syndrome (RIS), neuromyelitis optica (NMO), idiopathic transverse myelitis (ITM). 4 

 5 

High-field MRI was performed on 3T scanners (Siemens, Erlangen, Germany). Each site used a 6 

standardized, whole-brain imaging protocol, which included 3D T1-weighted (T1w), T2-7 

weighted (T2w), and 3D T2-FLAIR sequences (Fig. 2A). Sequence parameters are listed in 8 

Table 2. At site B, patients received gadolinium (gadobutrol, 0.1 mmol/L) prior to 3T scanning; 9 

64mT scans were obtained after contrast-enhanced 3T scans with mean post-gadolinium duration 10 

of 58 ± 21 minutes. 11 

Same-day, low-field MRI was performed on portable 64mT Swoop MRI systems (Hyperfine, 12 

Guilford, CT). Whole-brain, 3D T1w, T2w, and T2-FLAIR scans, analogous to those acquired at 13 

3T, were collected (Fig. 2B). Including localizer and pre-scan calibration, total scan time was 14 

26:06 minutes. 15 

 16 

Sequence Site Field 
Strength (T) 

TE 
(ms) 

TR 
(s) 

TI (s) Resolution 
(mm) 

Scan-time 
(min:sec) 

Averages 

T1w-MPRAGE A 3 2.48 1.9 0.9 1.0x1.0x1.0 4:18  1 

T1w-MP2RAGE B 3 2.92 5 0.7, 2.5 1.0x1.0x1.0 8:30  1 

T1w Both 0.064 6.26 1.5 0.3 1.5x1.5x5 4:52  1 

T2-FLAIR 3D A 3 398 5 1.6 1.0x1.0x1.0 5:02  1 

T2-FLAIR 3D B 3 352 4.8 1.8 1.0x1.0x1.0 7:15  1 

T2-FLAIR Both 0.064 200 4 1.4 1.6x1.6x5 9:29 1 

T2w A 3 103 5.5 N/A 0.5x0.5x5.2 1:46 2 

T2w B 3 82 5 N/A 0.34x0.34x3.0 4:30 1 

T2w Both 0.064 209 2 N/A 1.5x1.5x5 7:01 1 

 17 
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Table 2. Sequence parameters for study scans. Abbreviations: Tesla (T), T1-weighted (T1w), 1 

T2-weighted (T2w), Fluid-attenuated inversion recovery (FLAIR), echo time (TE), repetition 2 

time (TR), inversion time (TI). 3 

 4 

2.2 Manual Review and Lesion Measurement 5 

 6 

MRI scans were reviewed for WML by two neuroradiologists (DSR and JMS, 19 and 8 years 7 

experience). Maximum diameters (Dmax) of the smallest and largest WML visually detectable at 8 

each field strength were manually measured by a neuroradiologist (JMS) and a neurologist 9 

(SVO) with MS MRI expertise (3 years experience) using ITK-SNAP (17). All measurements 10 

were made on T2-FLAIR scans. Lesions were assessed in axial planes as well as sagittal and 11 

coronal reformations, and Dmax measurements were made on the plane with the largest lesion 12 

diameter. In confluent periventricular lesions, Dmax was measured perpendicular to the 13 

ventricle. Low-field imaging was evaluated prior to 3T scans to avoid interpretation bias, and 14 

image sets were reviewed separately. Inter-rater reliability was assessed using two-way random, 15 

single-measure intraclass correlation coefficients (ICC) with 95% confidence intervals (CI) 16 

reported. Patients that did not meet the McDonald criteria for dissemination of lesions in space 17 

were excluded from subsequent analyses (2). 18 

 19 

2.3 Automated Lesion Segmentation 20 

 21 

The same segmentation pipeline was applied to 3T and 64mT images. Images were preprocessed 22 

using N4 bias correction (18), and each T2-FLAIR volume was rigidly registered to the 23 

corresponding T1w volume using Advanced Normalization Tools (ANTs) (19,20). A brain mask 24 

was obtained using Multi-Atlas Skull-Stripping (MASS) (21). Finally, to enable comparisons 25 

across patients, image intensities were normalized using White Stripe (22) within each sequence. 26 

Lesion segmentation was performed using the Method for Inter-Modal Segmentation Analysis 27 

(MIMoSA) (23,24), an automated pipeline that leverages shared information (coupling) between 28 

modalities to produce probability maps of WML (Fig. S1). All probability maps were 29 

thresholded at 0.2 to generate binary lesion masks, manually selected based on prior empirical 30 

evidence.  31 
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 1 

2.4 Automated Segmentation Evaluation 2 

 3 

Estimation of total lesion burden was the primary performance measure compared between 3T 4 

and 64mT. Two lesion burden estimates were obtained for each patient by calculating lesion 5 

segmentation volumes for the respective scanners. The relationship between volume estimates 6 

was assessed using Pearson’s correlation. Bland-Altman plots were used to determine agreement 7 

and assess for systematic scanner biases. 8 

 9 

Similarity between segmentation masks was assessed using the Dice-Sørensen coefficient (Dice), 10 

which measures the overlap between two images (X and Y): 11 

 12 

���� �  
�|���|

|�|�|�|
.          (1) 13 

 14 

Dice scores range from 0–1, with 1 indicating perfect segmentation overlap. Prior to Dice 15 

calculation, 3T and 64mT images were coregistered using ANTs (20). While Dice score may not 16 

reflect segmentation quality when the number of target objects is not known a priori, this 17 

measure has been included as it is widely used and allows for comparisons across studies (25). 18 

All 3T and 64mT segmentations were manually reviewed to verify overlapping regions were 19 

WMLs rather than false positive detections. 20 

 21 

2.5 Size and Intensity Analysis 22 

 23 

Connected-components analysis was used to identify individual lesions in automated 3T and 24 

64mT segmentations (26). Sensitivity to individual lesions at low-field MRI was assessed using 25 

the true-positive rate (TPR), or the proportion of lesions correctly identified: 26 

 27 

��	 �  
��

�� � 
�
,          (2) 28 

 29 
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where true positives (TP) are defined as lesions where 64mT and 3T segmentations overlap and 1 

false negatives (FN) are defined as lesions with 3T segmentation but no 64mT segmentation 2 

overlap. The false-discovery rate (FDR) was assessed as: 3 

 4 


�	 �  

�


� � ��
,          (3) 5 

 6 

where false positives (FP) are defined as lesions with 64mT segmentation but no 3T 7 

segmentation overlap. Lesion overlap was defined as at least one shared voxel between the 3T 8 

and 64mT lesion segmentations. To understand the impact of lesion features on detection rates, 9 

TPR and FDR were plotted as a function of lesion size and normalized lesion intensity (22). 10 

 11 

2.6 Super Resolution Imaging 12 

 13 

Low-field MRI necessitates a trade-off between signal-to-noise ratio and image resolution, which 14 

limits the minimum detectable lesion size. However, image quality can be increased by taking 15 

advantage of partial volume effects in multiple scans (27). In one patient, multi-acquisition 16 

volume averaging was explored. Eight 64mT T2-FLAIR acquisitions (TE = 1.8 s, TR = 4 s, TI = 17 

1.4 s, averages = 80, scan time = 6:03 min, resolution = 1.8x1.8x5 mm) were collected with head 18 

repositioning between scans (total scan time: 48:24 minutes). Images were resliced to 1 mm 19 

isotropic resolution with linear interpolation, underwent affine registration to the initial 20 

acquisition, and were averaged to create a single high-resolution image. Super resolution images 21 

were iteratively generated for each additional acquisition, for a total of eight images. 22 

 23 

To quantify lesion conspicuity, we manually segmented the white matter lesion and a similarly 24 

sized region in normal appearing ipsilateral white matter on 3T imaging using ITK-SNAP (17). 25 

The 3T image and lesion segmentations were registered to the initial 64mT acquisition. We 26 

calculated lesion conspicuity as the ratio of the difference and the sum of mean intensity in the 27 

two segmentations: 28 

 29 

��
�������� �  
�
�

���
,          (4) 30 

 31 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 13, 2022. ; https://doi.org/10.1101/2022.03.11.22272272doi: medRxiv preprint 

https://doi.org/10.1101/2022.03.11.22272272
http://creativecommons.org/licenses/by/4.0/


Page 10 of 35 

where X is the mean intensity in the lesion segmentation and Y is the mean intensity of the 1 

normal appearing white matter segmentation. The segmentations were applied to each super 2 

resolution iteration to calculate conspicuity for that iteration. 3 

 4 

2.7 Statistics and Data/Code Availability 5 

 6 

All code related to this study is publicly available. The MIMoSA algorithm is available in R as a 7 

Neuroconductor package (https://neuroconductor.org/package/details/mimosa) and on GitHub 8 

(https://github.com/avalcarcel9/mimosa/). T-tests, Pearson’s correlation, and summary statistics 9 

were calculated using scipy (v1.5.2) and numpy (v1.19.2) in Python (v3.8.5). Bland-Altman 10 

plots were visualized using pyCompare (v1.5.1) while boxplots and correlations utilized seaborn 11 

(v0.11.0). Inter-rater reliability was calculated using irr (v0.84.1) in R (v4.0.3). A manuscript 12 

companion containing all analyses is available on GitHub (https://github.com/penn-13 

cnt/Arnold_LF-MRI_MS). The data generated in this study can be made available, with 14 

protected health information removed, upon reasonable request to the corresponding author and 15 

with a data sharing agreement between institutions in place. 16 

 17 

3. Results 18 

 19 

3.1 Patient Demographics 20 

 21 

We collected data from 36 adults with known or suspected MS. The patient population had a 22 

mean age of 49.6 (SD: 14.2) years and was composed of 32 women and 4 men (Table 1). The 23 

mean duration of disease was 13.7 years (SD: 11.2), and patients had a median EDSS of 1.5 24 

(interquartile range = 2). Patients from site B were significantly older than those from site A 25 

(two-sample t-test, t=2.2, p = 0.03, site A: 45.3 years old, site B: 55.7 years old) and had a 26 

correspondingly longer duration of disease (two-sample t-test, t=2.3, p = 0.03, site A: 10.2 years, 27 

site B: 18.5 years). Additional demographic information is provided in Table 1. After initial scan 28 

review, three patients were excluded from further analysis: One patient had excessive motion in 29 

the scanner and two patients did not meet the MS diagnostic criteria of having lesion 30 
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dissemination in space (DIS) (2). All subsequent analyses are based on the remaining 33 patients 1 

(Fig. 1). 2 

 3 

 4 

Figure 1. Flow chart of study participants. Abbreviations: multiple sclerosis (MS), clinically 5 

isolated syndrome (CIS), neuromyelitis optica (NMO). 6 

 7 

3.2 Manual Measurements 8 

 9 

MS lesions on 64mT are characterized by T1w hypointensity and T2w/T2-FLAIR 10 

hyperintensity, similar to 3T imaging (Fig. 2). At 64mT, lesions were identified by at least one 11 

rater in 94% (31/33) of patients with confirmed lesions on 3T imaging. In one patient, only one 12 

rater identified lesions at 64mT; all other low-field ratings were concordant. The largest and 13 

smallest lesions in each image were identified, and the Dmax was recorded. The 64mT scanner 14 

showed 100% sensitivity for detecting WML when there was at least one lesion with Dmax >5 15 

mm (31/33 patients, 94%). Across patients, there was no significant difference in Dmax for the 16 

largest lesions measured at 64mT (15.1 ± 5.9 mm) and 3T (14.8 ± 6.6 mm) (Fig. 3A). However, 17 

the mean Dmax for the smallest WML detectable was significantly larger (paired t-test, t=19.6, p 18 

ts 
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< 0.001) on 64mT (5.7 ± 1.3 mm) compared to 3T (2.1 ± 0.6 mm) (Fig. 3B). There was no effect 1 

of scan site on Dmax measurements, however there was a significant difference between rater 1 2 

(2.3 ± 0.5 mm) and rater 2 (1.9 ± 0.6 mm) for the smallest lesion detected at 3T (paired t-test, 3 

t=4.8, p < 0.001). No gadolinium enhancing lesions were seen on 3T or 64mT imaging.  4 

 5 

 6 

Figure 2. MS lesions appear similar on 3T and 64mT pulse sequences. Paired 3T (A) and 7 

64mT (B) images from a 66-70 year-old female with stable RRMS showing deep gray matter 8 

lesions (short arrow) and periventricular white matter lesions (long arrow) on both scanners. 9 

Sequences include T1-weighted (left), T2-weighted (center), and T2-FLAIR (right). 10 

 11 

 12 

 13 

ct 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 13, 2022. ; https://doi.org/10.1101/2022.03.11.22272272doi: medRxiv preprint 

https://doi.org/10.1101/2022.03.11.22272272
http://creativecommons.org/licenses/by/4.0/


Page 13 of 35 

1 

Figure 3. Manual lesion size measurements and interrater reliability. Raters from each site 2 

independently measured the maximum diameter (Dmax) of the smallest lesion (Sm) and largest 3 

lesion (Lg) in 3T and 64mT imaging for all patients. (A) For the largest lesion measurements, 4 

there were no significant differences between raters at 3T (t = 1.3, p = 0.19) or 64mT (t = 1.2, p 5 

= 0.23); additionally, there was no difference between 3T and 64mT measurements (t = 0.04, p = 6 

0.97). (B) For the smallest lesion measurements, there was a significant difference between raters7 

for 3T measurements (t = 4.83, p < 0.001) although 64mT measurements were not significantly 8 

different (t = 1.67, p = 0.11); additionally, the diameter of the smallest lesion was significantly 9 

lower (t = 19.6, p < 0.001) when measured on 3T (mean 2.1 mm) compared to 64mT (mean 5.7 10 

mm). (C) Across all lesions there was a strong correlation (r = 0.90, p < 0.001) between raters. 11 

There was significant intraclass correlation for the largest lesion at 3T (ICC = 0.77, CI = [0.58-12 

0.88]), largest lesion at 64mT (ICC = 0.91, CI = [0.83-0.96]), smallest lesion at 3T (ICC = 0.62, 13 

CI = [0.12-0.83]), and smallest lesion at 64mT (ICC = 0.66, CI = [0.4-0.82]), indicating a high 14 

degree of agreement between rater measurements for both 3T and 64mT. 15 

 16 

3.3 Interrater Reliability 17 

 18 

The smallest and largest lesion in each image were independently measured by two raters to 19 

assess interrater reliability (Fig. 3). The ICC for each patient’s largest lesion measured at 3T and 20 

64mT was 0.77 (CI = [0.58-0.88]) and 0.91 (CI = [0.83-0.96]) respectively, indicating high 21 

interrater reliability for large lesions on both scanners (Fig. 3A). Similarly, when measuring each 22 

patient’s smallest lesion there was a significant relationship between raters at both 3T (ICC = 23 

0.62, CI = [0.12-0.83]) and 64mT (ICC = 0.66, CI = [0.4-0.82]) (Fig. 3B). This indicates that 24 
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measurements made by raters had a similar degree of reliability at 3T and 64mT. Of note, the 1 

average smallest lesions detected (3T: 2.1 ± 0.6 mm, 64mT: 5.7 ± 1.3 mm) approached the 2 

respective resolution limits for each system (3T: 1 mm, 64mT: 5 mm). 3 

 4 

3.4 Total Lesion Burden Estimates 5 

 6 

To obtain more objective measures, 3T and 64mT image sets were processed with the same 7 

automated lesion segmentation algorithm. Initial qualitative review of segmentation overlays 8 

revealed similar patterns of lesion segmentation, particularly with respect to large periventricular 9 

lesions (Fig. 4). Quantitative comparisons indicated that estimates of total lesion burden were 10 

highly correlated (r = 0.89, p < 0.001) (Fig. 5A). Mean lesion burden estimates were not 11 

significantly different (paired-t-test, t = 1.0, p = 0.32) between 3T (11.9 ± 16.5 ml) and 64mT 12 

(13.5 ± 10.2 ml) images. 13 

 14 

 15 

Figure 4. Automated lesion segmentations at 3T and 64mT overlap. (A) 64mT FLAIR 16 

images for three cases (left) with automated lesion segmentations generated from the 64mT 17 

images using MIMoSA overlaid (right). (B) Corresponding 3T FLAIR images for the same three 18 
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cases (left) with 3T based segmentations (right). Patients from top to bottom are a 51-55 year-old 1 

female with RRMS, 41-45 year-old female with RRMS, and 71-75 year-old female with RRMS. 2 

All images were coregistered to 64mT T1-weighted images for comparison. Segmentations 3 

generated from 64mT and 3T scanners show similar patterns. 4 

 5 

A Bland-Altman plot for agreement between 3T and 64mT lesion burden estimates is presented 6 

in Figure 5B. The mean difference was 1.6 ml with a 5.2 ml standard error of measurement, and 7 

the 95% limits of agreement were -19.0 to 15.9 ml. There was a significant correlation (r = 0.74, 8 

p < 0.001) between pairwise differences and averages, indicating that compared to 3T, the 64mT 9 

segmentations overestimate low lesion burdens and underestimate high lesion burdens. Visual 10 

inspection revealed that false positives contributing to over-segmentation were predominantly 11 

due to flow-related high signal intensity in veins, hyperintensity in non-lesion structures (such as 12 

the pineal gland), and areas of artifactual peripheral high signal in cortical/subcortical tissue on 13 

64mT FLAIR sequences (Fig. S2). 14 

 15 

16 

Figure 5. Total lesion volume measured at 3T and 64mT shows agreement. (A) Pearson’s 17 

correlation (r = 0.89, p < 0.001) and (B) Bland-Altman plot showing agreement between 3T and 18 

64mT segmentation volumes (bias -1.6 ml, standard error of measurement = 5.2 ml, 95% limit of 19 

agreement -19.0 to 15.9 ml). Pearson’s correlation (r = 0.74, p < 0.001) in dark blue indicates 20 

over-segmentation at 64mT when lesion burden is low and under-segmentation when burden is 21 

high. 22 

 23 

3.5 Automated Segmentation Overlap 24 
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 1 

Across patients, there was a wide range in overlap between 3T and 64mT segmentation pairs 2 

(Dice: mean = 0.23, standard deviation = 0.21, max = 0.65, min = 0), with automated 3 

segmentations overlapping in 91% (30/33) of patients. Two patients had no segmentation overlap4 

and one patient was excluded because the overlapping region was a hyperintense pineal gland, 5 

not a WML. All three patients without lesion overlap were in the bottom 12% of total lesion 6 

burden. To characterize the full range of segmentation quality across the dataset, Figure S3 7 

illustrates segmentations from each quartile of the Dice distribution. Larger lesion size is 8 

frequently associated with higher Dice (25). We found in our dataset that total lesion burden at 9 

3T was highly correlated with Dice (r = 0.81, p < 0.001) (Fig. S4). 10 

 11 

3.6 Lesion Sensitivity and False Discovery 12 

 13 

In each segmentation, individual lesions were identified using connected-components analysis 14 

(26). For each lesion, volume and mean intensity were quantified. The true-positive rate (TPR) 15 

and false-discovery rate (FDR) were calculated across a range of lesion size and intensity 16 

thresholds (Fig. 6). The TPR increases dramatically with lesion size, reaching 93% for lesions >117 

ml and 100% for lesions >1.5 ml. The FDR decreases with lesion size, reaching 36% for lesions 18 

>1 ml, 22% for lesions >1.5ml, and 3% for lesions >2.5 ml. TPR also increases with mean lesion 19 

intensity, indicating that lesion intensity influences sensitivity; however, FDR remains high 20 

(>75%) regardless of the sensitivity, indicating a large number of false positive detections across 21 

intensity thresholds. Examples of false positive detections can be seen in Figure S2. 22 

 23 
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Figure 6. Lesion size and intensity influence detection rate. (A) The detection rate, or true 1 

positive rate (TPR), steadily increases with lesion size, with 93% detected at >1 ml, and all 2 

lesions greater than 1.5 ml being detected. The false discovery rate (FDR) decreases with lesion 3 

size, with 36% false discovery rate at >1 ml, 22% at >1.5 ml, and 3% at >2.5 ml. Though the x-4 

axis was limited to 4 ml for illustrative purposes, lesions >20 ml were found in the dataset. (B) 5 

To analyze the relationship between lesion intensity and detection rate, image intensity values 6 

were first normalized using White Stripe (Shinohara et al. 2014). While detection rate increases 7 

as mean lesion intensity increases, the FDR remains high (>75%) across lesion intensities. The 8 

high number of false positive detections was driven by hyperintense veins and peripheral signal 9 

artifacts, as seen in figure E3.  10 

 11 

3.7 Super Resolution Imaging 12 

 13 

In one patient, a 3x4x5 mm (0.06 ml) subcortical lesion was evident near the left middle frontal 14 

gyrus on 3T (Fig. 7A) but not in any single low-field acquisition (Fig. 7D). After multi-15 

acquisition volume averaging of 3 to 8 acquisitions, the lesion became detectable on the low-16 

field system, and lesion intensity relative to ipsilateral white matter steadily increased with 17 

additional acquisitions. With 8 volume averages, there was a 53% increase in lesion conspicuity, 18 

which was equivalent to 72% of conspicuity at 3T (Fig. 7B). With multi-acquisition image 19 

averaging, lesions as small as 0.06 ml were discernible on 64mT scans. 20 

 21 
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1 

Figure 7. Multi acquisition image averaging increases resolution. This figure depicts a 2 

3x4x5mm (0.06 ml) subcortical left frontal white matter lesion in a 51-55 year-old female with 3 

stable RRMS and compares 64mT FLAIR images generated from multi-acquisition image 4 

averaging to 3T imaging. The lesion is readily apparent on 3T imaging (A); however, it could not5 

be discerned in a single 64mT acquisition (D). Volume averaging of multiple acquisitions with 6 

repositioning between scans did reveal the lesion on the low-field system (B & C). The lesion 7 

was discernible for N≥3 multi acquisition averages. The lesion was manually segmented on 3T, 8 

and the ratio of mean lesion intensity to ipsilateral adjacent white matter (WM) is given as an 9 

estimate of lesion conspicuity (red dot). In 64mT imaging, the ratio steadily increases with 10 

additional acquisition averages (blue dots). With 8 volume averages, there was a 53% increase in 11 

lesion conspicuity. 12 

 13 

4. Discussion 14 

 15 

In this study, we compared manual and automated lesion detection in paired 3T and portable 16 

64mT brain MRI from patients with known or suspected MS at two sites. On visual inspection of 17 

64mT images, neuroradiologists were able to detect white matter lesions in 94% (31/33) of 18 

patients with discernable 3T lesions. An automated lesion segmentation algorithm detected 19 

overlapping lesions in 91% (30/33) of patients, and estimates of total lesion burden were highly 20 
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correlated between 3T and 64mT scans (r = 0.89, p < 0.001). Together, these results suggest that 1 

portable 64mT imaging could have diagnostic utility in the context of MS. 2 

 3 

Our investigation is motivated by recent advances in hardware development and reconstruction 4 

software that address the reduced signal-to-noise and resolution associated with low-field MRI. 5 

Commercial MRI systems have predominantly trended towards higher field strengths, with low-6 

field systems relegated to niche applications (7,11,28). Currently, there is renewed commercial 7 

interest in developing low-field MRI systems (29), including Hyperfine’s portable 64mT Swoop 8 

system, Synaptive Medical’s 0.5T Evry system, and Siemens’s 0.55T Magnetom Free.Max 9 

system, all of which have received FDA clearance since 2020. As evidence indicates that low-10 

field systems can detect relatively subtle pathologies, such as CNS demyelination (30–32), we 11 

were motivated to investigate the sensitivity of the newly available portable 64mT MRI for MS 12 

lesions.  13 

 14 

Our study found that lesions could be identified on 64mT scans in 94% of patients with 15 

discernible lesions at 3T. Additionally, we found a strong correlation between total lesion burden 16 

estimates on 3T and 64mT scanners. However, the smallest detected lesion size was significantly 17 

larger at 64mT (5.7 ± 1.3 mm) compared to 3T (2.1 ± 0.6 mm), indicating that smaller lesions 18 

are missed at low field. Taken together, these findings suggest that the 64mT device may be 19 

useful for tracking disease severity over time, although the device may be less suitable for 20 

making an initial diagnosis when high-field scanners are available. However, while high-field 21 

MRI will likely remain the diagnostic tool of choice in population centers of developed 22 

countries, the lower costs and infrastructure requirements of portable low-field MRI could 23 

expand clinical options for patients in low and middle income countries and rural areas (9). 24 

Within the United States, 60% of rural hospitals lack an on-site MRI (33). Additionally, most 25 

MS patients will experience mobility impairment, which can impact quality of care (34). Mobile 26 

MRI units could bring imaging to patients, providing otherwise unavailable service to sparsely 27 

populated areas and individuals who cannot travel (35,36). 28 

 29 

The lower cost and ease of use associated with low-field MRI could also impact how early and 30 

frequently patients are imaged (37). Rovira et al. were able to predict which individuals would 31 
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develop clinically definite MS using an MRI collected less than 3 months after the patient’s 1 

initial symptom onset (38). Increased scan frequency could also potentially permit earlier 2 

assessment of therapy response or detection of treatment complications, such as progressive 3 

multifocal leukoencephalopathy (16). Further studies should assess low-field MRI sensitivity for 4 

new or growing lesions over time in each clinical scenario. Our work indicates an ability to 5 

detect individual lesions at least as small as 0.06 ml using super-resolution imaging. 6 

 7 

Low-field MRI also offers the potential to conduct large-scale studies or screening of high-risk 8 

individuals at lower cost. In MS, high-risk asymptomatic family members have an increased 9 

incidence of neurological dysfunction and neuroimaging findings associated with MS (39). 10 

Additionally, patients with radiologically isolated syndrome (i.e., patients who meet MS criteria 11 

radiologically but are clinically asymptomatic) are known to be at high risk for development of 12 

clinical MS (40). However, studies of asymptomatic individuals require large sample sizes, 13 

which cause recruitment and cost restraints. The reduced cost of low-field MRI could 14 

significantly impact the type of population based and longitudinal studies available to researchers 15 

(37). 16 

 17 

While machine learning methods for MS lesion segmentation have yet to consistently outperform 18 

manual segmentation, they reduce the cost, time, and subjectivity associated with manual 19 

labeling (23,24). Combining low-field MRI with automated techniques can further address 20 

barriers to MRI access and image interpretation. In our work, the average Dice overlap between 21 

automated 3T and 64mT segmentations was only 0.23, with three subjects having no overlap. 22 

The low overlap was driven in part by hyperintense venous structures and peripheral artifacts on 23 

64mT FLAIR imaging, which also resulted in a higher number of false positives (22% for lesions 24 

>1.5ml) despite comparatively high lesion sensitivity (100% for lesion >1.5 ml). Our work 25 

illustrates the importance of reassessing algorithm performance for low-field MRI sequences and 26 

indicates that retraining or tuning may be necessary to address differences in image quality and 27 

tissue contrast. In practice, an automated segmentation could serve as a biomarker for 28 

determining eligibility or endpoints in clinical trials or as a starting point for further manual 29 

refinements. 30 

 31 
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Whether gadolinium can be used to assess contrast-enhancing lesions on the 64mT device 1 

remains unknown. In our study, we saw no contrast-enhancing lesions on 3T or 64mT. Patients 2 

at site B received a standard dose of 0.1 mmol/L of a contrast agent (gadobutrol) optimized for 3 

high-field MRI; however, since 3T imaging was performed first, there was an average delay of 4 

58 ± 21 minutes between contrast administration and 64mT imaging. At lower field strengths, 5 

the benefit from T1 shortening contrast agents is significantly reduced, and a higher gadolinium 6 

dosage (41), or potentially an alternative high-relaxivity agent (41,42), could be useful for low-7 

field MRI. Additionally, the 58-minute delay approaches gadolinium’s half-life and this washout 8 

period can further attenuate the signal. Studies with minimal post-contrast delay and potentially 9 

higher doses of gadolinium could be conducted to better assess the potential for lesion 10 

enhancement at low field. However, even at higher doses, low-field devices may have reduced 11 

sensitivity to contrast-enhancing lesions (43). 12 

 13 

The current study has several limitations. Our findings suggest that portable 64 mT FLAIR scans 14 

will be sensitive for white matter lesions in MS and more generally, but we focused on patients 15 

with established MS and did not assess the specificity of MS lesion detection relative to other 16 

disease processes or normal controls. In addition, sensitivity at the patient or lesion level will 17 

depend on the lesion burden and size distribution (44). We used automated 3T segmentation as 18 

ground truth, though complete labeling accuracy is challenging even at high field, and we 19 

considered lesion overlap and volume rather than lesion counts. We only evaluated a single 20 

lesion segmentation method; results may not generalize to other algorithms. Indeed, our findings 21 

indicate that both image acquisition strategies and segmentation methods can be further 22 

optimized to increase the sensitivity and accuracy of low field lesion detection for larger 23 

prospective studies. We did not assess longitudinal imaging or the ability to detect new or active 24 

lesions. Gadolinium was only administered at one of the two sites and was not administered 25 

directly for 64mT imaging. As discussed above, given that none of the patients in our cohort had 26 

gadolinium enhancing lesions on their high-field scans and the post-contrast delay before each 27 

64mT scan, we cannot assess whether contrast enhancing lesions can be seen at 64mT.  28 

  29 

5. Conclusion 30 

 31 
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In conclusion, increased imaging capabilities of low-field MRI systems warrants their re-1 

evaluation across a range of pathologies and indications. We found that a portable 64mT scanner 2 

was sensitive to WML and that an automated algorithm designed for 3T image segmentation can 3 

be applied to 64mT data. Although additional work will be needed to evaluate portable low-field 4 

MRI systems and their capacity to carry out specific clinical functions, our findings suggest 5 

promising avenues to more accessible imaging technologies for MS around the world.  6 

 7 
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Supplemental Material 1 

 2 

Study size calculation 3 

 4 

Based on preliminary results, the maximum diameter (Dmax) of the smallest lesion on 3T 5 

imaging was estimated to be 2 mm, while Dmax was estimated to be 6 mm on 64mT imaging. 6 

The standard deviation for manual measurements was estimated to be 2 mm. Using a 7 

significance level of 0.01 and a power level of 0.95, we estimated the necessary sample size to be 8 

18 patients to detect a significant difference between modalities (Eng 2003). Our study is well 9 

powered with over 30 patients. 10 

 11 

1. Eng J. Sample size estimation: how many individuals should be studied? Radiology. 2003 12 

May;227(2):309-13. Doi: 10.1148/radiol.2272012051. PMID: 12732691. 13 
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1 

Figure S1. Automated segmentation algorithm. Visual description of the steps in the 2 

MIMoSA algorithm. 3 

 4 
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1 

Figure S2. Examples of false positive lesion segmentations on 64mT T2-FLAIR. (A) False 2 

positive detections (long arrow) caused by artifactual peripheral hyperintensity in a 31-35 year-3 

old female with RRMS. False positive detections (long arrows) caused by hyperintense venous 4 

structures as seen in (B) a 31-35 year-old female with RRMS, (C) a 51-55 year-old male with 5 

RRMS, and (D) a 46-50 year-old male with clinically isolated syndrome. A hyperintense pineal 6 

cyst (short arrow) was also a source of false positive labeling in D. 7 
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1 
Figure S3. Dice score distribution of lesion segmentations. This figure highlights patients 2 

from each quartile of the Dice score distribution (mean = 0.23, standard deviation = 0.21). From 3 

left to right, the images are the original 64mT image, 64mT image with segmentation overlay, 4 

the original 3T image, and 3T image with segmentation overlay. Even patients in the lowest 5 

quartile demonstrate overlapping periventricular lesions. 6 
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 1 

Figure S4. Dice score increases with lesion volume. Previous studies have found that larger 2 

lesions size are associated with higher Dice scores (25). In our study, we found a similar effect (r 3 

= 0.81, p < 0.001) such that subjects with higher lesion burden had correspondingly higher Dice 4 

scores. 5 

 6 
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False positive detections 1 

 2 

Visual inspection of automated 64mT segmentations revealed some consistent sources of false 3 

positive lesion detection on FLAIR images, including flow-related hyperintensities in venous 4 

structures (dural venous sinuses and small cerebral or cortical veins), other hyperintense 5 

structures such as pineal cysts, and peripheral hyperintensities due to image artifacts. Examples 6 

of these artifacts can be seen in figure E3. 7 

 8 

In a sub-analysis, automated segmentations were manually edited in ITK-SNAP to remove some 9 

of the common false positives. In particular, we removed false positives in major sinuses (i.e., 10 

sagittal, straight, and transverse) as well as hyperintense pineal cysts. Peripheral hyperintensities 11 

caused by image artifacts or smaller cortical veins were not edited, as classification of these 12 

detections is more subjective. After manually editing the segmentations, the true positive rate 13 

(TPR) and false discovery rate (FDR) were recalculated. 14 

 15 

There was a sharp decrease in the FDR as a function of lesion size after manual editing, reaching 16 

11% at >1.0ml compared to 36% in the original automated segmentation (Fig. E6A). There was a17 

modest decrease in FDR as a function of lesion intensity; however, FDR remains >65% across 18 

sensitivities (>75% in automated segmentations) (Fig. E6B). TPR remain relatively unchanged in19 

both plots. These results highlight how optimized FLAIR sequences without hyperintense veins 20 

could decreased the rate of false positive detections by automated algorithms.  21 
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Figure S5. False discovery rate decreases after removing hyperintense veins. After manually 1 

removing hyperintense veins and other hyperintense brain structures from segmentations, the 2 

false discovery rate (FDR) decreases. (A) The FDR decreases as a function of lesion size. 3 

Manually edited segmentations had a lower FDR relative to the unedited automated 4 

segmentations (>1 ml: unedited=36%, edited=11%, >1.5ml: unedited=22%, edited=9%, >2.5ml: 5 

unedited=3%, edited=0%). (B) When analyzing FDR as a function of mean lesion intensity, the 6 

effect was less pronounced. In unedited segmentations, FDR was high (>75%) across lesion 7 

intensities. While there was a modest reduction after manual editing, FDR remained >65%. 8 

 9 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 13, 2022. ; https://doi.org/10.1101/2022.03.11.22272272doi: medRxiv preprint 

https://doi.org/10.1101/2022.03.11.22272272
http://creativecommons.org/licenses/by/4.0/

