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Abstract 

Background: The COVID-19 pandemic remains a global public health concern. 

Advances in rapid sequencing has led to an unprecedented level of SARS-CoV-2 whole 

genome sequence (WGS) data and sharing of sequences through global repositories 

that has enabled almost real-time genomic analysis of the pathogen. WGS data has 

been used previously to group genetically similar viral pathogens to reveal evidence of 

transmission, including methods that identify distinct clusters on a phylogenetic tree. 

Identifying clusters of linked cases can aid in the regional surveillance and management 

of the disease. In this study, we present a novel method for producing stable genomic 

clusters of SARS-CoV-2 cases, cov2clusters, and compare the sensitivity and stability 

of our approach to previous methods used for phylogenetic clustering using real-world 

SARS-CoV-2 sequence data obtained from British Columbia, Canada, 

Results: We found that cov2clusters produced more stable clusters than previously 

used phylogenetic clustering methods when adding sequence data through time, 

mimicking an increase in sequence data through the pandemic. Our method also 

showed high sensitivity when compared to epidemiologically informed clusters. These 

clusters often contained a high number of cases that were identical or near identical 

genetically. 

Conclusions: This new approach presented here allows for the identification of stable 

clusters of SARS-CoV-2 from WGS data. Producing high-resolution SARS-CoV-2 

clusters from sequence data alone can a challenge and, where possible, both genomic 

and epidemiological data should be used in combination. 
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 1 

Background 1 

The COVID-19 pandemic has had worldwide economic, social and health impacts 2 

unlike any infectious disease in recent history. First identified as an unknown cause of 3 

pneumonia in patients from Wuhan, China in late 2019, the aetiological agent was 4 

quickly determined to be a novel Betacoronavirus, subsequently named severe acute 5 

respiratory syndrome coronavirus 2 (SARS-CoV-2) 1–3. Extensive global person-to-6 

person transmission followed and on March 11, 2020 4, the World Health Organization 7 

(WHO) declared COVID-19 a pandemic, with cases since reported in almost every 8 

country in the world. As of 10th March 2022, there have been over 450 million cases and 9 

6 million deaths associated with the disease worldwide 5. 10 

  11 

The development of effective vaccines and regional containment strategies have 12 

allowed countries to mitigate the spread of SARS-CoV-2 and thereby reduce 13 

transmission, hospitalization, and death rates from COVID-19. Nevertheless, the threat 14 

posed by the disease is still a worldwide concern due to the emergence of Variants of 15 

Concern (VoCs) such as the Delta and Omicron variants that display increased 16 

transmissibility with lower vaccine effectiveness 6,7, delayed global vaccination 17 

deployment, vaccine hesitancy, and unequal access to vaccines and therapeutics.  18 

 19 

We have seen an unparalleled effort in whole genome sequencing (WGS) of COVID-19 20 

to identify new variants and mutations of concern. To date, there are over 9 million 21 

sequences publicly available through the open-source GISAID initiative 8. Utilising these 22 

data to develop novel and easy-to-implement tools to detect growing or emerging 23 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 13, 2022. ; https://doi.org/10.1101/2022.03.10.22272213doi: medRxiv preprint 

https://doi.org/10.1101/2022.03.10.22272213
http://creativecommons.org/licenses/by-nc-nd/4.0/


 2 

transmission clusters can help control the spread of the virus locally. We can use 24 

genomic similarity to identify linked cases with shared demography or geography at a 25 

higher resolution than a shared lineage assignment or simply via contact tracing. 26 

Inspecting clusters can reveal sources of common exposures or patterns of 27 

transmission through a population, which can be used to understand regional 28 

epidemiology and inform public health policy, such as implementing restrictions in 29 

certain settings with a high transmission risk. Practically, we have also seen that the 30 

SARS-CoV-2 lineage nomenclature, such as the widely used Pangolin system 9 has 31 

been dynamic through the pandemic and cannot provide sufficient resolution for 32 

epidemiological investigations. Thus, clustering sequences by genomic similarity 33 

provides the resolution and stability necessary for public health applications over the 34 

course of a dynamic pandemic.  35 

  36 

Phylogenetic trees are an effective tool for summarizing evolutionary relationships 37 

among taxa, and tree reconstruction methods can be used to achieve realistic 38 

measures of genetic divergence. The information contained within a phylogeny can be 39 

used to define groups of closely related sequences that may indicate recent 40 

transmission between cases, either through identifying distinct clades on a tree or by 41 

using the pairwise patristic distance as a measure of divergence between tips. 42 

Phylogenetic clustering methods have been applied in many virological analyses 10–12, 43 

as well as early in the COVID-19 pandemic to define putative transmission clusters in 44 

SARS-CoV-2 13–15. However, clustering based solely on genetic variation may not be 45 

sufficient to effectively identify meaningful clusters in SARS-CoV-2 where there has 46 
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been rapid spread of the virus with relatively low genetic diversity 16–18, as well as 47 

periods of lineage replacement with new VoCs also reducing regional genetic diversity 48 

in the virus 19. Additionally, comprehensive sampling of ongoing transmission within a 49 

population can result in multiple clusters that are linked genetically through ancestral 50 

samples. Defining clusters using a fixed genetic distance threshold may cause 51 

sequences to change cluster designation through time as more sequences are 52 

collected.  53 

  54 

Here, we present a novel method for constructing SARS-CoV-2 genomic clusters, using 55 

the pairwise probability of clustering under a logit regression model, and linking cases 56 

under a given probability threshold. The logit model incorporates genetic relatedness 57 

through phylogenetic distance and collection or symptom onset date; this method also 58 

allows for the inclusion of other covariates of interest that may result in meaningful 59 

clusters (e.g., contact data, exposure events). In contrast to previous clustering 60 

approaches that often rely solely on phylogenetic inference (tree cluster reference), 61 

clustering isolates in this pairwise manner allows for greater cluster stability through 62 

time, as well as resolution by including epidemiological information without the need for 63 

time-consuming manual investigation. Previous clustering designation of sequences can 64 

also be specified a priori to further improve cluster stability.  This also allows clustering 65 

to be performed on subsampled datasets where previously clustered sequences have 66 

been removed for ease of analysis. We provide this method as an R package, 67 

github.com/bensobkowiak/cov2clusters, for use within the research and public health 68 

community to investigate SARS-CoV-2 transmission dynamics. 69 
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 70 

Results 71 

Sample description 72 

Whole genome sequence data was obtained for 36,420 SARS-CoV-2 samples collected 73 

between 15th March 2020 and 13th August 2021 in BC, Canada. These data encompass 74 

sequences collected during the first, second and third ‘waves’ of the pandemic in the 75 

province, predominantly comprising the SARS-CoV-2 sub-lineages B.1.2 and B.1.438.1 76 

(wave 2) initially before replacement with B.1.1.7 (Alpha) and P.1 (Gamma) (wave 3), 77 

which led to a rapid increase in cases (Figure 1A). The data also includes the 78 

beginning of a rise in cases in June 2021 that would eventually lead to the fourth ‘wave’ 79 

in BC, largely driven by the Delta SARS-CoV-2 variant sub-lineages B.1.617.2 and 80 

AY.25 (more recently denoted as AY.25.1), with the number of cases caused by this 81 

variant increasing in early May 2021 before becoming the principal variants in BC by 82 

August 2021 (Figure 1B). Levels of genetic diversity within the SARS-CoV-2 samples 83 

collected fluctuated over the study period, with very low diversity in the population 84 

observed during the periods of high B.1.1.7 (Alpha) and P.1 (Gamma) case numbers, 85 

and with the introduction of the Delta variants (Supplementary figure S1). 86 

  87 

Cluster results in BC SARS-CoV-2 data 88 

Genomic clustering with cov2clusters (using the pairwise probability thresholds of 0.7 89 

and 0.8) and TreeCluster ‘single_linkage’ found fewer, larger clusters than both 90 

cov2clusters at the 0.9 threshold and TreeCluster ‘max_clade’. This occurs both in the 91 

pre-Delta dominance and Delta wave data. cov2clusters at the 0.9 probability threshold 92 
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found many small clusters and a high number of sequences assigned as non-clustered, 93 

indicating this threshold may over-cluster the data. Figure 2 shows the phylogenetic 94 

trees produced by the pre-Delta dominance and Delta waves and the resulting cluster 95 

assignments, with the largest five clusters found by each approach shown in colours, all 96 

sequences clustered in smaller clusters in grey, and non-clustered sequences in white. 97 

The largest clusters found using cov2clusters at the 0.7 and 0.8 probability thresholds 98 

were of similar size, though the number of clusters at the 0.7 probability threshold was 99 

significantly lower, with most sequences of the same sub-lineage assigned to a single, 100 

large cluster. 101 

  102 

Sensitivity of clustering methods with epidemiologically informed clusters 103 

The sensitivity of the logit clustering tool, cov2clusters, for assigning sequences into 104 

seven epidemiologically well-defined clusters was tested using two pairwise probability 105 

thresholds (0.8, 0.9). These results were also compared to the sensitivity of TreeCluster 106 

using both the maximum clade distance threshold approach and the maximum pairwise 107 

linkage threshold approach (Table 1). We found that cov2clusters with a pairwise 108 

probability threshold of 0.8 assigned the highest number of sequences to 109 

epidemiologically informed clusters (92%), performing marginally better than 110 

TreeCluster ‘single_linkage’ method (87%) and significantly better than TreeCluster 111 

‘max_clade’ (66%) and cov2clusters at the 0.9 probability threshold (71%). We also 112 

tested cov2clusters with a probability threshold of 0.7, though at this threshold very 113 

large lineage-specific clusters were formed, which did not add any meaningful resolution 114 

to transmission clusters compared to simply using lineage classification.  115 
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  116 

Cluster stability through time 117 

The stability of the genomic clusters through time was assessed by running each 118 

method on the Delta wave data collected up to 11th June 2021, and then re-running the 119 

clustering, adding sequences collected each subsequent week until the end of the study 120 

period. Stability measures tested were 1) the proportion of sequences that moved from 121 

a cluster in the preceding week to non-clustered in the current week, 2) the number of 122 

clusters defined in the previous week that split in the current week (i.e., any instance 123 

where sequences that were in a single cluster in the previous week have moved to 124 

different clusters in the current week), and 3) the overall entropy score of the clusters 125 

found in the current week (with the lowest score of 0 occurring when all sequences are 126 

in a single cluster).  127 

  128 

We found that the TreeCluster ‘max_clade’ method resulted in the highest proportion of 129 

sequences moving from clusters to become non-clustered in subsequent weeks 130 

(highest on 23rd July 2021 with 1.14% of sequences), with TreeCluster ‘single_linkage’ 131 

also resulting in low numbers of sequences moving from clustered to non-clustered 132 

(Figure 3). All cov2clusters methods did not result in any sequences moving from 133 

clustered to non-clustered. The number of cluster splits was also highest with 134 

TreeCluster ‘max_clade’, with 54 clusters splitting in the week ending 13th August 2021, 135 

followed by TreeCluster ‘single_linkage’. Cluster entropy was observed at its lowest in 136 

cov2clusters at the 0.7 threshold through every week of the tested period, followed by 137 

cov2clusters at the 0.8 threshold. cov2clusters at a 0.9 threshold and TreeCluster 138 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 13, 2022. ; https://doi.org/10.1101/2022.03.10.22272213doi: medRxiv preprint 

https://doi.org/10.1101/2022.03.10.22272213
http://creativecommons.org/licenses/by-nc-nd/4.0/


 7 

‘max_clade’ scored the highest entropy, reflecting the more even distribution of the data 139 

into smaller clusters, though as shown, this can be at the cost of over-clustering. 140 

  141 

Discussion 142 

In this study, we have presented a new method for genomic clustering of SARS-CoV-2 143 

using pairwise probabilities of shared cluster membership derived from a logit 144 

regression model based on sequence divergence and sample collection dates. This 145 

method can readily incorporate epidemiological data, such as geography, contact or 146 

shared exposure, to add further resolution to clustering. We tested our approach using 147 

three pairwise probability thresholds for linking sequences to form clusters and found 148 

that at probability threshold of 0.8 formed the most stable clusters in our clinical data 149 

from samples collected in BC, Canada. Comparing our method to other phylogenetic 150 

clustering tools, we found the sensitivity of cov2clusters at a 0.8 probability threshold 151 

was higher than both TreeCluster ‘max_clade’ and ‘single_linkage’, and that the clusters 152 

produced were more stable as cases are added through time, owing to our approach 153 

incorporating past designations in time into the clustering pipeline. This result has 154 

particular significance for the utility of this method in real-time public health surveillance, 155 

where sequencing datasets grow over time, and stability in cluster designations is 156 

beneficial for reporting and surveillance. We have implemented our approach as a freely 157 

available R package. 158 

 159 

We used patristic distance from phylogenetic trees as the measure for genetic 160 

divergence in our method to utilize the full information available in the sequence 161 
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alignment, compared to genetic distance measures that, while correlated with patristic 162 

distance, may underestimate pairwise divergence 20. Phylogenetic uncertainty in SARS-163 

CoV-2 trees, where many terminal branches are supported by low numbers of 164 

mutations, has been explored previously 21. It was shown that variation in tree topology, 165 

which in turn will alter pairwise distances between tips, was driven by the sample set of 166 

sequences used to construct the tree that changes through time. While this will impact 167 

the stability of any method that uses patristic distance to inform clustering, we have 168 

shown that our approach reduces this instability in genomic clustering. 169 

 170 

Large clusters of genetically similar sequences were common in our dataset. Indeed, 171 

given the high number of COVID-19 infections and relatively low genetic diversity of 172 

SARS-CoV-2 in the province, it is expected that in settings with even moderate levels of 173 

sequencing, we are likely to capture sequences separated by few mutations. Therefore, 174 

large clusters will occur, with many identical or near-identical sequences and with 175 

‘chaining’ of closely related sequences. In other words, with dense sampling of ongoing 176 

person-to-person transmission, and over a short timeframe, there may be a lack of well-177 

separated clusters in datasets for any clustering method to uncover. This contrasts with 178 

some other viruses, such as HIV, that will produce structured phylogenies from which 179 

discrete clusters can be identified 20. This in part due to HIV’s chronic nature (leaving 180 

longer time intervals between infections with a higher potential for intra-host genetic 181 

diversity and viral populations), as well as the fact that, in HIV, relatively small clusters 182 

are seeded by introductions from other jurisdictions. Here, when a large fraction of 183 

infections is sequenced, the time between infections is short, and considerable 184 
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transmission is occurring within the sampling jurisdiction. Therefore, using only genomic 185 

divergence derived from a given phylogeny is unlikely to identify well-separated SARS-186 

CoV-2 transmission clusters. Additional epidemiological data can be used to refine large 187 

clusters found using our genomic clustering approach. For example, including 188 

information such as common exposures and contact tracing data may divide large 189 

clusters into operational units with public health relevance. One limitation of our study is 190 

that we do not have exposure, contact or location information to explore this application.  191 

  192 

Sequences belonging to a P.1 sublineage (P.1.14) form a single, large cluster 193 

(illustrated as the red cluster in the delta wave dataset in Figure 2), coinciding with a 194 

high number of low-diversity P.1 cases present in BC from April 2021 onwards 22, where 195 

almost all P.1 samples were within 0-1 SNPs of another P.1 sequence. This 196 

phenomenon is also expected with the recent Omicron variant, where rapid spread has 197 

led to high numbers of low diversity cases 23. Increasing the probability threshold to 0.9 198 

(or conducting phylogenetic clustering with a smaller maximum clade divergence 199 

threshold) breaks up the cluster into smaller groups of identical or near-identical 200 

sequences, but this does not reflect genuine underlying clustering (Supplementary 201 

figure S2). In such circumstances, we recommend including additional metadata to 202 

refine clusters into genetically related groups with shared demography and 203 

epidemiology. Alternatively, our approach could be used as a surveillance tool focusing 204 

on a particular individuals or settings of interest, identifying sequences that are linked to 205 

the focal individuals or exposure sites, moving outwards to a desired number of “rings”.  206 

  207 
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While COVID-19 remains at pandemic levels with high case numbers in many regions 208 

globally, it is anticipated that there will be a shift to endemicity characterized by 209 

persistent, lower levels of the disease interspersed with seasonal or occasional 210 

outbreaks 24. In that context, it is likely that the viral population will have smaller and 211 

better-separated clusters. We suggest that the method presented here for clustering 212 

can be effectively utilized in both contexts. 213 

 214 

Conclusions 215 

Identifying meaningful, high-resolution clusters from SARS-CoV-2 genomic sequence 216 

data alone can be a challenge due to relatively low genetic diversity and high rates of 217 

localised transmission. Nevertheless, WGS data can be a useful tool when combined 218 

with epidemiological and demographic data to better characterise groups of individuals 219 

with shared transmission histories. Here we present a simple method for producing 220 

highly stable genomic clusters of SARS-CoV-2 that incorporates genomic and 221 

epidemiological data to link cases for use in public health surveillance.  222 

 223 

Methods 224 

Sequence data and phylogenetic analysis 225 

Positive SARS-CoV-2 samples collected in British Columbia (BC), Canada, between 226 

18th March 2020 and 13th August 2021 underwent whole-genome sequencing at the 227 

BCCDC Public Health Laboratory. Sequencing sampling strategy changed over the 228 

course of the pandemic and sequencing capacity, which included random sampling 229 

(ranging from 5-100% of cases) and targeted sampling (outbreaks and targeted 230 
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populations such as travellers) 25. Sequence data used in this study have been 231 

deposited in the GISAID database 8. 232 

  233 

Nucleic acids were extracted using the MagMAX instrument from Thermofisher 234 

(AM1836) and amplified using the Freed primer scheme (1200 base pair amplicons) 235 

detailed here 26. Consensus sequence production occurred using the Connor Laboratory 236 

pipeline (https://github.com/connor-lab/ncov2019-artic-nf) with consensus bases called 237 

at a frequency of 0.75 with a subsampling read count strategy. Consensus sequences 238 

were aligned and trimmed to Wuhan-Hu-1 reference sequence (Accession MN908947, 239 

Version MN908947.3) using the MAFFT program prior to tree generation. A specific fork 240 

has been produced to outline the modifications designed to support the SARS-CoV-2 241 

sequencing efforts at the BCCDC Public Health Laboratory, available here: 242 

https://github.com/BCCDC-PHL/ncov2019-artic-nf. Sequences with no collection date or 243 

excess ambiguities (> 15% missing calls) were removed from the analysis. 244 

 245 

Phylogenetic analyses 246 

A multiple sequence alignment of the full SARS-CoV-2 genome was used to construct 247 

maximum-likelihood (M-L) phylogenetic trees with IQ-TREE 27. One sequence per 248 

individual was included for analysis, with the earliest sequence chosen where 249 

longitudinal samples were taken from the same disease episode. Optimal nucleotide 250 

substitution models for the data were chosen using ModelFinder in IQ-TREE 28 and 251 

applied to each tree construction pipeline. For comparison to the proposed clustering 252 

approach, phylogenetic clustering was performed using TreeCluster 29 using two 253 
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thresholds, 1) a maximum divergence threshold within clusters of 4x10-4 254 

substitutions/genome, and 2) a maximum pairwise divergence threshold (among pairs in 255 

a cluster) of 5x10-5 substitutions/genome. 256 

  257 

Genomic clustering methodology 258 

Genomic clusters were defined as networks of connected sequences (nodes) where the 259 

pairwise probability of clustering was above a given threshold. The probability of 260 

clustering between two sequences was calculated using the logit model: 261 

 262 

   263 

Coefficients (β) can be either manually chosen or estimated using the logistic regression 264 

on data with known clusters. d is the pairwise genetic divergence, calculated between 265 

all pairs of isolates by extracting patristic distances (the sum of branch lengths 266 

connecting two tips) on the phylogenetic tree of up to 40,000 sequences, in units of 267 

substitutions/genome. t is a measure of difference in time between sequences, either 268 

the date of collection or symptom onset, and can be extracted from the associated 269 

metadata or inferred from a timed phylogeny. Additional covariates (n), such as contact 270 

data between hosts or shared exposure events, can be included to further resolve 271 

clusters. Pairwise transmission probabilities calculated in previous clustering runs can 272 
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be included in new analysis to allow for greater continuity in cluster designations, as 273 

well as permitting subsequent clustering runs to be run on subsampled datasets to 274 

increase speed and efficiency when clustering large numbers of sequences. The full R 275 

code is available in the supplementary materials and available at 276 

github.com/bensobkowiak/cov2clusters. 277 

 278 

We compared the results of our genomic clustering method at three pairwise probability 279 

thresholds of 0.7, 0.8 and 0.9 to link sequences to the clusters obtained using 280 

TreeCluster ‘max_clade’ (where the maximum pairwise patristic distance threshold 281 

between any two sequences in a cluster was 4 x 104 substitutions per sequence site) 282 

and ‘single_linkage’ (where any two sequences up to a maximum patristic distance 283 

threshold of 5 x 105 substitutions per sequence site must be in the same cluster). The 284 

data were separated into two large datasets, defined as pre-Delta dominance wave (N = 285 

19,617), which included all sequences collected before 6th May 2021, and Delta wave 286 

(N = 17,297), which included all sequences after this date, as well as 500 randomly 287 

selected sequences collected before this date as a representative skeleton tree of past 288 

diversity. Beta coefficients fo r the genomic clustering algorithm of β0 = 3, β1 = -1.9736 x 289 

10-4, and β2 = 7.5 x 10-2 were manually chosen, which corresponds to a pairwise 290 

probability of 0.95 between sequences with the same genomic sequence and collected 291 

date, with a decrease in pairwise probability as the patristic distance and/or collection 292 

date difference increases. Supplementary figure S3 provides the results of the 293 

pairwise probabilities using logistic regression with these beta coefficients with variable 294 
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patristic distance (converted to SNP distance by multiplying by the genome length) and 295 

difference in collection dates between sequences. 296 
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Figure 1. The cumulative number (A) and lineage proportion (B) of SARS-CoV-2 

sequences per week included in the study, coloured by lineage. Major lineages present 

in the data are annotated. 
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Figure 2. Maximum-likelihood phylogenies and clustering assignments of the (A) pre-

Delta dominance wave (N = 19,617) and (B) Delta wave (N = 17,297) sequences. 

Sequences in the largest five clusters found by each method are coloured, with those in 

the largest cluster in red, followed by green, blue, yellow and pink. All other clustered 

sequences are coloured grey, and non-clustered sequences are in white. 
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Table 1. The sensitivity of cov2clusters at three pairwise probability thresholds (0.8 and 

0.9) and TreeCluster (‘max_clade’ and ‘single_linkage’ methods) for placing sequences 

within seven epidemiologically well supported SARS-CoV-2 clusters in British Columbia, 

Canada. 

Epidemiologically 

informed cluster 

cov2clusters 

0.8 

cov2clusters 

0.9 

TreeCluster 

‘max_clade’ 

TreeCluster 

‘single_linkage’ 

Cluster A (B.1.1.7) (N 

= 5) 

4/5 (80%) 4/5 (80%) 2/5 (50%) 4/5 (80%) 

Cluster B (B.1.618) (N 

= 3) 

3/3 (100%) 1/3 (33%) 3/3 (100%) 3/3 (100%) 

Cluster C (P.1)  

(N = 16) 

14/16 (88%) 7/16 (44%) 15/16 (94%) 14/16 (88%) 

Cluster D (P.1)  

(N = 18) 

18/18 (100%) 16/18 (89%) 2/18 (11%) 18/18 (100%) 

Cluster E (P.1)  

(N = 14) 

14/14 (100%) 14/14 (100%) 14/14 (100%) 14/14 (100%) 

Cluster F (B.1.1.7) (N 

= 21) 

17/21 (81%) 14/21 (67%) 16/21 (76%) 14/21 (67%) 

Cluster G (P.1)  

(N = 6) 

6/6 (100%) 3/6 (50%) 3/6 (50%) 5/6 (83%) 

Overall 76/83 (92%) 59/83 (71%) 55/83 (66%) 72/83 (87%) 
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Figure 3. Cluster stability for each tested method assessed on SARS-CoV-2 sequences 

collected in British Columbia, Canada before 18th June 2021, adding sequences 

collected each week until 13th August 2021. (A) The proportion of sequences becoming 

non-clustered when clustered the week previously, (B) the number of cluster splits, and 

(C) the clustering entropy score. 
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Supplementary Figures 

Figure S1. Median pairwise SNP distance between sequences collected in the study 

period by week of 2021. 
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Figure S2. The pairwise patristic distance between P.1 sequences in clusters identified 

by each clustering approach. 
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Figure S3. The pairwise probability of linking two sequences by SNP distance and 

difference in collection date using the selected beta coefficients used in this study ( = 3,  

= -1.9736 x 10-4, and  = 7.5 x 10-2). Patristic distance has been converted to SNP 

distance by multiplying SNP distance by the genome length for easier interpretation of 

pairwise sequence distance. 
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