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Abstract 

Type 1 diabetes (T1D) is a heterogeneous disease with a slower evolution in individuals 

diagnosed at older ages. There are no validated clinical or laboratory biomarkers to predict the 

rate of insulin secretion decline either before or after the clinical onset of the disease, or the rate 

of progression to chronic complications of the disease. This pilot study aimed to characterize the 

proteomic and phosphoproteomic landscape of circulating extracellular vesicles (EVs) across a 

range of obesity in carefully matched established T1D and control subjects. We used archived 

serum samples from 17 human subjects (N=10 with T1D and N=7 normal healthy volunteers) 

from the ACME study (NCT03379792). EVs were isolated using EVtrap® technology 

(Tymora). Mass spectrometry-based methods were used to detect the global circulating EV 

proteome and phosphoproteome. Differential expression, coexpression network (WGCNA), and 

pathway enrichment analyses were implemented. The detected proteins and phosphoproteins 

were highly enriched (75%) in exosomal proteins cataloged in the ExoCarta database. A total of 

181 differentially expressed EV proteins and 15 differentially expressed EV phosphoproteins 

were identified, with 8 upregulated EV proteins (i.e., CD63, RAB14, VCP, BSG, FLNA, 

GNAI2, LAMP2, and EZR) and 1 downregulated EV phosphoprotein (i.e., TUBA1B) listed 

among the top 100 ExoCarta proteins. This suggests that T1D could indeed modulate EV 

biogenesis and secretion. Enrichment analyses of both differentially expressed EV proteins and 

EV phosphoproteins identified associations of upregulated features with neutrophil, platelet, and 

immune response functions, as well as prion disease and other neurodegenerative diseases, 

among others. On the other hand, downregulated EV proteins were involved in MHC class II 

signaling and the regulation of monocyte differentiation. Potential novel key roles in T1D for 

C1q, plasminogen, IL6ST, CD40, HLA-DQB1, and phosphorylated S100A9, are highlighted. 

Remarkably, WGCNA uncovered two protein modules significantly associated with pancreas 

size, which may be implicated in the pathogenesis of T1D. Similarly, these modules showed 
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significant enrichment for membrane compartments, processes associated with inflammation and 

the immune response, and regulation of viral processes, among others. This study demonstrates 

the potential of EV proteomic and phosphoproteomic signatures to provide insight into the 

pathobiology of type 1 diabetes and its complications. 

 

Introduction 

Type 1 diabetes (T1D) is a chronic disease characterized by hyperglycemia due to 

dysfunction and loss of β-cells and the consequent lack of endogenous insulin secretion. The β-

cell loss of function and mass is due to a targeted autoimmune process against these cells, but the 

precise cause and pathological mechanisms are still largely unknown. Even if this description the 

pathogenic mechanism and evolution seem straightforward, the disease is heterogeneous with a 

slower evolution in individuals diagnosed at older ages (>18 years of age) and there are no 

clinical or laboratory biomarkers means to predict the rate of insulin secretion decline either 

before or after the clinical onset of the disease (1-3).  

Once established, T1D is treated with subcutaneous insulin substitution to achieve blood 

and tissue glucose levels sufficiently low to prevent or limit the onset of micro and 

macrovascular chronic complications of the disease (4). However, there is a heterogeneity in the 

progression to chronic complications that is not completely explained by glycemic control. This 

is particularly relevant when considering the risk of cardiovascular disease in patients with T1D 

(5). The cardiovascular risk should be interpreted in the context of the obesity epidemic that does 

not spare the T1D population and it is possibly exacerbated by insulin treatment itself (6). 

Additional biomarkers are therefore needed to improve the diagnostic capacity, predict 

progression and risk of chronic complications, and evaluate treatment efficacy. 
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In recent years, attention have been directed to the rapidly evolving research area 

addressing the role of extracellular vesicles (EVs) as vehicles of intercellular communications. 

EVs in their different forms (i.e., exosomes and microvesicles) originating from virtually all 

tissues can be found in the peripheral circulation and have been studied as non-invasive disease 

biomarkers, particularly in oncology (7). They can contribute to the activation and regulation of 

physiologic and pathologic responses to β-cell stress or may contribute to the activation of the 

autoimmune process. On the other hand, they may serve as biomarkers of metabolic 

derangement, insulin resistance, and chronic complications in diabetes (8). 

The use of the EVs as a biomarker in T1D requires a proper understanding of the effect 

of different clinical components of the disease on the characteristics of circulating EVs, 

particularly on the EV proteome. The interest in the EV proteome resides in the possibility of 

identifying disease-specific signatures that, even if not directly pathogenetic, may be used as 

predictors of specific phenotypes or disease progression.   

In this cross-sectional pilot study, we describe the proteome of serum-derived EVs 

obtained from individuals with T1D who have been deeply metabolically phenotyped and 

compare it with matched healthy controls. Our ultimate goal was the identification of biomarkers 

that may improve our understanding of overweight and obesity in T1D. In addition, to gain 

insight into EV proteomic signatures associated with either pathogenesis-specific or 

hyperglycemia-related clinical characteristics, we implemented a novel approach based on 

weighted gene coexpression network analysis (WGCNA) of the EV proteome and an extensive 

list of clinical metabolic features.  

Materials and Methods 

Study population 
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The study was conducted according to the principles of the Declaration of Helsinki and 

followed GCP guidelines. All procedures were approved by the AdventHealth Translational 

Research Institute Institutional (AH/TRI) Review Board. Informed consent was obtained from all 

volunteers before initiation of the study. The goal of this pilot study was to characterize EVs 

across a range of obesity in carefully matched established T1D and Control groups. Archived 

serum samples from 17 human subjects (N=10 with T1D and N=7 healthy volunteers with 

normal glucose tolerance (NGT) from the ACME study (NCT03379792) were used. Participants 

were specifically selected as a subgroup that was well balanced for most characteristics. This 

selection was automated using custom script based on the MatchIt package (9) in the R 

programing environment. 

In-depth clinical and metabolic phenotype 

Anthropometric measures were performed according to standardized protocols. Fasting 

blood samples were obtained. Plasma glucose concentrations were measured using the glucose 

oxidase method with a YSI 2300 STAT Plus Analyzer (YSI Life Sciences, Yellow Springs, OH). 

HbA1c levels were measured using a Cobas Integra 800 Analyzer (Roche, Basel, Switzerland). 

Body composition was measured using a GE Lunar iDEXA whole-body scanner (GE, Madison, 

WI). Whole body magnetic resonance imaging (MRI) was implemented using a Philips 3T 

Achieva MRI instrument (Philips Medical Systems MR Inc., Latham, NY). Metabolic 

assessment in whole room calorimeters at AH/TRI according to standard methodology (10) 

allowed the simultaneous measure of total energy expenditure and substrate oxidation in a free-

living environment with multiple activities. Continuous glucose monitoring (CGM) Dexcom G4 

(Dexcom Inc., San Diego, CA, USA) was used to monitor glucose levels that were summarized 

according to what was proposed by Battelino et al. (11). A list of 154 variables included in the 

study is presented in Supplementary Table ST1. 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted March 13, 2022. ; https://doi.org/10.1101/2022.03.10.22272207doi: medRxiv preprint 

https://doi.org/10.1101/2022.03.10.22272207


 

Page 6 of 43 

 

EV isolation using Tymora’s EVtrap technology 

Blood samples were allowed to coagulate at room temperature for 30 minutes after 

collection, then centrifuged at 1500 ×g for 15 min at 4 °C to produce serum. Serum was stored at 

-80 ºC until use. Frozen serum samples were thawed, then spun at 2,500 × g for 10 minutes. The 

pre-cleared samples were then diluted 20-fold in PBS and incubated with EVtrap beads for 30 

min (12). After supernatant removal using a magnetic separator rack, the beads were washed 

with PBS, and the EVs were eluted by a 10 min incubation with 200 mM triethylamine (TEA, 

Millipore-Sigma) and the resulting EV samples fully dried in a vacuum centrifuge. 

Nanoparticle Tracking Analysis (NTA) 

The size distribution and concentration of particles in EV preparations were analyzed 

using dynamic light-scattering technology with a NanoSight NS300 instrument and NTA-3.4 

software (Malvern Panalytical, Malvern). The instrument was equipped with a 488 nm blue laser 

module, flow-cell top plate, integrated temperature control, and a single-syringe pump module. 

Samples were diluted using cell culture grade water (Corning cat# 25-005-CI) to produce an 

optimal particle concentration for final measurement in the range of 107 to 109 particles/ml. Final 

quantification included 5 standard measurements of 1 minute of duration each, taken at a 

controlled temperature of 25°C and under constant automatic flow. Camera level for video 

capture was set to 12 and detection threshold to 5 for all sample measurements. 

Mass spectrometry (LC-MS/MS)-based methods used to detect the global EV proteome and 

phosphoproteome 

The isolated and dried EV samples were processed as described previously 

(https://pubmed.ncbi.nlm.nih.gov/32396726/). Briefly, EV samples were lysed to extract proteins 

using the phase-transfer surfactant (PTS) aided procedure (13) and the proteins digested with 

Lys-C (Wako) at 1:100 (wt/wt) enzyme-to-protein ratio for 3 h at 37°C. Trypsin was added to a 
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final 1:50 (wt/wt) enzyme-to-protein ratio for overnight digestion at 37°C. After surfactant 

removal, the resulting peptides were desalted using Top-Tip C18 tips (Glygen) according to 

manufacturer’s instructions. Each sample was split into 99% and 1% aliquots for 

phosphoproteomic and proteomic experiments respectively. The samples were dried completely 

in a vacuum centrifuge and stored at -80°C. For phosphoproteome analysis, the 99% portion of 

each sample was subjected to phosphopeptide enrichment using PolyMAC Phosphopeptide 

Enrichment kit (Tymora Analytical) according to manufacturer’s instructions, and the eluted 

phosphopeptides dried completely in a vacuum centrifuge. For phosphoproteomics analysis the 

whole enriched sample was used, while for proteomics only 50% of the sample was loaded onto 

the LC-MS. 

Each dried peptide or phosphopeptide sample was dissolved at 0.1 μg/μL in 0.05% 

trifluoroacetic acid with 3% (vol/vol) acetonitrile. 10 μL of each sample was injected into an 

Ultimate 3000 nano UHPLC system (Thermo Fisher Scientific). Peptides were captured on a 2-

cm Acclaim PepMap trap column and separated on a heated 50-cm column packed with ReproSil 

Saphir 1.9 μm C18 beads (Dr. Maisch GmbH). The mobile phase buffer consisted of 0.1% 

formic acid in ultrapure water (buffer A) with an eluting buffer of 0.1% formic acid in 80% 

(vol/vol) acetonitrile (buffer B) run with a linear 60-min gradient of 6–30% buffer B at flow rate 

of 300 nL/min. The UHPLC was coupled online with a Q-Exactive HF-X mass spectrometer 

(Thermo Fisher Scientific). The mass spectrometer was operated in the data-dependent mode, in 

which a full-scan MS (from m/z 375 to 1,500 with the resolution of 60,000) was followed by 

MS/MS of the 15 most intense ions (30,000 resolution; normalized collision energy - 28%; 

automatic gain control target (AGC) - 2E4, maximum injection time - 200 ms; 60sec exclusion]. 

Bioinformatic analysis 

The raw files were searched directly against the human Uniprot database with no 

redundant entries, using Byonic (Protein Metrics) and Sequest search engines loaded into 
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Proteome Discoverer 2.3 software (Thermo Fisher Scientific). MS1 precursor mass tolerance 

was set at 10 ppm, and MS2 tolerance was set at 20ppm. Search criteria included a static 

carbamidomethylation of cysteines (+57.0214 Da), and variable modifications of oxidation 

(+15.9949 Da) on methionine residues, acetylation (+42.011 Da) at N terminus of proteins, and 

phosphorylation of S, T and Y residues (+79.996 Da) for the phosphoproteomics data. Search 

was performed with full trypsin/P digestion and allowed a maximum of two missed cleavages on 

the peptides analyzed from the sequence database. The false-discovery rates of proteins and 

peptides were set at 0.01. All protein and peptide identifications were grouped and any redundant 

entries were removed. Only unique peptides and unique master proteins were reported. 

All data were quantified using the label-free quantitation node of Precursor Ions 

Quantifier through the Proteome Discoverer v2.3 (Thermo Fisher Scientific). For the 

quantification of proteomic or phosphoproteomic data, the intensities of 

peptides/phosphopeptides were extracted with initial precursor mass tolerance set at 10 ppm, 

minimum number of isotope peaks as 2, maximum ΔRT of isotope pattern multiplets – 0.2 min, 

PSM confidence FDR of 0.01, with hypothesis test of ANOVA, maximum RT shift of 5 min, 

pairwise ratio-based ratio calculation, and 100 as the maximum allowed fold change. The 

abundance levels of all peptides and proteins were normalized using the total peptide amount 

normalization node in the Proteome Discoverer. For calculations of fold-change between the 

groups of proteins, total protein abundance values were added together and the ratios of these 

sums were used to compare proteins within different samples. 

The EV-proteomic and phosphoproteomic expression profiles were analyzed with a user-

defined bioinformatic procedure that included raw data preprocessing, differential expression 

analysis, weighted-gene correlation network analysis (WGCNA), and enriched functional 

analyses. Briefly, missing values in the expression profiles were imputed, and the data were then 

log2-transformed, and scale-standardized.  The imputation was performed with random forest, an 
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advanced machine-learning algorithm (14) known to be adaptive to interactions and nonlinearity 

with capability to handle mixed types of missing data (15). The normalized data were then 

analyzed using pvca (16) and limma (17), two R/Bioconductor software packages for biomarker 

discovery. Specifically, pvca, a package for principal variance component analysis, was first 

applied to identify significant covariates by fitting all "sources" as random effects, then linear 

models were created incorporating those significant covariates. Once established, the linear 

models were fitted using weighted least squares for each protein, moderated t-statistics, 

moderated F-statistic, log-fold changes and p-values of differential expression were calculated by 

empirical Bayes moderation of the standard errors. Finally, the Benjamin-Hochberg (BH) 

method was used to adjust the p-values. The network module analysis was performed with 

WGCNA, an R package for weighted gene correlation network analysis (18). In short, it first 

performs a weighted protein co-expression network analysis to find clusters of highly correlated 

proteins (modules), and then relates modules to the clinical measurements. Subsequent module 

membership, gene-trait significance and intra-module connectivity analysis was applied to 

identify the key driver proteins in modules of interest. KEGG pathway and Gene Ontology 

enrichment analyses were performed on the sets of differentially expressed proteins and 

phosphoproteins with clusterProfiler, an R package for enriched function analysis (19). Given a 

set of highly significant proteins or phosphoproteins identified, clusterProfiler suggests KEGG 

pathways and GO Ontology functional groups significantly affected. 

Statistical analysis 

Data normality was tested using the Shapiro-Wilk test, and nonnormal data was log-

transformed to approximate normality. Differences in baseline clinical characteristics were 

assessed using the Welch two-sample t test (for continuous variables) or the Fisher exact test (for 

categorical variables). For assessment of differential expression in EV proteins and 

phosphoproteins, linear models using the limma package were implemented. Linear models 
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included sex as covariate. Calculated effects and correlations with two-tailed P<0.05 and 

FDR<0.1 (for proteomics) or FDR<0.2 (for phosphoproteomics) were considered significant. 

False discovery rates (FDR) correcting for multiple testing were calculated using the Benjamini-

Hochberg correction as implemented for the p.adjust function in the stats package. 

Results 

Study design and clinical characteristics of the study cohort 

A balanced subset of 17 participants from the ACME study was selected for this pilot 

proteomic and phosphoproteomic study. The subset was not confounded by differences in 

variables known to affect metabolic function (e.g., age, BMI, among others). Archived sera from 

these participants were available for EV purification and proteome/phosphoproteome analysis. 

The average age of the participants was 25.7 years (range 20.1-34.5), 11/17 were females, and 

the average BMI was 26.8 kg/m2 (range 19.5-38.6) for the whole population. The comparison of 

154 anthropometric, clinical, and metabolic characteristics for the study cohort are presented in 

Supplementary Table ST1. 

EV purification and characterization demonstrate enrichment in exosomal particles 

The EVtrap efficiently isolated circulating particles with a distribution of sizes 

compatible with exosomes (Figure 1A). There was a trend (p = 0.07) to higher modal particle 

sizes in the T1D group (the mode of particle size was 151.5 nm in T1D compared to 137.7 nm in 

controls). However, the average particle size was comparable between the groups (mean size 

209.5 nm in T1D and 201.3 nm in controls, p = 0.159). Similarly, the average particle 

concentration did not differ between the two groups (3.6x1010 particles/ml in T1D and 4.6x1010 

particles/mL in controls, p = 0.346) (Figure 1A). LC-MS/MS of isolated EVs from participant 

sera identified 1950 EV proteins in 1 ml of serum, which included 1467 (75.2%) proteins 

reported in ExoCarta (a database collecting information on all exosomal proteins, RNA, and 
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lipids (20)), and more specifically, 91 (91%) of the top 100 exosomal proteins reported in this 

database (Figure 1B). Similarly, LC-MS/MS identified 561 phosphoproteins in the circulating 

EVs, which included 421 (75%) of ExoCarta proteins (Figure 1B). These results indicate that the 

isolated proteome and phosphoproteome are enriched for small EVs (exosomes). 

The serum EV proteome and phosphoproteome are different in people with T1D compared to 

controls 

To further characterize the circulating EV cargo in our study population, we conducted 

additional bioinformatic analyses including important variable analysis with random forests 

(RF), differential expression analysis, and unsupervised clustering analysis. A total of 181 

differentially expressed EV proteins were identified with, at least, a 2-fold change (p-value ≤ 

0.01, FDR<0.1). Of these, 135 were upregulated and 46 were downregulated in T1D, as 

compared to controls (Table 1, Figure 1E). On the other hand, 15 EV phosphoproteins were more 

than 1.4-fold different between the groups (p-value < 0.05, FDR < 0.2), with 7 of them being 

upregulated and 8 being downregulated (Table 2, Figure 1F). Notably, of the top 100 exosomal 

proteins reported by ExoCarta, which are considered the best markers of exosomes, 8 (i.e., 

CD63, RAB14, VCP, BSG (a.k.a. CD147), FLNA, GNAI2, LAMP2, EZR), were significantly 

upregulated (absolute fold change FC ≥ 2, P < 0.01, FDR < 0.1), while 1 phosphoprotein (i.e., 

TUBA1B) was downregulated (FC = -1.75, P = 0.0027, FDR = 0.13) in the circulating EVs from 

the T1D group. Interestingly, the EV proteome and phosphoproteome showed a relatively small 

overlap, in general. Only a single protein (S100A9) was differentially expressed (i.e., 

upregulated) at both the total protein and the phosphorylated state (Figure 2G). All other 

differentially expressed proteins/phosphoproteins were only differentially expressed at either the 

total protein or the phosphorylated protein level. S100A9 displayed a positive trend (r = 0.42, P = 

0.093) with the number of circulating neutrophils (Figure 1H).  
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As pathway analysis techniques can help in interpreting proteomics results, we applied 

various enrichment analysis tools to obtain functional information on the differentially expressed 

proteins. The Gene Ontology (GO) cellular compartment enrichment analysis confirmed that the 

differentially expressed proteins primarily belong to pathways associated with vesicles and 

granules: secretory granule lumen, cytoplasmic vesicle lumen, vesicle lumen, membrane raft, 

membrane microdomain, membrane region indirectly confirming the vesicular origin of the 

proteins (Figure 2A). GO biological process enrichment analysis on the differentially expressed 

EV proteins showed that the differentially upregulated proteins are involved in neutrophil 

degranulation and activation, immune response, platelet degranulation, blood coagulation, and 

hemostasis, among others (Figure 2B, Module Pr.1). On the other hand, downregulated EV 

proteins were enriched in proteins involved in the regulation of monocyte differentiation (Figure 

2B, Module Pr.2). The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis 

also identified platelet activation as one of the most represented pathways together with 

leukocyte transendothelial migration, prion disease and neurodegenerative disorders (Figures 

1C). 

The differentially expressed EV phosphoproteins were similarly enriched for proteins 

found in vesicular compartments such as late endosomes and secretory granules apparently 

involved in insulin response and platelet function (Figure 3A). On the other hand, enriched GO 

biological processes suggest the upregulated EV phosphoproteins are involved in the 

detoxification of cellular oxidants (Figure 3B). The KEGG pathway analysis demonstrated 

enrichment in upregulated EV phosphoproteins involved in insulin resistance and diabetes 

(Figure 3C, Module Ph.1), while downregulated EV phosphoproteins were involved in 

phagosome function, prion disease and neurodegenerative disease pathways (Figure 3C, Module 

Ph.2).  
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Weighted gene co-expression network analysis identified key EV-associated protein modules 

that correlate with pancreas size 

To further improved our understanding of the role of circulating EVs in T1D at the 

system level, we applied the weighted gene co-expression network analysis (WGCNA) 

methodology for the analysis of all proteins identified in circulating EVs. This method focuses 

on the identification of modules that include features (i.e., EV proteins in our case) with 

correlated expression patterns as opposed to the identification of individual genes based on group 

average comparisons (as is the case of differential expression analysis), therefore, alleviating the 

multiple statistical testing problem. A Pearson correlation matrix of the proteins is used to form a 

hierarchical dendrogram that is then cut into branches corresponding to modules. Each module 

includes genes with similar expression pattern and most likely specific biological functions. The 

module eigengenes are also correlated with external clinical traits, consequently generating a 

denser mechanistic overview of co-regulated EV proteins associated with the underlying T1D 

biology. The WGCNA methodology has been previously used for proteomic analysis (21, 22). 

 Figure 4A presents the co-expression dendrograms for all EV proteins and how they were 

grouped in 14 color-coded modules. Figure 4B presents the number of EV proteins included in 

each module. The analysis identified significant associations of specific EV protein modules 

with 9 of the 154 clinical characteristics included. Primarily, the association was with indicators 

of metabolic compensation and glucose levels, but other interesting traits were identified as an 

index of insulin sensitivity (eIS), pancreas size and resting energy expenditure. The strongest 

correlations were seen with clinical traits associated with blood glucose levels (metrics obtained 

from the continuous glucose monitoring, HbA1c) but also with other clinical characteristics 

indicative of T1D (pancreas size) or metabolic aspects known to be modified in T1D  (Figure 

4C). 
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Three co-expression modules (i.e., Pink, Tan, and Yellow modules) were significantly 

associated with elevated blood glucose levels, expressed as either percentage of continuous 

glucose monitoring (CGM) above 250 mg/dl or between 180 and 250 mg/dl, average glucose 

level during CGM, HbA1c. As this is the characteristic feature of diabetes it is hard to 

discriminate whether the EV proteins included in these modules are differentially abundant as a 

cause or a consequence of hyperglycemia (Figure 4C). The Tan module was of particular interest 

because, in addition to its association with blood glucose levels (correlation 0.9 with % CGM 

reading >250 mg/dl, p =2e-08), it is associated with pancreas size (correlation -0.71, p=0.002) and 

estimated insulin sensitivity calculated from non-fasting parameter by the Coronary Artery 

Calcification in Type 1 Diabetes (CACTI) study (eIS-nf) (23). 

Four modules (i.e., Tan, Salmon, Pink, Purple, Figure 4C and Figure 5) showed 

significant association with pancreas size that may be a pathogenic clinical feature of T1D (24-

27). Heatmaps of select module proteins (36 of 41 in the Tan module and 19 of 40 in the Salmon 

module) that displays strong correlations between module membership and gene significance 

demonstrate the specificity of the EV protein-pancreas size associations with T1D (Figure 5C,D), 

particularly for the Tan module EV proteins. The Pink module also showed a significant 

correlation between module membership and gene significance. However, the association was 

not significant for the purple module (Figure 5A). The GO cellular component enrichment 

analysis for the Tan module showed a significant enrichment for membrane raft, membrane 

microdomain, and membrane region compartments as the highest positively correlated 

components. Among the enriched GO biological processes, several processes associated with 

inflammation and the immune response were identified (Figure 5E). The EV proteins belonging 

to the Salmon module and associated with pancreas were enriched for humoral immune 

response, regulation of viral entry into host cells, modulation by symbiont of entry into host, 

regulation of viral life cycle, movement in host environment, interaction with host, regulation of 
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viral processes (Figure 5F) that might be relevant in T1D pathogenesis or response to the 

environment. 

Considering the proteins with the strongest correlation with pancreas size in the two 

modules, we noticed that they are continuously distributed rather than separated in two groups 

corresponding to T1D and controls (Figure 6). This could indicate that the correlation is with the 

organ size rather than being mediated by a confounder that would discriminate people with 

diabetes such as glycemic control. The Salmon module identified proteins strongly correlated 

with the clinical trait of interest (i.e., pancreas size) but not appearing among the significantly 

differentially expressed proteins. Two of these are HLA-DRB1 and CD74 (stabilizes the MHC 

Class II antigen processing and prevents loading antigen peptides into the MHC Class II 

complex). Both HLA-DRB1 and HLA-DQB1 in serum EVs are positively associated with 

pancreas size and are downregulated in T1D compared to controls. This supports the concept that 

more sophisticated analyses are needed to understand the complex picture of circulating EV 

proteins.  

Discussion 

This pilot study showed that the circulating EV proteome significantly correlates with 

key features of type 1 diabetes. Rather than looking at freely circulating peripheral blood 

biomarkers, our study focused on the proteomic cargo in circulating EVs. The EV cargo is 

reported to mirror, to some extent, the specific cellular phenotypes from their cells of origins 

(28). Therefore, it could provide information on mechanisms that are active in the disease of 

interest. The importance of EV proteins as disease biomarkers has been highlighted in the cancer 

field (29). To our knowledge, this is the first characterization of the proteome of circulating EVs 

in patients with T1D compared to controls. The plasma or serum proteome includes a 

heterogenous pool of EVs derived by multiple cell types, with production driven by multiple 

mechanisms (30, 31). We would expect, therefore, that the EV proteome and phosphoproteome 
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would be affected by hyperglycemia, insulin treatment and glucose variability as well as T1D 

pathogenic mechanisms. Our proteomic and phosphoproteomic analyses of serum EVs isolated 

using the EVtrap technology demonstrated significant enrichment in annotated exosomal 

proteins and phosphoproteins. This suggests that our study preparations were likely enriched in 

exosomes. 

 Supporting the information richness and biomarker potential of circulating EVs, our 

bioinformatic approaches were able to discriminate the two study populations, namely people 

with T1D and controls, and to identify key EV proteins that represent aspects of validated and 

novel T1D biology. By analyzing cellular compartment annotations for the differentially 

expressed EV proteins and phosphoproteins, we demonstrated enrichment in vesicle and 

secretory granule associated proteins likely involved in insulin, platelet, and neutrophil function. 

This leads us to the hypothesis that T1D could indeed modulate EV biogenesis and secretion. As 

expected, biological process and pathway analysis identified enrichment for pathways (e.g., 

neutrophil degranulation and activation) that may be associated not only with the pathogenesis of 

the disease but also with the development of diabetic chronic complications, both at the macro 

and microvascular level. Pathways connected to platelet function and coagulation call for the 

possible use of the EV proteomics in the prediction of disease complications. Specifically, C1q 

and plasminogen (PLG) were two of the key complement proteins strongly increased in our T1D 

EV preparations. Notably, deposition of complement proteins like C1q in the EVs has been 

reported to be needed for complement activation and, when deregulated, to contribute to 

pathological states (32). These particles loaded with complement regulators are suggested to 

contribute to the stimulation and inhibition of T-cell responses and the interaction among 

immune cells (33). Furthermore, C1q has been recognized as an important pattern recognition 

receptor that diverts autoantigen containing extracellular vesicles from immune recognition (34). 

PLG, on the other hand, is reported to be more efficiently activated by PLG activators when 
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associated with cell surfaces, as compared to the reaction in solution (35). By the same token, 

PLG on vesicle surfaces may be more efficiently converted into plasmin, consequently 

promoting fibrinolysis and immune cell modulation with systemic reach. 

 Additionally supporting the concept that T1D could modulate EV biogenesis and 

secretion, 8 of the top 100 ExoCarta proteins (considered the best exosomal markers) were found 

to be significantly upregulated in the T1D circulating EVs. Among those proteins, CD63, a 

classical surface marker of exosomes, has recently being implicated as a key molecule that 

determines the destination of nascent insulin granules towards degradation via a novel 

lysosomal-mediated mechanism operative in pancreatic β cells (36). This CD63-requiring 

(metabolic) stress-induced nascent granule degradation (SINGD) pathway contributes to loss of 

insulin, β cell failure and the pathogenesis of diabetes, and its inhibition delays the onset of 

diabetes (36). Notably, LAMP-2, another T1D upregulated top100 ExoCarta EV protein, is also 

reported to interact with proteins related to glucose and lipid metabolism (37) and implicated in 

CD63-mediated SINGD (36). RAB14, on the other hand, has been implicated as a key regulator 

of GLUT4 sorting to specialized transport vesicles that translocate the glucose transporter to the 

plasma membrane, therefore regulating adipocyte glucose uptake (38). Filamin-A (FLNA), a 

protein involved in actin filament cross-linking, cell growth, and motility, has been recently 

implicated in insulin and IGF1 signaling (39). BSG/CD147, a membrane-bound glycoprotein 

involved in energy metabolism, has also been reported to be induced in monocytes by high 

glucose and to possibly play a role in diabetic complications (40).      

Among other top upregulated EV proteins involved in the inflammatory response and 

immune-activation we found IL6ST/Gp130 (the founding member of the cytokine receptor 

family, which is involved in the regulation of adipocyte development and function and has a key 

role at the intersection of inflammation, autoimmunity and cancer) (41, 42) and CD40, and the 

HLA-DQB1 among the downregulated proteins. Of note, all these proteins are involved in IL-6 
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signaling (41-47). Importantly and supporting our findings, it is known that macrophages from 

T1D patients with high-risk HLA-DQB1 alleles are sensitized to secrete IL-6 in response to 

nonantigenic stimulation (43).   

In addition to the neutrophil, platelet, and immune cell activation related pathways, the 

differentially expressed proteins and phosphoproteins were enriched for other biological 

processes and KEGG pathways related to prion disease and multiple neurodegenerative diseases. 

In this context, it is of interest to highlight that recently, the Wasserfall group (48) showed an 

increased frequency of cellular prion proteins in pancreas specimens from people with T1D and 

that, earlier, Strom and collaborators (49) demonstrated in two rodent models that altered 

metabolism of cellular prion protein in β cells associated with glucose dysregulation. 

Only one of the differentially expressed EV proteins was also significantly differentially 

expressed in its phosphorylated state in circulating EVs. In this respect, S100A9, the only feature 

demonstrating significant differential expression (upregulation) at both the proteome and 

phosphoproteome level, is a determinant of the epigenetic regulation and activation of the 

monocyte-macrophage system in hyperglycemia (50). S100A9 in association with S100A8, form 

the heterocomplex known as calprotectin that is suggested to activate the transendothelial 

accumulation of monocytes at the site of inflammation, which associates with chronic 

inflammatory diseases (51, 52). S100A9 by itself is also reported to stimulates neutrophil 

adhesion by activating the CD11b/CD18 β2 integrin (53). Remarkably, only the phosphorylated 

form of S100A9 from neutrophils was shown to be essential to induce proinflammatory cytokine 

secretion by extracellular S100A8/phosphoS100A9 via toll-like receptor 4 signaling (54). More 

recently, Liao and collaborators demonstrated that S100A9 was overexpressed in pancreatic 

cancer-associated diabetes (PCDM) and that, together with Galectin-3, caused insulin resistance 

and distinguished PCDM from type 2 diabetes in subjects with new-onset diabetes (55). We now 
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show that these processes may be additionally mediated by the presence of upregulated levels of 

phosphorylated S100A9 in circulating EVs. 

Taking advantage of the deep metabolic phenotyping of our participants, we attempted at 

more precisely characterize the EV proteome and its association with clinical features (beyond 

the analysis of differential expression based on group averages comparisons) by applying a 

WGCNA methodology. Coexpression networks are powerful tools used in bioinformatics and 

WGCNA is a method that identifies clusters of genes based on their correlated expression 

patterns. The method allows for the calculation of module membership and gene significance 

measures relevant to the identification of biomarkers of interest associated with specific clinical 

variables. WGCNA has been applied in various biological contexts and “can be used to generate 

testable hypotheses for validation in independent data sets” (56). Thus, it aligns with the 

objective of our pilot study. This approach can find potential novel candidates based on co-

expression similarities, rather than focusing exclusively on databases of protein-protein 

interaction that may have limitations due to the heterogeneity of experiments and model 

organisms (57). Therefore, the adaptation WGCNA on proteomic data seems particularly 

suitable to study EV proteomics where the literature is relatively limited and only applied to 

urinary EVs (58, 59).  

WGCNA applied to EV proteomics in our study identified 14 distinct modules 

significantly associated with nine clinical features. The association is primarily with blood 

glucose measures indicative of T1D, but also with other features like pancreas size, resting 

energy expenditure, and the CACTI index of insulin sensitivity. The enrichment analysis of gene 

ontologies pointed out to the biological meaning of the modules, identifying neutrophil 

activation and degranulation, activation of immune response and blood coagulation as some of 

the pathways associated with hyperglycemia. Humoral immune response, regulation of viral 

entry and life cycle regulation of viral processes were associated with pancreas size in the 
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Salmon module together with mast cell activation, platelet activation, blood coagulation, 

hemostasis, and response to IL-7 in the Tan module. 

The WGCNA methodology has been applied to peripheral blood gene expression in T1D 

and controls (60, 61) and identified significantly disrupted co-expression modules in T1D 

compared to healthy control PBMCs. The module associated with T1D in Lu et al. work (60) 

was enriched for genes belonging to the “regulation of immune response” pathway. Our study 

took a broader approach considering EV proteomics. Circulating EVs originate from different 

cells, therefore, the modules that we identified are likely a composite of coregulated protein 

expressions from a number of different cellular sources, including PBMCs. In line with what was 

seen in PBMC transcriptomics, we also identified enrichment in proteins classified under the 

broad biological process ontology denominated “regulation of immune response” (that includes 

1019 genes) and associated with hyperglycemia as an indicator of diabetes (regulation of Fc 

receptor mediated stimulatory signaling pathway). In our approach, we include proteomic 

profiles obtained from patients with T1D and healthy controls to identify clinically-relevant 

protein clusters (modules) that correlate with clinical variables of interest, independently of the 

disease. Therefore, the proteins included in the modules of interest could be used as markers of 

that clinical variable rather than of the disease. The analysis focused then on the association with 

pancreas size, as a trait that may be associated with disease pathogenesis. 

Among the proteins of interest identified by our traditional approach (differential 

expression) and by WGCNA, HLA-DRB1 and DQB1 are downregulated on EVs. MHC-Class II 

molecules are present in exosomes originating from APC, B-cells and T-cells (62-64). Consistent 

with our findings, MHC Class II-loaded EVs are also detected in plasma (65). The MHC Class II 

in EVs is the predominant form of MHC Class II detected in serum and plasma, even though a 

soluble form has been described. Both the soluble MHC-Class II and the exosome-associated 

MHC-Class II are immunomodulatory (66). Immunosuppressive EVs derived from APCs occurs 
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naturally, for example, soon after eating or inoculation of specific antigens (67). The experiments 

by Kim and collaborators (65) suggested that the immune response to a foreign antigen is 

regulated by exosomes in plasma produced by monocytes/macrophages that have the ability to 

suppress the immune response in an antigen-specific manner. Therefore, we could hypothesize 

that lower levels of EV MHC in T1D compared to healthy individuals could be a specific sign of 

the loss of tolerance in T1D. Our study is not able to demonstrate that this mechanism is active in 

T1D pathogenesis, however, it highlights the power of WGCNA in analyzing complex diseases 

and in formulating hypothesis. Paired with the in-depth phenotyping of the participants of this 

pilot study, WGCNA allowed us to identify and confirm the potential role of selected proteins 

that would have been excluded by simple differential expression analysis.    

The primary limitation of our study is the small sample size. The power of the applied 

methodology is that it produces meaningful results even with a small sample size as in our case. 

The gene connectivity analysis smooths the variability and alleviates the need for multiple 

sampling. The design needs to be considered hypothesis generating and the findings should be 

confirmed in larger and independent cohort(s), and ultimately in dedicated functional studies.  
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Table 1. Differentially expressed proteins in circulating EVs (T1D vs. NGT) 

Uniprot ID Gene Symbol Log2FC log2 Ave Expr P.Value adj.P.Val 

Q8N1N4 KRT78 2.34 0.83 5.49E-10 6.53E-07 

P30101 PDIA3 2.87 0.50 6.75E-10 6.53E-07 

O75533.1 SF3B1 -2.64 0.52 1.01E-09 6.53E-07 

P28838 LAP3 2.72 0.13 1.24E-09 6.53E-07 

P61158 ACTR3 2.78 0.25 1.96E-09 8.23E-07 

P00747 PLG 2.48 0.32 5.86E-09 2.05E-06 

P02745 C1QA 2.73 -0.03 7.70E-09 2.19E-06 

P02794 FTH1 -2.80 -0.21 8.33E-09 2.19E-06 

Q9BS26 ERP44 2.34 0.66 1.18E-08 2.75E-06 

Q13576.1 IQGAP2 1.98 -0.81 5.52E-08 1.16E-05 

P62834 RAP1A 2.38 -0.05 2.72E-07 5.20E-05 

Q02818 NUCB1 -1.54 -1.02 3.93E-07 6.88E-05 

Q06187 BTK 2.13 0.49 1.08E-06 0.00017 

A0A0B4J1Y8 NA 2.23 -0.19 1.12E-06 0.00017 

O60229.1 KALRN 2.39 -0.51 1.55E-06 0.00022 

P05141 SLC25A5 2.36 -0.18 1.80E-06 0.00023 

P14868 DARS1 1.48 0.45 1.85E-06 0.00023 

Q99969 RARRES2 -1.95 -0.42 4.67E-06 0.00054 

P07954 FH -2.63 -0.26 6.79E-06 0.00075 

O00241 SIRPB1 -1.62 -0.72 7.94E-06 0.00083 

P21281 ATP6V1B2 1.37 0.21 9.11E-06 0.00091 

Q92835 INPP5D -1.41 -1.09 1.12E-05 0.00107 

O75223.1 GGCT 2.13 0.37 1.26E-05 0.00115 

P16284 PECAM1 1.93 -0.17 1.63E-05 0.00142 

O60664.3 PLIN3 1.88 0.78 2.06E-05 0.00173 

P20936.1 RASA1 1.86 0.67 2.54E-05 0.00204 

P80108 GPLD1 -1.68 0.35 2.62E-05 0.00204 

P06576 ATP5F1B 1.68 -0.76 2.72E-05 0.00204 

P08779 KRT16 1.69 0.27 2.82E-05 0.00204 

P00387.3 CYB5R3 1.89 -0.81 3.12E-05 0.00218 

P39060.3 COL18A1 2.01 -0.19 3.28E-05 0.00222 

Q86VD1 MORC1 -2.22 0.23 3.58E-05 0.00228 

P61163 ACTR1A 1.94 0.58 3.59E-05 0.00228 

O14950 MYL12A 2.18 0.20 4.06E-05 0.00246 

O15162 PLSCR1 1.40 -0.59 4.10E-05 0.00246 

P31944 CASP14 2.02 0.43 4.29E-05 0.00250 

Q13637 RAB32 1.64 -0.83 5.19E-05 0.00295 

P13671 C6 1.72 -0.50 5.91E-05 0.00326 

Q4KMP7 TBC1D10B 1.87 0.63 6.29E-05 0.00338 

P30613 PKLR 1.65 -0.54 6.79E-05 0.00356 

Q9Y6Z7 COLEC10 -1.96 0.59 0.00011 0.00573 
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O43639 NCK2 1.94 0.57 0.00012 0.00588 

P04085 PDGFA -1.46 -0.84 0.00012 0.00601 

Q13094 LCP2 1.32 0.98 0.00016 0.00742 

P13804.1 ETFA 1.36 0.89 0.00016 0.00742 

Q9H7D0.1 DOCK5 1.49 0.48 0.00017 0.00778 

P50416 CPT1A -1.25 -0.83 0.00020 0.00898 

P31939 ATIC 1.50 -0.04 0.00021 0.00902 

P40926 MDH2 1.21 -0.56 0.00021 0.00902 

P07948.2 LYN 1.58 0.63 0.00021 0.00902 

Q9ULI3 HEG1 1.87 0.61 0.00022 0.00916 

Q9NS84 CHST7 1.75 0.32 0.00025 0.01007 

P22748 CA4 1.53 0.55 0.00026 0.01015 

P04792 HSPB1 1.40 0.41 0.00027 0.01068 

P60520 GABARAPL2 1.85 -0.16 0.00030 0.01139 

P12821.1 ACE 1.41 -0.30 0.00031 0.01181 

Q05193.1 DNM1 2.09 -0.31 0.00041 0.01505 

Q96IR7 HPDL -1.01 -0.72 0.00046 0.01654 

P40189.1 IL6ST 1.40 -0.32 0.00047 0.01654 

P02774.3 GC 1.16 -1.02 0.00049 0.01731 

P30048.2 PRDX3 2.16 -0.04 0.00054 0.01866 

Q16531 DDB1 -1.80 -0.84 0.00056 0.01892 

P61106 RAB14 1.63 -0.78 0.00064 0.02114 

Q99426 TBCB -1.09 -0.15 0.00064 0.02114 

Q8NF50.1 DOCK8 1.51 -0.90 0.00068 0.02183 

Q15691 MAPRE1 1.49 0.27 0.00075 0.02389 

Q13126.2 MTAP 1.61 -0.66 0.00080 0.02495 

P55072 VCP 1.71 -0.14 0.00086 0.02649 

Q9Y376 CAB39 1.79 0.04 0.00093 0.02734 

P49247 RPIA 1.50 -0.16 0.00093 0.02734 

P06702 S100A9 1.41 0.10 0.00094 0.02734 

Q14141.2 SEPTIN6 1.70 0.75 0.00095 0.02734 

P23490 LOR 1.62 0.07 0.00095 0.02734 

P17010 ZFX -1.08 -0.80 0.00098 0.02768 

O43681 GET3 1.10 0.26 0.00101 0.02829 

Q96J01 THOC3 -1.48 -0.51 0.00107 0.02950 

Q01518.1 CAP1 1.80 0.50 0.00115 0.03123 

P0DOX2 NA 1.33 -0.62 0.00121 0.03266 

Q99459 CDC5L -1.12 -0.80 0.00125 0.03316 

P16402 H1-3 1.24 -0.18 0.00132 0.03471 

P35613 BSG 1.74 0.51 0.00137 0.03544 

P48163 ME1 1.35 0.34 0.00161 0.04122 

P42858 HTT -1.64 -0.86 0.00164 0.04159 

P43304 GPD2 1.27 0.84 0.00170 0.04260 
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P21333.2 FLNA 1.69 -0.39 0.00174 0.04298 

P61088 UBE2N 1.87 -0.36 0.00177 0.04323 

Q969T9 WBP2 1.20 -0.96 0.00180 0.04350 

Q9P2S5 WRAP73 -0.77 -0.17 0.00188 0.04411 

P04229 NA -1.86 0.02 0.00189 0.04411 

P01920 HLA-DQB1 -1.58 0.43 0.00189 0.04411 

O75460 ERN1 1.28 -0.86 0.00193 0.04438 

Q9BT78 COPS4 1.32 -0.99 0.00194 0.04438 

P30042.1 GATD3A 1.96 0.11 0.00199 0.04492 

P42574 CASP3 -1.49 0.67 0.00212 0.04694 

Q9H1B5 XYLT2 1.27 -0.36 0.00212 0.04694 

P51790 CLCN3 2.06 -0.13 0.00219 0.04778 

P04899.1 GNAI2 1.47 -0.09 0.00225 0.04869 

P25942.1 CD40 1.38 -0.63 0.00230 0.04900 

Q9Y210.1 TRPC6 2.05 -0.08 0.00231 0.04900 

P17900 GM2A 1.32 0.49 0.00233 0.04900 

P04233.2 CD74 -1.78 0.09 0.00237 0.04905 

O60427 FADS1 1.41 -0.43 0.00240 0.04905 

O43424 GRID2 -1.00 -0.82 0.00241 0.04905 

Q13387.1 MAPK8IP2 1.61 0.47 0.00247 0.04978 

P09960.1 LTA4H -1.02 -0.43 0.00256 0.05100 

P02788 LTF 1.10 -0.57 0.00258 0.05100 

Q5T5U3 ARHGAP21 -1.44 0.00 0.00260 0.05102 

Q8WXH0.1 SYNE2 1.05 -0.98 0.00267 0.05181 

Q14697.2 GANAB 1.22 -0.41 0.00278 0.05315 

P34910 EVI2B 1.29 -0.53 0.00280 0.05315 

P25789 PSMA4 -1.04 -1.11 0.00282 0.05315 

Q9BX46.2 RBM24 -0.97 -0.25 0.00284 0.05315 

P02743 APCS -1.26 -0.86 0.00291 0.05401 

P55209 NAP1L1 1.44 -0.51 0.00299 0.05509 

P36969 GPX4 -1.59 0.26 0.00302 0.05517 

Q07960 ARHGAP1 1.11 -1.09 0.00323 0.05841 

O75122.3 CLASP2 -1.64 0.03 0.00330 0.05877 

P35611.1 ADD1 1.18 -0.57 0.00331 0.05877 

P50990 CCT8 1.04 -0.10 0.00333 0.05877 

Q86W11.1 ZSCAN30 -1.17 -0.71 0.00338 0.05886 

Q9NV96 TMEM30A 1.58 0.28 0.00340 0.05886 

Q9HBI6 CYP4F11 -1.23 -0.77 0.00342 0.05886 

P54709 ATP1B3 0.92 0.91 0.00361 0.06154 

Q9Y277 VDAC3 0.87 -0.31 0.00365 0.06174 

P08962 CD63 1.29 0.45 0.00382 0.06414 

P35749.4 MYH11 1.14 0.91 0.00394 0.06558 

P60981.1 DSTN 1.66 -0.15 0.00398 0.06558 
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P61604 HSPE1 1.48 0.63 0.00400 0.06558 

P08493.1 MGP 1.02 -0.20 0.00410 0.06629 

Q5VTH9.1 WDR78 -1.17 -1.04 0.00411 0.06629 

O75390 CS 1.10 -0.48 0.00415 0.06643 

P08574 CYC1 -1.15 -1.07 0.00449 0.07147 

P16671 CD36 1.12 -0.81 0.00460 0.07266 

Q13200 PSMD2 -1.44 -0.51 0.00480 0.07520 

Q96PD5 PGLYRP2 0.94 -0.76 0.00489 0.07599 

Q9NSD9 FARSB -0.71 -0.88 0.00511 0.07769 

Q9Y4G6 TLN2 1.23 -0.58 0.00515 0.07769 

P24557 TBXAS1 1.32 -0.10 0.00520 0.07769 

P08397.1 HMBS -1.19 -0.87 0.00521 0.07769 

O43399.7 TPD52L2 0.80 -0.01 0.00522 0.07769 

Q92882 OSTF1 1.52 -0.17 0.00522 0.07769 

O75964 ATP5MG 1.31 0.43 0.00529 0.07769 

Q6UWP8.2 SBSN -1.00 -0.94 0.00529 0.07769 

Q9H479 FN3K 1.54 -0.41 0.00545 0.07948 

Q99623 PHB2 1.21 0.88 0.00558 0.07960 

P15907 ST6GAL1 1.43 0.48 0.00559 0.07960 

P13473.3 LAMP2 1.00 -0.85 0.00561 0.07960 

P25815 S100P 1.05 -0.62 0.00562 0.07960 

P15311 EZR 1.15 0.48 0.00565 0.07960 

C9J442 NA 1.03 -0.18 0.00618 0.08496 

P21854 CD72 -1.09 -0.86 0.00618 0.08496 

P05164.2 MPO 1.14 -0.66 0.00619 0.08496 

Q08495.2 DMTN 1.50 -0.05 0.00626 0.08496 

O75116 ROCK2 1.29 -0.25 0.00634 0.08496 

Q8IU68.1 TMC8 -1.17 -0.89 0.00634 0.08496 

O15067 PFAS -1.05 -0.99 0.00636 0.08496 

P06396 GSN 1.15 -0.50 0.00638 0.08496 

P14550 AKR1A1 1.22 0.54 0.00640 0.08496 

Q9NYC9.1 DNAH9 1.03 -1.04 0.00659 0.08685 

P54707.1 ATP12A -1.03 -0.47 0.00662 0.08685 

Q8IXY8 PPIL6 1.12 -0.61 0.00693 0.09034 

P22694.1 PRKACB 1.45 0.11 0.00701 0.09079 

P07197 NEFM 1.37 0.07 0.00735 0.09373 

Q6YHK3.1 CD109 1.16 -0.80 0.00736 0.09373 

P17213 BPI 0.96 -0.40 0.00737 0.09373 

P06753.2 TPM3 1.21 -0.56 0.00744 0.09408 

Q9Y5W7 SNX14 1.86 -0.23 0.00761 0.09559 

P02750 LRG1 0.97 -0.82 0.00777 0.09628 

P12109 COL6A1 -1.46 0.50 0.00778 0.09628 

Q9BY15 ADGRE3 -1.50 0.22 0.00780 0.09628 
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P49006 MARCKSL1 1.52 -0.17 0.00788 0.09677 

P06241.3 FYN 1.46 0.48 0.00799 0.09747 

Q2M2E5 NA 1.03 -0.76 0.00817 0.09772 

O14818.1 PSMA7 0.88 -1.01 0.00818 0.09772 

P37802 TAGLN2 1.21 0.28 0.00819 0.09772 

P18206.2 VCL 1.35 -0.63 0.00819 0.09772 

Q15208 STK38 1.27 0.45 0.00829 0.09829 

P17980 PSMC3 1.27 -0.64 0.00833 0.09829 

Q9H0U4 RAB1B 1.25 -0.33 0.00847 0.09870 

P35241.1 RDX 1.22 -0.37 0.00851 0.09870 

Q9HD89 RETN 0.75 0.81 0.00851 0.09870 

Table 2: Differentially expressed phosphoproteins in circulating EVs (T1D vs. NGT) 

  

Uniprot ID Log2FC log2 Ave Expr P.Value adj.P.Val 

P69905 2.32 0.57 1.56E-10 9.09E-08 

Q8IZP0.8 2.73 0.26 8.63E-08 2.51E-05 

Q5T0T0 1.95 -0.52 1.31E-07 2.53E-05 

Q9H4B7 -1.76 0.06 8.95E-07 0.00013 

P01031 -1.45 -0.69 0.00013 0.01561 

P02749 2.00 0.20 0.00041 0.03994 

O75069.2 -1.47 -0.76 0.00061 0.05048 

P14672 0.88 -0.95 0.00095 0.06887 

P06702 0.52 -1.15 0.00192 0.12377 

P07359 -1.06 -1.04 0.00236 0.13089 

Q5T749 1.32 -0.94 0.00259 0.13089 

P68363 -1.23 -0.63 0.00270 0.13089 

Q9BSU3 -0.74 -1.07 0.00380 0.16982 

P19823 -1.36 0.25 0.00421 0.17476 

Q96A00 -0.80 -1.14 0.00479 0.18572 
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Figure 1. EV Characterization. A)Nanoparticle Tracking Analysis (NTA) of EVs isolated from participants with T1D and NGT. B) Overlap between the exosomal proteins 
reported in Exocarta and all the EV proteins and phosphoproteins identified in the present work. C,D) Volcano plots of the EV proteome and phosphoproteome. Dashed lines 
indicate p value = 0.0085 (nominal p that produced FDR < 0.1) and two-fold expression change (for proteomic analysis) and p value = 0.005 (nominal for FDR < 0.2) and 1.41-
fold change for phosphoproteomic analysis.  E-F) Unsupervised clustering of the differentially expressed proteome and phosphoproteome, respectively. G) Correlation plot of EV 
proteome versus phosphoproteome (grey circles: non-significant change, orange circles: differentially expressed only in proteomic analysis, purple circles: differentially expressed 
only in phosphoproteomic analysis; dark red circle: differentially expressed in both proteomic and phosphoproteomic analyses). H) Correlation between the S100A9 protein in 
circulating EVs and the number of circulating neutrophils. 
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Figure 2. Enrichment analyses for differentially expressed EV proteins. A) GO Cellular Compartment. B) GO Biological Processes. 
C) KEGG pathways. 
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Figure 3. Enrichment analyses for differentially expressed EV phosphoroteins. A) GO Cellular Compartment. B) GO Biological 
Processes. C) KEGG pathways. 
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Figure 4. A) Protein dendrogram and module colors. B) Module size. C)  Relationships among modules and clinical traits (14 
modules 163 clinical trait). Row corresponds to a consensus module. Columns correspond to a trait. Numbers in the table report the 
correlations of the corresponding module eigengenes and traits, with the p-value below in parenthesis.  
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Figure 5. Module connectivity with pancreas size. A) Distribution of module membership versus gene significance. B) Significance of
membership association with the trait of interest (pancreas size). C) Heatmap of the EV proteins correlation with pancreas size in the 
Tan module. D) Heatmap of the EV proteins correlation with pancreas size in the Salmon module. E and D) Enriched GO BP analysis 
of selected proteins associated with pancreas size in the Tan module (E) and in the Salmon module (F).  
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Figure 6. A) Proteins with a significant correlation with pancreas size in Tan module. B) 
Proteins with a significant correlation with pancreas size in Salmon module.
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Supplementary Table ST1: Clinical characteristics of the study cohort 

  T1D (N=10) NGT (N=7) p 

Sex (%)     1 

F 6 (60.0) 5 (71.4) 

M 4 (40.0) 2 (28.6)   

Race (%)     0.245 

AS 0 (0.0) 1 (14.3) 

BL 1 (10.0) 2 (28.6)   

WH 9 (90.0) 4 (57.1)   

Ethnic.Group (%)     0.279 

H 4 (40.0) 4 (57.1) 

NH 6 (60.0) 2 (28.6)   

UNK 0 (0.0) 1 (14.3)   

Age 25.35 [24.50, 28.23] 23.30 [23.00, 26.05] 0.328 

Height_Avg 163.50 [158.40, 168.50] 168.60 [152.02, 171.15] 0.696 

Weight_avg 73.35 [63.15, 79.07] 62.90 [54.95, 88.46] 0.77 

BMI 27.20 [24.12, 27.80] 28.90 [21.80, 30.45] 0.769 

SBP_avg 126.25 [114.88, 132.00] 120.50 [111.50, 124.25] 0.241 

DBP_avg 76.00 [71.00, 79.38] 66.50 [62.75, 78.50] 0.329 

HR_avg 75.25 [69.00, 83.12] 62.50 [59.00, 67.00] 0.011 

Waist_avg 86.38 [78.72, 92.25] 78.25 [75.08, 95.50] 0.696 

Hip_avg 95.12 [91.96, 102.67] 102.00 [85.75, 103.22] 0.922 

WstHipR 0.86 [0.84, 0.90] 0.86 [0.81, 0.89] 0.695 

Hgb.A1c 8.10 [6.95, 9.55] 5.10 [4.95, 5.30] 0.001 

Glucose.Lvl 142.00 [120.50, 199.50] 90.00 [86.00, 93.50] 0.04 

A.G.Ratio 1.55 [1.33, 1.60] 1.70 [1.40, 1.80] 0.324 

Albumin.Lvl 4.45 [4.32, 4.50] 4.60 [4.35, 4.70] 0.3 

Alk.Phos 70.00 [62.75, 87.50] 54.00 [49.50, 62.50] 0.04 

ALT 15.00 [11.75, 16.00] 16.00 [13.00, 24.50] 0.524 
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AST 20.00 [18.25, 22.00] 24.00 [22.00, 26.50] 0.171 

Bilirubin.Total 0.55 [0.43, 0.75] 0.40 [0.30, 0.45] 0.029 

BUN.Lvl 12.00 [11.00, 12.75] 11.00 [10.00, 13.00] 0.73 

Calcium.Lvl 9.35 [9.30, 9.40] 9.70 [9.55, 9.95] 0.06 

Chloride.Lvl 100.50 [99.25, 102.00] 102.00 [101.00, 102.00] 0.21 

Creatinine.Lvl 0.76 [0.68, 0.83] 0.74 [0.70, 0.85] 0.922 

GFR.African.Amer.by.CKD.EPI 139.00 [136.00, 142.00] 135.00 [127.00, 138.75] 0.462 

GFR.Non.Afr.Amer.by.CKD.EPI 119.50 [115.25, 123.50] 114.00 [103.00, 122.00] 0.464 

Globulin.Lvl 3.00 [2.73, 3.25] 2.80 [2.60, 3.25] 0.589 

Potassium.Lvl 4.10 [4.00, 4.47] 4.50 [4.30, 4.90] 0.077 

Sodium.Lvl 139.50 [138.25, 141.75] 140.00 [138.00, 141.00] 0.843 

Total.Protein.Lvl 7.20 [7.10, 7.60] 7.40 [7.30, 7.90] 0.327 

Abs.Basophil.Cnt 0.04 [0.04, 0.06] 0.04 [0.03, 0.06] 0.446 

Abs.Eosinophil.Cnt 0.11 [0.09, 0.19] 0.13 [0.07, 0.40] 0.769 

Abs.Lymphocyte.Cnt 1.54 [1.39, 1.99] 2.01 [1.73, 2.50] 0.13 

Abs.Monocyte.Cnt 0.42 [0.36, 0.49] 0.37 [0.34, 0.54] 0.922 

Abs.Neutrophil.Cnt 3.74 [2.84, 4.78] 3.85 [2.80, 5.40] 0.922 

Basophils 0.70 [0.60, 0.98] 0.50 [0.50, 0.85] 0.183 

Eosinophils 1.65 [1.35, 3.38] 1.60 [1.25, 5.95] 0.883 

Hct 41.55 [39.42, 44.35] 41.10 [37.65, 43.85] 0.696 

Hgb 13.80 [13.30, 14.92] 13.00 [11.85, 14.55] 0.328 

Lymphocytes 29.10 [27.55, 30.20] 33.60 [26.30, 38.40] 0.435 

Monocytes 7.30 [7.10, 7.68] 5.70 [5.55, 7.40] 0.24 

Neutrophils 61.30 [57.15, 62.50] 56.80 [50.40, 64.60] 0.525 

Platelet.Count 290.00 [254.25, 322.00] 280.00 [248.50, 290.50] 0.77 

RBC 5.00 [4.58, 5.22] 4.46 [4.39, 5.08] 0.261 

WBC 6.24 [4.88, 7.01] 6.53 [5.44, 8.71] 0.495 

TSH 1.95 [1.39, 2.69] 1.80 [1.27, 2.21] 0.626 

Cholesterol 142.50 [126.75, 167.00] 159.00 [141.00, 168.50] 0.329 

Chol.HDL.Ratio 2.40 [2.22, 3.05] 2.60 [2.40, 4.20] 0.305 
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HDL 55.50 [44.00, 68.25] 63.00 [45.00, 64.50] 0.961 

LDL 72.00 [63.75, 86.00] 84.00 [79.50, 85.50] 0.222 

LDL.HDL.Ratio 1.20 [1.10, 1.78] 1.30 [1.20, 2.60] 0.326 

Non.HDL.Cholesterol 82.50 [74.75, 95.50] 100.00 [96.00, 107.00] 0.107 

Triglycerides 54.50 [45.50, 87.00] 87.00 [53.50, 133.00] 0.157 

VLDL 11.00 [9.00, 17.00] 17.00 [11.00, 26.50] 0.171 

Liverfat. 0.55 [0.46, 0.62] 0.49 [0.37, 5.04] 1 

X.LiverFat..PDFF. 1.17 [1.10, 1.59] 1.25 [0.94, 4.96] 0.77 

MRE.Average.Stiffness.in.kPa. 1.85 [1.79, 2.15] 1.94 [1.81, 2.17] 0.596 

SAT_sum_Area.midfemur.slice 18179.54 [13231.18, 21877.71] 13069.77 [11578.63, 25190.13] 0.558 

IMAT_sum_Area.midfemur.slice 2059.82 [1268.76, 2771.35] 1783.27 [1374.26, 3073.03] 0.922 

Muscle_sum_Area.midfemur.slice 26777.19 [23849.12, 29230.38] 24363.55 [22914.31, 32462.90] 0.922 

Bone_sum_Area.midfemur.slice 1052.55 [908.29, 1171.28] 979.34 [829.33, 1220.66] 0.696 

SAT_sum_Volume 

1521280.91 [1113009.38, 

1841803.88] 

1103042.32 [981185.76, 

2087630.16] 0.626 

IMAT_sum_Volume 190781.10 [107734.79, 255509.14] 170450.85 [127699.39, 274042.90] 0.845 

Muscle_sum_Volume 

2151890.38 [1941567.85, 

2364076.91] 

1950434.18 [1846165.17, 

2626980.61] 0.922 

Bone_sum_Volume 87545.61 [75487.66, 96750.76] 81232.92 [69983.96, 100696.56] 0.696 

VAT.Mass_DEXA 306.31 [255.11, 771.87] 162.80 [123.46, 626.84] 0.626 

VAT.Volume_DEXA 324.69 [270.42, 818.18] 172.56 [130.86, 664.45] 0.626 

Total.Fat.Mass 24440.52 [18851.99, 28248.50] 21857.95 [18450.73, 33383.79] 0.77 

Total.Lean.Mass 43525.06 [40360.65, 53199.28] 36569.48 [34871.68, 54471.06] 0.435 

Total.Tissue.Mass 71805.65 [60478.21, 76997.91] 60760.70 [53492.07, 86003.96] 0.77 

Total.Fat.Free.Mass 46038.42 [42652.85, 55947.16] 39285.42 [36944.93, 57863.11] 0.435 

Total.Total.Mass 74336.53 [62621.58, 80130.18] 62939.71 [55801.90, 89396.02] 0.77 

Arms.Region..Fat 0.34 [0.25, 0.38] 0.32 [0.27, 0.40] 0.845 

Legs.Region..Fat 0.36 [0.32, 0.43] 0.37 [0.31, 0.41] 0.845 

Trunk.Region..Fat 0.35 [0.29, 0.38] 0.34 [0.30, 0.43] 0.558 

Android.Region..Fat 0.36 [0.27, 0.41] 0.36 [0.32, 0.46] 0.626 
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Gynoid.Region..Fat 0.35 [0.33, 0.47] 0.37 [0.31, 0.41] 0.845 

Total.Region..Fat 0.35 [0.28, 0.39] 0.34 [0.29, 0.41] 0.845 

Arms.Tissue..Fat 0.35 [0.26, 0.39] 0.33 [0.29, 0.41] 0.845 

Legs.Tissue..Fat 0.38 [0.33, 0.44] 0.38 [0.32, 0.42] 0.922 

Trunk.Tissue..Fat 0.36 [0.29, 0.39] 0.35 [0.31, 0.44] 0.558 

Android.Tissue..Fat 0.36 [0.27, 0.42] 0.37 [0.32, 0.46] 0.626 

Gynoid.Tissue..Fat 0.36 [0.34, 0.48] 0.38 [0.32, 0.42] 0.77 

Total.Tissue..Fat 0.36 [0.30, 0.40] 0.36 [0.30, 0.42] 0.77 

EI..measured. 2075.00 [1875.50, 2329.75] 1765.00 [1656.00, 2497.00] 0.626 

Nitrogen 10.02 [8.86, 12.23] 12.41 [9.31, 15.30] 0.435 

X24Hour.EE 2128.00 [1814.75, 2259.50] 1767.00 [1594.00, 2531.50] 0.77 

X24Hour.RQ 0.89 [0.87, 0.91] 0.88 [0.87, 0.89] 0.66 

Exercise.EE..measured..kcal.min 4.53 [3.98, 4.64] 3.66 [3.50, 5.46] 0.848 

Exercise.EE..measured..kcal.24.hr 6516.00 [5735.00, 6685.00] 5276.00 [5046.50, 7865.50] 0.848 

ExerciseRQ 0.92 [0.90, 0.97] 0.92 [0.92, 0.93] 0.949 

SleepEE 1501.00 [1347.50, 1720.50] 1255.00 [1151.50, 1805.00] 0.696 

SleepRQ 0.86 [0.84, 0.88] 0.86 [0.84, 0.87] 1 

NonExEE 2028.00 [1782.50, 2068.00] 1640.00 [1458.00, 2317.50] 0.655 

NonExRQ 0.87 [0.86, 0.88] 0.88 [0.86, 0.88] 0.565 

NonEx.NonSleep.EE 2163.50 [1958.25, 2268.00] 1804.00 [1617.50, 2527.00] 0.495 

NonEx.NonSleep.RQ 0.90 [0.87, 0.92] 0.89 [0.88, 0.89] 0.495 

EB 39.00 [-7.00, 60.75] 35.00 [-53.00, 62.00] 0.922 

npRQ 0.90 [0.88, 0.92] 0.89 [0.88, 0.91] 0.77 

ChoOx 283.50 [246.75, 336.25] 248.00 [205.50, 362.00] 0.696 

FatOx 61.00 [40.75, 77.25] 59.00 [47.00, 66.50] 0.626 

ProteinOx 65.00 [57.00, 79.25] 80.00 [60.50, 99.00] 0.464 

Active.minutes 153.50 [124.50, 173.75] 120.00 [102.00, 130.50] 0.079 

Activity. 0.11 [0.09, 0.12] 0.08 [0.07, 0.09] 0.079 

SPA 76.50 [60.75, 102.50] 54.00 [32.50, 74.50] 0.187 

TEF2..measured. 0.06 [0.03, 0.07] 0.04 [0.03, 0.06] 0.922 
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REE.pre.breakfast 1609.00 [1528.25, 1851.25] 1516.00 [1380.50, 1808.50] 0.494 

RRQ.pre.breakfast 0.87 [0.85, 0.87] 0.86 [0.83, 0.86] 0.283 

REE.post.breakfast 1743.00 [1616.25, 1914.75] 1571.00 [1440.00, 1977.50] 0.495 

RRQ.post.breakfast 0.92 [0.91, 0.94] 0.90 [0.88, 0.92] 0.143 

BEE 1664.50 [1579.75, 1801.25] 1391.00 [1357.00, 1989.50] 0.495 

BRQ 0.87 [0.86, 0.89] 0.88 [0.87, 0.89] 0.558 

Fat.Oxidation.Minutes..RQ...0.76. 16.50 [4.25, 42.00] 44.00 [4.50, 63.50] 0.845 

Average.total.daily.bolus 21.06 [15.96, 27.23] NA [NA, NA] NA 

Average.bolus.dose.before.admission 15.61 [14.87, 35.00] NA [NA, NA] NA 

Average.bolus.dose.in.chamber 25.74 [18.25, 26.00] NA [NA, NA] NA 

Bolus.for.breakfast 8.32 [4.31, 10.19] NA [NA, NA] NA 

Daily.basal 37.77 [25.65, 44.62] NA [NA, NA] NA 

TTD 60.28 [41.65, 75.43] NA [NA, NA] NA 

TTD.in.chamber 59.10 [49.55, 64.93] NA [NA, NA] NA 

TTD.before.admission 51.63 [37.34, 78.95] NA [NA, NA] NA 

Pro..g..Consumed...breakfast 17.10 [14.81, 18.25] 15.29 [13.53, 18.45] 0.435 

Fat..g..Consumed.breakfast 12.12 [10.50, 13.15] 11.21 [9.80, 13.90] 0.558 

CH0..g..Consumed.breakfast 118.90 [104.76, 128.73] 108.87 [96.26, 131.70] 0.626 

I.CHO.breakfast 15.61 [12.30, 29.97] NA [NA, NA] NA 

U.kg 0.86 [0.74, 0.92] NA [NA, NA] NA 

U.kg.in.chamber 0.76 [0.72, 0.92] NA [NA, NA] NA 

U.kg.before.admission 0.80 [0.56, 0.96] NA [NA, NA] NA 

bolus.kg.before.admission 0.29 [0.23, 0.41] NA [NA, NA] NA 

bolus.kg.total 0.31 [0.25, 0.36] NA [NA, NA] NA 

basal.kg 0.48 [0.40, 0.56] NA [NA, NA] NA 

Pancreas 43322.21 [35921.24, 48231.46] 78484.65 [63191.89, 94700.95] 0.001 

Liver 

1437953.81 [1290598.69, 

1725460.91] 

1185595.77 [1128007.52, 

1661495.92] 0.329 

Right.Kidney 159300.90 [146297.12, 177952.06] 140010.99 [118857.52, 166333.67] 0.143 

Left.Kidney 178556.03 [159871.62, 204226.50] 122221.55 [118685.23, 173808.59] 0.064 
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Spleen 263546.21 [230444.58, 320500.69] 192669.65 [119813.74, 265899.14] 0.143 

average.Pancreas.Fat.Fraction..exploratory. 2.36 [1.93, 2.66] 1.65 [1.50, 2.03] 0.327 

MRE..kPa..where.applicable. 0.59 [0.00, 1.33] 0.00 [0.00, 1.94] 0.788 

pancreas.tot_tiss_mass 0.58 [0.50, 0.68] 1.13 [0.99, 1.35] 0.002 

Liver.tot_tiss_mass 21.75 [19.71, 22.21] 20.17 [19.32, 21.74] 0.696 

Right_Kidn.tot_tiss_mass 2.38 [2.05, 2.62] 2.18 [1.81, 2.34] 0.205 

left_Kidn.tot_tiss_mass 2.58 [2.35, 2.93] 2.15 [1.79, 2.48] 0.097 

Spleen.tot_tiss_mass 3.67 [3.22, 4.45] 3.08 [2.26, 3.21] 0.051 

pancreas.tot_tot_mass 0.56 [0.48, 0.65] 1.08 [0.96, 1.29] 0.002 

Liver.tot_tot_mass 20.95 [19.07, 21.33] 19.60 [18.59, 20.79] 0.558 

Right_Kidn.tot_tot_mass 2.29 [1.99, 2.53] 2.09 [1.75, 2.25] 0.172 

left_Kidn.tot_tot_mass 2.48 [2.28, 2.83] 2.05 [1.73, 2.39] 0.079 

Spleen.tot_tot_mass 3.55 [3.11, 4.31] 2.95 [2.17, 3.11] 0.051 

pancreas.BW 563.33 [490.38, 656.39] 1100.96 [968.62, 1312.48] 0.001 

Liver.BW 21002.08 [19064.95, 21357.71] 19815.41 [18790.20, 21159.16] 0.558 

Right_Kidn.BW 2273.41 [1965.35, 2593.80] 2136.52 [1767.30, 2269.87] 0.172 

left_Kidn.BW 2486.42 [2286.47, 2904.74] 2078.60 [1740.36, 2435.65] 0.118 

Spleen.BW 3592.92 [3196.23, 4247.35] 3004.76 [2203.73, 3138.55] 0.051 
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