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ABSTRACT 

Background 

Breast cancer (BC) genome-wide association studies (GWAS) have identified 

hundreds of risk-loci that require novel approaches to reveal the causal variants and target 

genes within them. As causal variants are most likely regulators of gene expression, we 

hypothesize that their identification is facilitated by pinpointing the variants with greater 

regulatory potential within risk-loci. 

Methods 

We performed genome-wide differential allelic expression (DAE) analysis using 

microarrays data from 64 normal breast tissue samples. Then, we mapped the variants 

associated with DAE (daeQTLs) and intersected these with GWAS data to reveal candidate 

risk regulatory variants. Finally, we validated our approach by functionally analysing the 

5q14.1 breast cancer risk-locus. 

Results 

We found widespread gene expression regulation by cis-acting variants in breast 

tissue, with 80% of coding and non-coding expressed genes displaying DAE (daeGenes). 

We identified over 23K daeQTLs for 2753 (16%) daeGenes, including at 154 known BC risk-

loci. And in 31 of these risk-loci, we found risk-associated variant(s) and daeQTLs in strong 

linkage disequilibrium suggesting that the risk-causing variants are cis-regulatory, and in 27 

risk-loci we propose 37 candidate target genes. As validation, we identified five candidate 

causal variants at the 5q14.1 risk-locus targeting the ATG10, RPS23, and ATP6AP1L genes, 

likely via modulation of miRNA binding, alternative transcription, and transcription factor 

binding. 

Conclusion 

Our study shows the power of DAE analysis and daeQTL mapping to identify causal 

regulatory variants and target genes at BC risk loci, including those with complex regulatory 

landscapes, and provides a genome-wide resource of variants associated with DAE for 

future functional studies. 
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INTRODUCTION  

 

Genome-wide association studies (GWAS) for breast cancer (BC) have identified 

hundreds of risk-associated loci and have generated long lists of candidate ones requiring 

further validation [1]. Still, the identification of the causal variants and their target genes, as 5 

well as understanding the underlying biological mechanisms, remain challenging. This is 

because disease risk-loci often have many variants in high linkage disequilibrium (LD) with 

the risk-associated variant, harbour multiple genes and mainly fall in non-coding regions of 

the genome [2]. However, the overrepresentation of potential causal variants located at 

active gene regulatory regions [3,4] indicates that BC genetic predisposition is strongly 10 

influenced by variants regulating gene expression levels, both proximally and at long-range 

[5–11]. These variants have commonly been mapped by expression quantitative trait loci 

(eQTL) analysis, but this approach is impacted by the effects of negative feedback control 

and environmental factors [12]. An increasingly popular alternative approach is to detect 

imbalances in allelic transcript levels, or differential allelic expression (DAE). By comparing 15 

the relative expression of the two alleles in a heterozygous individual, each allele will serve 

as an internal standard for the other, thus controlling for trans-regulatory and environmental 

factors affecting both alleles [13,14]. Consequently, this is a direct indicator of regulatory 

variants acting in cis (cis-acting regulatory SNPs or rSNPs). 

Given the importance of cis-regulatory variants for BC susceptibility, a genome-wide 20 

map of cis-regulatory variants would be key to interpreting GWAS results and identifying 

causal variants of risk. Studies in various healthy tissues showed that DAE is a relatively 

common event [13,15–19]. Given that gene expression regulation is tissue-specific, it is 

important to perform these studies in the tissue from which the disease arises, namely 

normal breast tissue. Although others have used allelic expression analysis to identify BC 25 

risk, this was either carried out in tumour tissue or lymphoblastoid cells [20,21]. This study 

proposes an integrative approach to identify causal variants of risk that have a cis-regulatory 

role (Figure 1): to combine GWAS results with SNPs associated with DAE levels in normal 

breast tissue. Hence, we first carried out DAE analysis in normal breast tissue samples, at a 

genome-wide level, then mapped the candidate risk regulatory variants for GWAS loci and 30 

finally functionally unveiled the mechanisms underlying BC risk at a selected locus. 
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Figure 1 - Framework of the strategy used for the identification of causal variants and target 
genes associated with breast cancer risk. Legend: aeSNP - a SNP that passed quality control and 
at which allelic expression (AE) was measured; daeSNP - a aeSNP showing differential AE (DAE); 5 
Genotyped SNP - a SNP with genotype information (either genotyped in the study or imputed) and 
tested for association with AE ratios; daeQTL - a SNP associated with AE ratios measured for a 
daeSNP; risk_daeQTL - a daeQTL with an r2 ≥ 0.4 with a GWAS hit variant; candidate risk rSNP - a 
variant with an r2 ≥ 0.95 with the risk daeQTL. 
 10 
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MATERIAL AND METHODS 

Data set 
Seventy-six samples of normal breast tissue were collected from women submitted to 

a reduction mastectomy, for reasons unrelated to cancer, at Addenbrooke’s Hospital, 

Cambridge, United Kingdom. Samples were collected with approval from Addenbrooke’s 5 

Hospital Local Research Ethics Committee (REC reference 06/Q0108/221). DNA and total 

RNA were extracted as previously described [22].  

 

Genome-wide DAE analysis 
Seventy-six DNA and cDNA samples derived from total RNA from a given individual 10 

were run on Illumina Infinium Exon510S-Duo arrays generating 304 idat files for both red 

and green channels [23]. These exon-centric microarrays contain probes for 511,354 SNPs, 

with more than 60% of the markers located within 10kb of a gene and targeting more than 

99.9% of human RefSeq genes. This data set is available from Gene Expression Omnibus 

(GEO, www.ncbi.nlm.nih.gov/geo/) under accession number GSE35023. The sample filtering 15 

and normalization were performed as described previously and 12 samples were removed 

from further analysis [23]. After normalization and before allelic expression analysis, 

extensive quality control was performed and only SNP respecting the following filters were 

further analysed: (1) to remove non-expressed SNPs, a minimum cut-off of average log2 

RNA intensity values  ≥ 9.5 for each probe was applied; (2) to verify the efficacy of allelic 20 

discrimination at the RNA level by the microarray probes, RNA log2 ratios of the signal of 

each SNP’s two probes was compared between heterozygous (AB) and homozygous groups 

(AA and BB) and minimum two-sample t-test p-value ≤ 0.05 was applied; (3) to guarantee 

high quality genotyping data, a minimum call rate ≥ 90%, a Hardy-Weinberg equilibrium p-

value > 1.0E-05 and at least five heterozygotes were requested for each SNP; and finally, 25 

(4) only SNPs uniquely mapped in the genome, not flagged as suspected in dbSNP149 

GRCh38p7 and located in autosomes were kept. 

Allelic expression was measured in the filtered dataset of SNPs and samples, in a 

varying number of individuals heterozygous (AB) for each transcribed SNP (aeSNP). As the 

cDNA was prepared from total RNA, without enrichment for poly-A mRNAs, AE was 30 

measured for variants located in fully processed mRNAs and in unspliced primary 

transcripts.  Allelic expression ratios (AE ratios) were defined as the log2 of the ratio between 

the levels of allele A transcript and the levels of allele B transcript (heterozygote ratio), 

normalized by the same heterozygote ratio calculated for genomic DNA (gDNA) (Figure S1), 

to account for copy number variation and correct for technical biases. DAE was defined 35 

when AE ratios were greater than 0.58 or less than -0.58 (corresponding to the log2 of 1.5-
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fold difference between alleles), and aeSNPs were considered to display DAE (daeSNPs) 

when at least 10% and three heterozygous samples displayed DAE (Figure S1, Figure 1 - 

step1). Genes with at least one daeSNP were henceforth denominated daeGenes. 

aeSNPs for which monoallelic expression profiles with two distinct groups of 

heterozygotes solely expressing one allele or the other were identified, suggesting imprinting 5 

or random monoallelic expression [24] were classified as being mono-allelic expressed 

(maeSNPs). Genes with at least one maeSNP were labelled as maeGenes. 

Validation of nine daeSNPs was performed by Taqman® PCR technology, as 

described before [22], in 25 independent normal breast tissue samples heterozygous for a 

variable number of individual per SNP, using the following Taqman® Genotyping Assays 10 

predesigned by Applied Biosystems: C___8354687_10; C__29939330_20; 

C__31232634_10; C___3133316_10; C__11844169_10; C___2627792_10; 

C___1517694_1_; C____787630_20; C___3108259_10. 

 
Annotation of variants 15 

Variants were annotated according to hg38/GRCh38 with biomaRt v 2.40.5, and 

Ensembl IDs without the HGCN symbol were excluded from the tables but were considered 

for statistics reporting the number of genes. To test whether classes of consequence type 

and gene biotype were over-represented (i. e. enriched) in the list of daeSNPs we applied a 

one-tailed Fisher’s exact test (alternative = greater).  20 

Information from imprinted genes was retrieved from a comprehensive study of 

genomic imprinted in breast [25] and from geneimprint database 

(http://www.geneimprint.com) searching for Imprinted Genes: by Species: Human.  

 
Genotype imputation 25 

Imputation was run on the Illumina Exon 510 Duo germline genotype data from the 

64 samples that passed microarrays quality control filters. Before imputation data, quality 

control was applied to the genotyping data, and SNPs with call rates < 85%, minor allele 

frequency < 0.01, and Hardy-Weinberg equilibrium with p-value < 1.0E-05 were excluded 

from the analysis. Imputation was performed using MACH1.0 [26] and the phased 30 

haplotypes for HapMap3 release (HapMap3 NCBI Build 36, CEU panel - Utah residents with 

Northern and Western European ancestry) as reference panel. We applied the 

recommended two-step imputation process: model parameters (crossover and error rates) 

were estimated before imputation using all haplotypes from the study subjects and running 

100 iterations of the Hidden Markov Model (HMM) with the command option - greedy and -r 35 

100. Genotype imputation was then carried out using the model parameter estimates from 

the previous round with command options of -greedy, -mle, and -mldetails specified. 
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Imputation results were assessed by the platform-specific measures of imputation 

uncertainty for each SNP (rq Score) and filtered for an rq-score≥0.3, as suggested in the 

author webpage (http://csg.sph.umich.edu/abecasis/mach/tour/) and MAF ≥ 0.01. 

 

Candidate rSNPs mapping 5 

Mapping of candidate rSNPs associated with the DAE observed - henceforth 

designated as daeQTLs (differential allelic expression quantitative trait loci) (Figure S1, 

Figure 1 - Step2) - took into consideration the pattern of AE ratios distribution displayed by 

each daeSNPs, as this is highly dependent on the LD between the daeSNP and the rSNP 

acting upon the gene [27]. Therefore, to identify daeQTLs we followed two mapping 10 

approaches:  

- Mapping Approach 1 - applied to daeSNPs for which all heterozygous samples 

displayed DAE - all genotyped/imputed SNPs located within ±500Kb of the daeSNP 

equally heterozygous for all samples were considered daeQTLs. 

- Mapping Approach 2 - applied to daeSNPs for which only some heterozygous 15 
samples displayed DAE.  The absolute values of AE ratios at the daeSNP were used 

in an asymptotic one-way Fisher-Pitman test to compare heterozygotes and the 

combined homozygotes for the candidate rSNP (AB vs AA+BB, Figure S1). 

Genotyped/imputed SNPs located within 500Kb of the daeSNP which had at least 2 

heterozygous and 2 homozygous samples were selected for analysis. The null 20 

hypothesis tested was that the mean of the heterozygotes group was equal or 

smaller than that of the combined heterozygotes. The premise for this was that only 

samples that are heterozygous for the candidate rSNP will show differences between 

the expression of the two alleles at the daeSNP, i.e., higher absolute AE ratios. We 

combined the two groups of homozygotes as no phased data was available for these 25 

samples, and therefore a logistic regression could not be applied to three genotype 

groups separately. Tests were applied using a one way-test implemented in the coin 

package [28]. P-values were adjusted with the Benjamini-Hochberg method [29], 

using all 18572521 daeSNP/tested SNP pairs, with the distance between them as a 

covariate (package ihw, R) [30] and reported as significant when the false discovery 30 

rate was below 10%.  

 

 

Breast cancer GWAS data retrieval 
Nine hundred and sixty-eight GWAS-significant risk-associated SNPs for BC 35 

published until April 2018 were retrieved from the NHGRI-EBI Catalog of published genome-
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wide association studies (GWAS Catalog) [31] using the gwasrapidd R package [32]. Filters 

included a significance level cut-off of p-value ≤ 1.0E-05 and the reported traits: “Breast 

cancer", "Breast cancer (early onset)", "Breast cancer (estrogen-receptor negative)", "Breast 

cancer (male)", "Breast Cancer in BRCA1 mutation carriers", "Breast cancer in BRCA2 

mutation carriers", "breast cancer male", "Breast cancer and/or colorectal cancer). The full 5 

list of SNPs is presented in Table S1. 

 

Proxy SNPs retrieval 
Variants in LD with index SNPs were retrieved from Ensembl [33] using the function 

get_ld_variants_by_window() from the ensemblr R package 10 

(https://github.com/ramiromagno/ensemblr) using the 1000 GENOMES project data 

(phase_3) for the CEU population, and a genomic window size of 500kb (250kb upstream 

and downstream of the queried variant). The r2 cut-off used varied between 0.2 and 0.95 

depending on the analysis and is indicated in each analysis description. 
 15 

Retrieval of previously suggested BC targets genes 
Genes previously suggested as targets of cis-acting regulatory variation in post-

GWAS studies for BC, with extensive fine-scale mapping and in-silico prediction or functional 

analysis, and those classified as Inquisit 1 by Fachal and colleagues [4] are indicated in 

Table S2. 20 

 
GTEx eQTL and gene expression data retrieval 

The Genotype-Tissue Expression (GTEx) project identified expression quantitative 

trait loci (eQTL) using normal mammary tissue samples [34]. eGenes (genes with at least 

one SNP in cis significantly associated, at a false discovery rate (FDR) of ≤0.05, with 25 

expression differences of that gene) and significant variant-gene associations based on 

permutations were downloaded from GTEx Analysis V8 (dbGaP Accession 

phs000424.v8.p2, available on 18/07/2019). 

All SNP-gene associations tested for breast mammary tissue, including non-

significant, together with genes expression levels (TPM) were downloaded from GTEx 30 

Analysis V7 (available on 2016-01-15).  

 
Comparison of daeGenes, eGenes and gwasGenes 

First, the list of publicly available eGenes was compared with the daeGenes 

identified in our study, restricting this comparison to genes analysed in both datasets. Then, 35 

we investigated the percentage of gwasGenes, defined as genes containing variants that are 
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in moderate to strong LD (r2≥0.4) with GWAS index SNPs, displaying evidence of cis-

regulation by either DAE or eQTL analysis. 

 

Functional characterization of candidate risk SNPs 
Candidate risk rSNPs at the 5q14.1 locus were examined for potential regulatory 5 

potential. Overlap of variants location with epigenetic marks derived from the ENCODE [35] 

and NIH Roadmap Epigenomics projects data [36], was carried out using the UCSC 

Genome Browser [37,38], HaploReg v4.1 [39] and RegulomeDB v1.1 [40] tools. Emphasis 

was given to overlapping with DNase I hypersensitivity sites, H3K4me1, H3K4me3, and 

H3K27ac histone modifications, and transcription factor (TF) binding identified in normal 10 

human mammary epithelial cells (HMECs), normal human mammary fibroblasts (HMFs), two 

BC cell lines (MCF-7 and T47D) and two normal breast cell lines (BR.MYO and BR.H35). 

Allele-specific epigenetic modifications (H3k4me3 and DNAse I), and RNA 

polymerase II (POL2) and transcription factors (TF) binding with alignment data available in 

HMEC, MCF-7 and MCF-10A breast cancer cell lines from ENCODE were retrieved and 15 

visualized using the Integrative Genomics Viewer (IGV Version 2.3.71) tool [41], to analyse 

protein-DNA interactions and allelic preferential binding. Differential allelic binding was 

analysed in heterozygous candidate risk rSNPs located within TF binding peaks in 

experiments with a read coverage at the SNP site higher than 20. We applied a two-tailed 

binomial test with the null hypothesis assuming no bias (balanced binding of the protein to 20 

the two alleles of the variant).  P-value was corrected for multiple testing using the R 

package qvalue [42]. When multiple tracks for the same SNP, trait and Cell line existed, it 

was only reported in the main manuscript the p-value for the experiment with higher total 

read counts. 

Prediction of SNP-allele miRNA binding was performed for five SNPs located in 25 

RPS23 3’UTR using a modified version of TargetScan – a miRNA-binding prediction 

algorithm, that performs allele-specific queries [43]. 

Analysis related to alternative transcription was carried out in three ways. Firstly, 

sQTLseekeR (v1.4) [44] was used to test the association of genetic variants with alternative 

isoform expression, in both normal breast and tumour tissue, using total read counts derived 30 

from RNA-seq data from the TCGA (TCGA-BRCA, hg19) and GTEx (phs000424.v6.p1, 

hg38) projects. Only ATG10 displayed sufficient alternative transcription dispersion to allow 

the sQTL analysis. Additionally, all SNPs within 5kb upstream or downstream of ATG10 

were included in the analysis and not only the 92 candidate risk rSNPs, to increase the 

stringency of the association exercise. P-values for all SNPs tested for ATG10 sQTL 35 

analysis were controlled for multiple testing using a 5% FDR. Correlation analyses between -

log10 (FDR q-value) and LD (r2) with rs7707921 were performed using a Pearson’s test. 
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Then, overlapping of variant location with RNA processing-associated proteins was 

assessed using CLIP data retrieved from POSTAR2 (http://lulab.life.tsinghua.edu.cn/postar/) 

[45] and from RBP-Var (http://www.rbp-var.biols.ac.cn/) [46], which additionally informed on 

riboSNitch potential [47]. Finally, allele-specific RBP binding predictions were performed with 

RBPmap [48] using the analysed variant flanking sequence (30 nucleotides on each side, 5 

with the variant at index 31) using all available human RBP motifs. 

 
Haplotype analysis 

Haplotypes in the 5q14.1-14.2 region were analysed on Haploview 4.2 using the 

imputed genotypes from the 64 normal breast tissue samples [49]. For candidate risk SNPs 10 

whose genotype was not possible to determine (because it was neither genotyped nor 

imputed), a proxy SNP in strong LD (r2 ≥ 0.95) was used instead. Haplotype blocks were 

generated using the default algorithm. 

 

TCGA-BRCA gene expression analysis 15 

Processed gene expression and isoform expression from RNA-Seq data for 113 

normal solid tissues and 1102 primary solid tumours from the TCGA-BRCA project, together 

with corresponding clinical data, were retrieved from the Genomic Data Commons archive 

using the R package TCGAbiolinks [50] accessed in October 2018. Isoform expression was 

annotated according to the genome assembly hg19 and total gene expression annotated 20 

according to hg38. To compare the mean of the expression of ATG10 isoforms between 

normal-solid tissues (normal-matched) and breast tumours we applied two-sample Wilcoxon 

tests, correcting for multiple testing with the Benjamini and Hochberg (BH) procedure. To 

correlate gene expression among ATG10, RPS23, ATP6AP1L we applied a Pearson's test. 

To correlate ATG10, RPS23, and ATP6AP1L with MYC and MAX gene expression a 25 

Spearman’s test was applied instead. 
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RESULTS 

 
Cis-regulatory variation is common in normal breast tissue 

Genome-wide allelic expression (AE) analysis was performed using microarrays data 

from 64 samples of normal breast tissue.  Normalized allelic expression ratios were 5 

calculated for SNPs located in coding and non-coding regions, upon filtering for expression 

level and allelic discrimination potential of the cDNA signals. Overall, we identified 91,467 

autosomal allelic-expressed SNPs (aeSNPs) located in 21,527 annotated Ensembl genes 

(median of three aeSNPs per gene) (Figure S2). 70,489 of the aeSNPs were annotated 

uniquely to one gene, resulting in 12,331 genes to which we could directly attribute the allelic 10 

expression measurements. Unsurprisingly, the number of aeSNPs analysed per gene 

correlated with the annotated gene length (rho = 0.60, p-value < 2.2e-16, Figure S3). 

We found that almost half of the aeSNPs (44,267 out of 91,467) displayed bi-allelic 

differential expression (daeSNPs, ≥ 1.5-fold difference between alleles) (Table 1, Figure S4, 

Table S3), while 84 SNPs displayed mono-allelic expression (maeSNPs). Taqman PCR 15 

validated seven out of nine daeSNPs (Figure S5) that showed DAE and concordant 

preferential expression of the same allele (Fisher’s exact test p-value > 0.05). 

 
Table 1. Summary of the genome-wide breast tissue allelic expression analysis 

results 20 

Set of SNPs n Ensembl Gene IDs 
Mean number of 

heterozygous samples 
Mean number of 

DAE samples 
All aeSNPs 91467 21527 22.1 - 
maeSNPs 85 44 22.8 22.8 
daeSNPs 44267 17135 24.4 8.7 
 

 

The daeSNPs distributed uniformly across the genome, with low inter-chromosomal 

variability (Figure S6), and overlapped 17,134 (80%) annotated genes (daeGenes), of which 

6,525 (30%) harboured three or more daeSNPs (Figure 2a, Table 1, Table S3). When 25 

considering daeSNPs mapping exclusively to one gene, we could pinpoint 9,841 daeGenes 

that showed evidence of being under the control of allele-specific cis-acting factors, either 

genetic or epigenetic.  In terms of consistency of DAE detection across length of these 

genes, we found that in the majority of daeGenes, daeSNPs represented two thirds of 

aeSNPs (7740 in 17134), with 626 daeGenes presenting imbalances in all the analysed 30 

aeSNPs (Figure 2b). Regarding the number of heterozygotes, we found 8.7 samples on 

average displaying DAE out of the 24.4 analysed per daeSNP (Table1, Table S4). The 

aeSNPs showed a large distribution of average |AE ratios| centred at 0.48, with 1% aeSNPs 
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showing average allelic fold changes ranging from 4.7 to 34 (Figure 2c, Table S5). The 

amplitude of the imbalances measured at aeSNPs correlated negatively with the average 

expression level of both alleles (rho = -0.4, p-value < 2.2e-16) (Figure 2d), but not with the 

standard deviation across individuals (Figure S7).The aeSNPs located mainly in intronic and 

non-coding transcripts regions, but non-daeSNPs and daeSNPs showed differences in class 5 

distribution for consequence type, with daeSNPs enriched at unannotated and intronic 

regions and at non-coding transcripts (p-value < 0.01, Figure 2e). Although the majority of 

the aeSNPs analysed located in protein coding genes, daeSNPs were relatively more 

common at non-coding genes and pseudogenes when compared to non-daeSNPs (p-value 

< 0.01, Figure 2f, Table S3). 10 

 

Monoallelic expression in breast tissue 
Regarding monoallelic expression, maeSNPs were annotated to 44 Ensembl genes 

(Table 1, Table S6, Figure S8), the majority of which were previously reported as imprinted 

in breast tissue (e.g., IGF2 or ZDBF2), or in other tissues (e.g., KCNQ1, KCNQ1OT1, RTL1, 15 

NAA60, ZIM2, and L3MBTL1), validating our AE analysis. Interestingly, we detected 

maeSNPs in a region containing the lncRNA MEG9 and a cluster of miRNAs genes that had 

only previously been reported as imprinted in non-human species [51–53]. Additionally, we 

found unreported monoallelic expression at an intergenic region (22q11.23), suggesting the 

existence of unannotated transcripts at this region. Notably, we observed two separate 20 

groups of heterozygotes preferentially expressing opposite alleles of rs17122278, an intronic 

variant of ARCN1, suggesting the latter as a candidate novel mono-allelic expressed protein-

coding gene in breast tissue. 

 

 25 
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Figure 2 - Characterisation of aeSNPs. a) Histogram of the rank number of daeSNPs identified per 
gene across 17135 annotated genes. b) Histogram of the rank proportion of daeSNPs per aeSNPs 
identified per gene. c) Box plot with the distribution of the mean of the absolute values of AE ratios 5 
across heterozygous individuals measured at non-daeSNPs and daeSNPs. d) Distribution of the 
mean absolute values of AE ratios at aeSNPs according to the average intensity of both alleles at 
aeSNPs, in the microarrays data. It is shown the results of a Spearman’s correlation test. e) and f) 
Relative frequency of aeSNPs and daeSNPs according to consequence type and gene biotype, 
respectively. (*) denotes the classes for which daeSNPs were enriched (p<0.01). 10 
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Mapping of daeQTLs in normal breast tissue 
Evidence of DAE supports that a gene is under the control of cis-regulatory variation 

(rSNPs), which can be mapped using AE ratios as a quantitative trait – in what we termed 

DAE quantitative trait loci (daeQTL) analysis. Furthermore, the pattern of AE ratios 5 

distribution displayed by each daeSNPs is highly dependent on the LD between the daeSNP 

and the rSNP acting upon the gene [27]. 

Here, we found a minority of daeSNPs (1198 out of 44,267) for which all the 

heterozygotes preferentially expressed the same allele. This is indicative of strong linkage 

disequilibrium (r2 ~ 1) between the daeSNP and the rSNPs acting on it [27]. Hence, for these 10 

daeSNPs, we identified 19316 daeQTLs (Approach 1, Table 2). From the mapping of all 

other daeSNPs (Approach 2), we identified 5049 daeQTLs (FDR of 0.1, Figure 3a) for 1295 

daeGenes. Given that 617 daeQTLs were commonly identified by both approaches, in total 

we identified 23748 unique daeQTLs for 2753 (16%) daeGenes (Table 2, Table S7). 

daeQTLs are located mostly within 65Kb from the corresponding daeSNP, but as far as the 15 

500kb window used for the analysis. However, those identified by Approach 2 were more 

proximal because the distance was used as a covariate in the analysis (95% located within 

105Kb) (Figure 3b). A daeQTL for MROH8, a coding gene located on chromosome 20, was 

the most significant one found (nominal p-value = 3.2e-09), but other highly significant 

daeQTLs (nominal p-values smaller than 5.0e-08) located at nine other loci (Figure 3a, 3c, 20 

Table S7). 

 
Table 2. Summary of daeQTLs identified in breast tissue 

 
daeQTLs Number Ensembl Target Gene IDs 

Total 23748 2753 
identified by mapping approach 1 19316 1640 
identified by mapping approach 2 5049 1295 

     common to both approaches 617 182 
 25 

 

 

 

 

 30 
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Figure 3 - Mapping of variants associated with differential allelic expression. a) Manhattan plot 
for the daeQTLs (nominal p-value) identified by mapping approach 2 using an FDR of 10%. aeGenes 5 
with daeQTLs with p-values lower than 5.0e-08 are annotated. b) Empirical cumulative distribution for 
distance between the daeSNP and corresponding mapped daeQTL. Results from mapping approach 
1 are shown in red and those from mapping approach 2 are shown in blue. c) daeQTL mapping result 
for the most significant daeQTL identified for MROH8. The AE ratios calculated at the daeSNP 
rs1780680 are represented on the y-axis in all panels, and are stratified according to genotype at 10 
rs1744766 (heterozygous individuals are shown in black and homozygous individuals in red). 
 

 

 
Annotation of DAE and daeQTLs at BC risk loci 15 

To pinpoint the most likely candidate target genes within BC risk loci, a main post-GWASes 

challenge, we identified the genes displaying the strongest evidence of being under the 

control of cis-regulatory variation, either by DAE (daeGenes) or eQTL (eGenes) analysis, in 

GWAS reported loci (gwasGenes). Most gwasGenes (879 out of 957) showed evidence of 

being cis-regulated, with 51% identified solely by DAE analysis and 43% by both analyses. 20 

These percentages reflect a significant enrichment (Fisher’s exact test = 1.0e-04) when 

compared to the initial set of genes analysed for DAE and eQTL (13771 daeGenes or 

eGenes in 15,706 total). Next, we sought to verify our ability to identify a set of 178 

previously proposed target genes. We found that 52% of these were exclusively daeGenes 

(e.g. ELL, TOX3, ISYNA1), 33% were identified as both daeGenes and eGenes (e.g., 25 

CASP8, CCND1, STXBP4), 4% were exclusively eGenes (e.g. RMND1, HELQ, PRKRIP1) 

and the remainder 11% were not supported by either approach (CITED4, IGFBP5, MYC) 

(Table S2). This predominance of daeGenes compared to eGenes was not biased by the 

total gene expression levels, as those genes identified solely as eGenes showed higher 

median levels of expression than common genes (identified by both approaches) and solely 30 

daeGenes. Additionally, less than 5% of genes altogether were lowly expressed (median 

<0.1 TPM), although slightly higher among solely daeGenes (4.2% compared to 0.6% in 

solely eGenes and 1.9% in common genes) (Figure S9). 
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Another post-GWAS challenge is the identification of the causal variants within risk 

loci. To find the most likely variants regulating gwasGenes in cis, we successfully mapped 

daeQTLs for 154 gwasGenes (17.5%) (Figure 4, Table S8). To further identify the most 

plausible daeQTLs associated with risk (risk-daeQTLs), we identified those in moderate to 

strong LD (r2 ≥ 0.4) with GWAS index SNPs (Figure 1 – Step 3) (GWAS P-value < 1.0e-05). 5 

This revealed 404 risk-daeQTLs distributed across 31 different loci in 17 chromosomes, 

mostly located in intronic regions, followed by non-coding transcripts (Table S9, Figure S10). 

Furthermore, thirty-seven novel candidate target genes were detected in 22 loci with no 

previous report of target genes (Table 3). The five remaining loci contained previously 

proposed target genes, yet we identified additional novel ones, namely STRADB and TRAK2 10 

in 2q33.1 (Table 4). Importantly, a useful resource output from this analysis is the list of 1756 

daeGenes with mapped daeQTLs that do not co-localize with currently known BC risk loci 

but could be mined to study future risk loci (Figure 4, Table S8). Additionally, the daeQTLs in 

lower LD with GWAS hits (0.2 ≤ r2 <0.4) represent another valuable dataset warranting 

further exploration (Table S10).  15 
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Figure 4 - Intersection of DAE and eQTL data from normal breast tissue and BC GWAS data. 5 
Upset plot for 15,706 genes tested for both DAE and eQTL (GTEx breast mammary tissue). Legend: 
daeGenes - genes identified as having differential allelic express in normal breast tissue; eGenes - 
genes reported  as being eQTL genes in GTEx mammary tissue data (q-value ≤ 0.05); gwasGenes - 
genes where GWAS index SNPs or proxies (r2 ≥ 0.4) are located; daeGenes with daeQTL mapping - 
daeGenes for which daeQTLs were identified. 10 
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Table 3. Loci with candidate risk rSNP and novel suggested target genes. 
 

Locus GWAS SNP GWAS nearest Gene GWAS Study N candidate 
risk rSNP 

LD 
Interval# Proposed Target Gene 

1p36.23 rs7535752 SLC45A1 Song et al. 2013 5 0.49-0.56 RERE 
rs9628987 SLC45A1 Song et al. 2013 3 0.42-0.45 RERE 

1q32.1 
rs2810650 SNRPE Michailidou 2017 7 0.45-0.62 ZBED6, ZC3H11A 
rs4951011 ZBED6, ZC3H11A Cai 2014 10 0.51-1 ZBED6, ZC3H11A 
rs59867004 ZBED6, ZC3H11A Michailidou 2017 6 0.40-1 ZBED6, ZC3H11A 

3p24.1 

rs4973768 SLC4A7 
Ahmed 2009; Turnbull 2010; Fletcher 2011; Michailidou 
2013; Michailidou 2015; Michailidou 2017 10 0.44-0.77 NEK10 

rs7619833 SLC4A7 Michailidou 2017 5 0.52-0.63 NEK10 
rs1357245 NEK10 Ahmed 2009; Michailidou 2015 10 0.43-0.86 NEK10 
rs60936670 NEK10 Michailidou 2017 10 0.61-1 NEK10 
rs653465 NEK10 Ahsan 2014 9 0.61-1 NEK10 

3p21.31 rs56387622 MYL3 Michailidou 2017 1 0.47 MYL3 
rs6796502 PRSS42P Michailidou 2015; 2017 6 0.44-0.47 MYL3 

3q25.31 rs2136690 TIPARP, TIPARP-AS1 Michailidou 2017 4 0.41-0.86 TIPARP, TIPARP-AS1 
rs7637701 LEKR1 Michailidou 2017 4 0.52-0.71 TIPARP, TIPARP-AS1 

4q22.1 rs2725207 PKD2 Michailidou 2017 1 1 ABCG2 
5p15.33 rs62641919 * AHRR Michailidou 2017 33 0.44-1 PLEKHG4B 
5p15.2 rs1092913 ROPN1L Sehrawat 2011 9 0.56-1 MARCH6 
6p22.3 rs3819405 ATXN1 Michailidou 2017 1 1 GMPR 

6p22.2 
rs71557345 ZNF322 Michailidou 2017 13 0.42-0.88 BTN3A2 
rs13195401 BTN2A1 Michailidou 2017 35 0.48-1 BTN3A2 
rs17598658 HIST1H2BE Michailidou 2017 21 0.69-1 BTN3A2 

 
rs2523992 AL645929.3 Michailidou 2017 29 0.44-0.49 HLA-L, HCG17 
rs3094146 ZNRD1ASP Michailidou 2017 18 0.41-0.70 HLA-L, HCG17 
rs3094054 UBQLN1P1 Michailidou 2017 21 0.74 HLA-L, HCG17 
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rs3132610 ABCF1 Michailidou 2017 2 0.77 HLA-L, HCG17 
rs3132615 SUCLA2P1 Michailidou 2017 21 0.74 HLA-L, HCG17 

7q11.23 rs377629160 STAG3L2 Michailidou 2017 3 0.53-0.89 GTF2IRD2 
rs74910854 GTF2I Michailidou 2017 1 0.58 GTF2IRD2 

9q31.1 rs11290052 SMC2 Michailidou 2017 2 0.41 SMC2 
rs4742903 SMC2 Michailidou 2017 26 0.84-1 SMC2 

9q34.2 rs3124765 CACFD1 Michailidou 2017 1 0.50 ADAMTS13 
10p12.1 rs7918232 ANKRD26 Michailidou 2017 26 0.40-0.93 MASTL, PTCHD3, YME1L1 
13q32.1 rs1926657 ABCC4 Murabito 2007 1 1 ABCC4 
14q13.2 rs58327846 PRORP Michailidou 2017 2 0.40-0.44 PRORP, SEPTIN7P1§ 

14q32.33 
rs60226654 KLC1, COA8 Michailidou 2017 20 0.41-0.52 EIF5, KLC1, XRCC3 
rs10623258 ADSSL1 Michailidou 2017 1 0.41 SIVA1 

15q24.2 rs8027365 PTPN9 Michailidou 2017 27 0.80-0.83 MAN2C1 

15q26.1 rs2290203 
PRC1, PRC1-AS1, 
AC068831.7 Cai 2017; Michailidou 2017 1 0.56 PRC1, PRC1-AS1 

rs77554484 PRC1 Michailidou 2017 1 1 PRC1, PRC1-AS1 
16q22.2 rs71695136 IST1 Michailidou 2017 9 0.48-0.55 AP1G1 

17q21.31 rs2732699 ARL17B Michailidou 2017 32 0.64-0.72 
ARL17B, LINC02210-CRHR1§, 
CRHR1, MAPT-AS1, KANSL1 

rs4763 ARHGAP27 Michailidou 2017 4 0.68 
LINC02210-CRHR1§, CRHR1, 
MAPT-AS1, KANSL1 

19p13.3 rs3815308 DOT1L Michailidou 2017 3 0.58 AP3D1 
Legend: 
*reported as rs116095464 in the original GWAS 
#Linkage disequilibrium (LD) values r2 between the daeQTL and the GWAS risk variant in the European population 
§Gene not expressed in breast mammary tissue or without expression information in GTEx 

 5 
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Table 4. Loci with candidate risk rSNP and novel and previously suggested target genes. 
 

Locus GWAS SNP GWAS nearest 
Gene GWAS Study N candidate 

risk rSNP LD Interval # Confirmed Previously 
Proposed Target Gene 

Novel Proposed 
Target Gene 

2q31.1 rs1550623 CDCA7 
Michailidou 2013; 2015; 
2017 3 0.83-1 CDCA7  

rs200725404 CDCA7 Michailidou 2017 4 0.60-0.76 CDCA7  

2q33.1 

rs182731523 CFLAR Michailidou 2017 5 0.42-0.43 CASP8  
rs1830298 FLACC1 Michailidou 2017 9 0.69-1 CASP8  
rs3769821 CASP8 Michailidou 2017 9 0.69-0.80 CASP8  
rs2714486 TRAK2 Michailidou 2017 31 0.43-0.53 CASP8 STRADB, TRAK2 
rs77688320 C2CD6 Michailidou 2017 31 0.41-0.51 CASP8 STRADB, TRAK2 

5q14.1-14.2 

rs7707921 ATG10 Michailidou 2015; 2017 21 0.62-1 ATG10  
rs111549985 ATG10 Michailidou 2017 9 0.92-1 ATG10  
rs146817970 ATG10 Michailidou 2017 21 0.62-1 ATG10  
rs2407156 ATP6AP1L Michailidou 2017 18 0.53-0.65 ATG10  

10q21.2 rs10822013 ZNF365 Cai 2011 2 0.80 ZNF365  

17q22 
rs2787486 STXBP4 Michailidou 2017 1 0.74 COX11 TOM1L1 

rs6504950 STXBP4 
Ahmed 2009; Michailidou 
2013; 2015 1 0.85 COX11 TOM1L1 

Legend: 
#Linkage disequilibrium (LD) values r2 between the daeQTL and the GWAS risk variant in the European population 
 5 
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Mapping of cis-regulatory risk variants at the 5q14.1-14.2 locus 

To further show the potential use of our integrated approach, we focused our follow-

up studies on the BC risk locus 5q14.1-14.2, where some of the most significant daeQTLs 5 

are strongly associated with BC risk variants. In this locus, rs7707921 was previously 

associated with BC risk in two meta-analyses (OR for alternative A allele = 1.07, 95% CI = 

[1.05-1.1], p=5e-11) [9,54]. The region containing this intronic variant of the ATG10 gene, its 

proxy variants (r2 ≥ 0.4) and other risk-associated variants reported in this locus spans 

through three genes (ATG10, RPS23, and ATP6AP1L) hindering the identification of the 10 

causal variant(s) and their target gene(s) in this locus.  

Firstly, all three genes showed DAE supporting their regulation by cis-acting variation 

(rSNPs): 21 daeSNPs out of 37 aeSNPs at ATG10, one daeSNP out of two aeSNPs at 

RPS23 and four daeSNPs out of five aeSNPs at ATP6AP1L. The larger allelic expression 

imbalances detected at daeSNPs in these genes were 9.2-fold at ATG10, 4-fold at RPS23 15 

and 6-fold at ATP6AP1L (Figure 5a, Figure S11).  

Next, we found 22 daeQTLs for four daeSNPs in ATG10, spreading along the 

ATG10-RPS23 region, but none for any of the daeSNPs in RPS23 or ATP6AP1L genes. All 

but one ATG10 daeQTLs were in moderate to strong LD (r2 ≥ 0.4) with the!risk-associated 

variants (Table S10) and were defined as risk-daeQTLs. Furthermore, the daeQTL q-values 20 

strongly correlated with the corresponding LD with the GWAS lead-SNP rs7707921 (Figure 

5a, Figure S12), further supporting the association of these daeQTLs with risk. 

Finally, we identified as candidate risk-rSNPs the 92 variants in higher LD (r2 ≥ 0.95) 

with the 21 risk-daeQTLs (Table S11). These SNPs span over 400Kb from ATG10 to 

ATP6AP1L genes and were subjected to functional analysis.  25 
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Figure 5 - Evidence of DAE and daeQTL analysis at the 5q14.1 BC risk locus. a) Top to bottom 
tracks show: 1 - the chromosomal region of variants according to the GRCh38/hg38 assembly; 2 - the 
mean absolute values of AE ratios measured for each aeSNP, with daeSNPs shown in black, 5 
daeSNPs with daeQTLs (including rsIDs) are shown in red and non-daeSNPs are shown in grey;  3 - 
the daeQTL analysis q-values colored according to the LD (r2) with the GWAS lead SNP in the region 
rs7707921 (variants without LD information are shown in black); 4 - location of two ATG10 transcripts, 
a RPS23 transcript and a ATP6AP1L transcript. b) ATG10 daeQTL mapping results for candidate-risk 
regulatory variants. The AE ratios calculated at the daeSNP rs21115467 are represented on the y-10 
axis in all panels, and are stratified according to genotype at each candidate causal variants in 
individual panels (heterozygous individuals are shown in black and homozygous individuals in red). 

 

 

Cis-regulatory risk variants act via three different mechanisms on genes in the 5q14 15 

locus 

The subsequent analysis revealed five risk-rSNPs (Figure 5b) with functional 

evidence supporting their role as risk-causing variants via the control of miRNA binding, 

alternative transcription, and transcription factor binding, as described below. 
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Of the candidate risk-rSNPs mapping to the 3’UTR of RPS23 (Table S11), rs3738 is 

a strong candidate to cis-regulate RPS23: the C allele (minor) is predicted to promote a 

specific stable pair binding between hsa-miR-6813-5 and a highly expressed RPS23 

transcript (ENST00000296674) (context score of -0.57) (Table S12, Figure 6a), which 

requires in vivo validation. This is consistent with the lower expression of the C allele at the 5 

rs3738 in most of the samples in the AE analysis (Figure S7). In previous work, we had not 

found significant allelic-specific binding of miRNAs for any of the candidate risk-rSNPs 

mapped at the 3’UTR of ATG10 (Table S12) [43]. 

We also found evidence that two candidate risk-rSNPs affect alternative transcription 

of ATG10. To increase the stringency of the sQTL analysis, we tested not only the 92 10 

candidate risk rSNPs but also all SNPs located within 5Kb upstream and downstream of 

ATG10. We identified six sQTLs (FDR ≤ 5%) in tumour data, whose minor alleles were 

associated with changes in the expression of two protein-coding isoforms: decreased 

expression of ENST00000458350 (one extra exon) and increase expression of 

ENST00000282185 (longer 3’UTR) (Figure S13a, Table S13). Interestingly, 15 

ENST00000282185 uniquely harbours three of the four daeSNPs (rs4703870, rs10044824 

and rs2115467) for which we identified daeQTLs (Table 3) and is significantly less 

expressed in tumours than in normal-matched tissue, in line with the reported oncogenic 

effect of UTR length [55], although with a small effect size (fold-change = 1.20) (Figure S14). 

The strong correlation between sQTL q-values and LD with the lead GWAS SNP rs7707921 20 

(r=0.94, p-value = 3.15E-12, Figure S13b) supports the contribution of alternative 

transcription of ATG10 to BC risk. Although no sQTL was detected for ATG10 in normal 

breast data (Table S13), sQTL nominal p-values and LD with rs7707921 still correlated in 

normal matched breast samples (r = 0.59, p-value = 0.002) (Figure S15). RPS23 and 

ATP6AP1L did not display sufficient alternative transcription dispersion to allow the sQTL 25 

analysis. Subsequent functional analysis of ATG10’s sQTLs, and their proxy SNPs (LD r2 ≥ 

0.95), revealed the prediction of rs111549985 (5’UTR) and rs6884232 (3’UTR) to cause a 

riboSNitch (a functional RNA structure disrupted by a SNP [47]). Although RBP binding data 

for breast tissue does not exist, these variants are known to disrupt the binding of Xrn2 

(involved in termination by RNA polymerase II) and of Igf2bp1 (a translation regulator) in 30 

K562 cells (Table S14, Table S15), which would require confirmation in breast cells. 

Lastly, we investigated candidate risk-rSNPs overlaying active promoter/enhancers 

and DNaseI hypersensitive sites (DHSs) in normal mammary cells and/or breast tumour cell 

lines for allelic differences in transcription factor binding (Table S16, Figure S16). One of the 

these, rs111549985, also identified as an sQTL for ATG10 (see above), overlays the active 35 

promoter of ATG10 (Figure S12), and its minor G-allele preferentially associated with the 

H3K4Me3 modification in HMEC cells (2.7-fold, p = 3.7e-03) and shows a strong preferential 
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binding by POL2 in MCF7 cells (9-fold, p = 4.0e-04). However, DHS was more significantly 

associated with the major/reference C allele in T47D cells (0.5-fold, p = 4.6e-05) (Figure 6C, 

Table S17). Another two risk-rSNPs, rs226198 (intronic to RPS23) and rs6880209 (located 

at RPS23 5’UTR), overlay the shared promoter of RPS23 and ATP6AP1L and a predicted 

enhancer interacting with the ATG10 promoter (Figure S17). The minor C-allele of rs226198 5 

showed preferential binding by MYC and MAX transcriptions factors, known to cooperate in 

cancer [56], (12.6-fold and 7.9-fold difference, respectively, p < 2.2e-16) and preferential 

H3K4me3 marking (2.7-fold, p = 1.4e-02) in MCF-7 cells (Figure 6c, Table S17). It would be 

interesting to elucidate further whether rs226198 impacts the binding of both factors and the 

H3K4me3 deposition or this epigenetic mark is a consequence of altered transcription, as 10 

previously suggested [57,58]. The minor T-allele of rs6880209 also showed preferential 

binding by MYC (4.8-fold, p < 2.2e-16) and MAX (2.4-fold, p = 2.7e-03), with smaller fold-

change differences than rs226198, and additional preferential binding by POL2 (2.6-fold, p = 

1.27e-06) in MCF7 cells. However, like rs111549985, DHS preferentially occurred in the 

major/reference C-allele in T47D cells (5.3-fold, p = 9.1e-04) (Figure 6C, Table S17). 15 

Interestingly, the expression of MAX was correlated with all three candidate target genes 

and the expression of MYC was correlated with the expression of ATG10 (Figure S18). 

Furthermore, the expression levels of ATG10 and ATP6AP1L were positively correlated in 

breast tissue from healthy women (top 2.5% quantile of 500,000 pairwise tests) and in 

normal-matched tissue from patients with BC (Figure S19). Interestingly, ATG10 and 20 

ATP6AP1L are in different topologically associating domains (TAD) and the risk-rSNPs 

rs226198 and rs6880209 fall on the boundary between them (Figure S20). This suggests 

that the correlated gene expression is not driven by a shared pattern of chromatin 

condensation but instead by a shared cis-regulatory sequence. 

 25 
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Figure 6 - Variants at the 5q14.1 risk locus associate with altered miRNA binding, alternative 

transcription, and transcription factor binding. a) Scheme of the predicted allelic effect of rs3728 5 
on the binding of miR-6813-5p to the 3’UTR of transcript ENST00000296674. Image was adapted 

from Kelvinsong and is licensed under CC BY 3.0.  b) Six sQTLs in high LD with rs7707921 were 

identified for ATG10. -log10(q-value) for the sQTL analysis (y-axis) are shown for the 5q14.1-14.2 

region (hg38). Colour intensity represents the LD (r2) between the analysed variants and the GWAS 

lead SNP rs7707921. c) Allele specific analysis of the effect of three candidate risk rSNPs — 10 
rs111549985, rs226198 and rs6880209 — on RNA polymerase II (POL2) and transcription factor (TF) 

binding, DNase I targeting (DHS) and H3K4me3 modification in different heterozygous cell lines. 

Statistically significant imbalances (two-sided binomial-test, p-value ≤ 0.05) are indicated by an 
asterisk. Legend: HMEC - Human Mammary Epithelial Cells; MCF7 - human breast (adenocarcinoma) 

cell line; T47D - human breast tumour cell line; MCF10A - human breast epithelial cell line. 15 
 

 

Risk model for 5q14.1 links higher expression of ATG10 and ATP6AP1L and lower 

expression of RPS23 with protection against BC 

Haplotype analysis of the samples included herein revealed two common haplotypes: 20 

one harbouring the major alleles of all proposed risk-rSNPs and the GWAS lead SNP 
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rs7707921 (frequency of 71.1%), and another with the corresponding minor alleles 

(frequency of 21.9%) (Figure S21). Additionally, the proposed risk-rSNPs are among the 

most significant eQTLs for the three genes: rs111549985 for ATG10, rs3738 for RPS23 and 

rs6880209 for ATP6AP1L (Figure S18) [59]. Therefore, the most common haplotype is 

associated with increased risk for BC, lower expression of ATG10 and ATP6AP1L and 5 

higher expression of RPS23 (Figure S22). 

Our proposed model for risk at 5q14.1 (Figure 7) establishes that the minor alleles of 

rs111549985, rs226198, and rs6880209 confer protection against BC by (1) increasing the 

binding of POL2 II to the promoter of ATG10 (driven by rs111549985), (2) the binding of 

POL2 to the shared promoter of RPS23/ATP6AP1L (driven by rs6880209), and (3) the 10 

binding of cMYC and MAX to a regulatory region (possible enhancer) (driven by rs226198), 

increasing the expression of ATG10 and ATP6AP1L. We propose that the minor allele of 

rs3738 confers protection to BC risk by a post-transcriptional regulatory mechanism 

independent of the regulation of ATG10 or ATP6AP1L, in which allele-specific binding of the 

miRNA hsa-miR-6813-5p to the 3’UTR of an RPS23 transcript results in its decreased 15 

expression. Taken together, these results reveal a complex regulatory landscape at the 

5q14.1-14.2 locus, with multiple independent causal variants. 

 

 

 20 
 
Figure 7 - Complex risk regulatory landscape of the 5q14.1 locus. a) Levels of expression of 
ATG10, RPS23 and ATP6AP1L genes differ between the haplotypes containing either the minor 
alleles of rs111549985, rs3738, rs226198 and rs6880209 (above) or the major ones (bellow). 
Coloured arrows indicate the direction of transcription of the individual genes, the strength of protein 25 
binding is indicated by the saturation of the corresponding colours, the level of H3K4me3 is indicated 
by the number of green circles, the relative levels of transcript produced are indicated by the coloured 
lines above the haplotypes, and the RPS23 allele targeted by hsa-miR-6813-5p is shown as a dashed 
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line. b) Schematic representation of the proposed model for the positive correlation between ATG10 
and ATP6AP1L via a shared regulatory region. 

 

 

  5 
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DISCUSSION 
 

Here, we present the first genome-wide map of differential allelic expressed genes 

(daeGenes) in normal breast tissue and their genetic determinants (daeQTLs). We found 

widespread differential allelic expression (DAE) across the genome and identified daeQTLs 5 

for 16% of daeGenes. By intersecting this map with GWAS data, we identified novel 

candidate causal variants (risk-daeQTLs) and target genes for 31 BC risk loci, besides 

confirming others. Our results represent a practical and useful resource for prioritising loci for 

follow-up GWAS studies. As proof of concept, we characterised the 5q14.1 BC risk locus 

and proposed five causal regulatory variants targeting the genes ATG10, RPS23, and 10 

ATP6AP1L acting via multiple allele-specific mechanisms. Our results suggest a complex 

regulatory landscape underlying BC aetiology.  

We show that cis-acting variants regulate the expression of 80% of genes in normal 

breast tissue, with some genes displaying extreme allelic differences of up to 32-fold. 

Notably, we identified a novel mono-allelic expressed gene, ARCN1, which warrants further 15 

inspection to confirm imprinting status. An enrichment of daeSNPs at intergenic and intronic 

regions, as well as non-coding transcripts, non-coding genes and pseudogenes, concurs 

with previous reports of predominant allelic imbalances of expression at gene-depleted 

regions and genes under less evolutionary constraints [60,61].  

To overcome the lack of phasing information, we applied two different approaches in 20 

the daeQTL mapping that led to the identification of 23748 variants associated with AE ratios 

for 2753 genes, both coding and non-coding for proteins. The stringent statistical correction 

and the use of distance as a covariate in the second mapping approach increased its level of 

confidence but limited the statistical power to identify regulatory variants in lower LD with the 

daeSNP or located more distally. daeQTLs were identified in common for 22% of the genes 25 

by both approaches, increasing further the confidence in the mapping exercise. 

We found evidence of expression regulation by cis-acting variants for the majority of 

reported GWAS loci and believe that alternative mechanisms are at play in the remainder. 

Notably, we identified risk-daeQTLs at 31 different loci, including 22 loci with novel candidate 

risk target genes (including NEK10 at 3p24.1 and ZBED6 and ZC3H11A at 1q32.1). 30 

Moreover, the initial daeQTLs map in normal breast tissue can be further mined whenever 

new risk variants are identified through GWAS. These results offer a resource platform for 

functional studies of causal variants and target genes and can help uncover the role of cis-

regulatory variation in BC risk.  

Finally, we conducted an in-silico functional analysis of the 5q14.1-14.2 BC risk 35 

locus, and identified three strong candidates causal variants (rs111549985, rs226198, and 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted March 10, 2022. ; https://doi.org/10.1101/2022.03.08.22271889doi: medRxiv preprint 

https://doi.org/10.1101/2022.03.08.22271889
http://creativecommons.org/licenses/by-nc-nd/4.0/


   
 

9 

rs6880209) that are risk-daeQTLs for ATG10. These variants are predicted to functionally 

impact TF binding, chromatin state, and gene expression levels of ATG10, RPS23, and 

ATP6AP1L. A similar involvement of diverse regulatory mechanisms has been suggested 

previously for other BC risk loci [4,62,63] Both ATG10 (involved in autophagy) and RPS23 

(encodes for a ribosomal component of the 40S subunit) have been suggested to have roles 5 

in cancer [64–66], but the pseudogene ATP6AP1L is less studied. A variant at ATG10 

(rs7313473) was previously associated with BC risk by regulating promoter activity and 

ATG10 was suggested to act as a tumour suppressor gene in breast tissue [67]. Although 

we did not find supporting evidence for the same variant, our results show an indirect 

association between the lower expression of ATG10 and BC risk, suggesting that ATG10 10 

down-regulation may contribute to tumorigenesis. 

The advantages of our analysis compared to previous reports of AE in normal breast 

and tumour tissue [16,18,19,68] include the use of the largest number of normal breast 

tissue samples, the genome-wide approach, and the mapping of candidate regulatory 

variants. We found a similar frequency of daeSNPs to previous reports in other tissues/cell 15 

lines, but a higher frequency of daeGenes [13,17,18,69]. This higher frequency of daeGenes 

could be due to our ability to identify genes regulated by common cis-acting variants with 

weak to large effect sizes [19], consequence of the imposed conditions to call DAE (allelic 

fold-change difference of 1.5-fold and the minimum number of heterozygotes). Also, we did 

not integrate the AE ratios of multiple daeSNPs in the same gene due to the absence of 20 

phase data and to maximise the information withdrawn from daeSNPs that might locate in 

different LD blocks. This is supported by the complex regulatory landscape we identified at 

5q14.1 locus, with multiple cis-acting variants located in the same haplotypes and AE likely 

resulting from the sum of the effects of each variant. Furthermore, a global measure of the 

AE imbalance at each gene would impair the mapping of daeQTLs at individual daeSNPs, 25 

as we propose, and would restrict the analysis to genes with multiple daeSNPs, which would 

have prevented the role of RPS23 to be revealed. Finally, we analysed non-coding genes 

and pseudogenes, like ATP6AP1L, besides the more commonly studied protein-coding 

genes. Moreover, our results confirm the advantage of using DAE analysis to detect the 

effect of rSNPs compared to eQTL analysis, as shown by the higher number of daeGenes, 30 

than eGenes, amongst gwasGenes [70–72]. As a minority of gwasGenes were exclusively 

eGenes, we believe that DAE and eQTL analyses are complementary and should be used in 

parallel when possible. 

However, the main limitation of our study design is the use of microarray data, which 

has a smaller transcriptome coverage than RNA-Seq and less accuracy for quantifying more 35 

extreme allelic imbalances. Nevertheless, this is a widely used and precise technology for 

measuring AE [13,16,23], as proven by our validation of mono-allelic expression in known 
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imprinted genes and by independent PCR analysis of seven out of nine daeGenes. Another 

limitation, transversal to all AE analysis approaches, is that only heterozygous individuals 

are informative. 

Here, we provide a genome-wide list of variants with strong regulating potential for 

normal breast tissue, a valuable resource for researchers looking into prioritizing GWAS 5 

results for functional characterization, as well as those interested in other BC related traits. 

The extensive characterisation of the regulatory landscape at the 5q14.1 BC risk locus 

identified candidate causal variants and revealed the multiple mechanisms involved. Further 

studies of this locus will elucidate the mechanisms involved and the relative contributions of 

each variant and target gene to the genetic risk. Overall, our results reinforce the importance 10 

of cis-regulatory variation as a major player in BC susceptibility and the power of identifying 

these variants in the disease’s tissue of origin - normal breast tissue. They also show that 

multiple causal variants may co-occur and act via independent cis-regulatory mechanisms at 

BC risk loci, supporting a broader approach to functional studies. 

 15 
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