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Abstract

The detection of prostate cancer recurrence after external beam radiotherapy relies on the measurement of a
sustained rise of serum prostate-specific antigen (PSA). However, this biochemical relapse may take years to
occur, thereby delaying the delivery of a secondary treatment to patients with recurring tumors. To address
this issue, here we propose to use patient-specific forecasts of PSA dynamics to early predict biochemical
relapse. Our forecasts are based on mechanistic models of prostate cancer response to external beam radio-
therapy, which are fit to patient-specific PSA data collected during standard post-treatment monitoring. Our
results show a remarkable performance of our models in recapitulating the observed changes in PSA and
yielding short-term predictions over approximately one year (cohort median RMSE of 0.10 to 0.47 ng/mL
and 0.13 to 1.41 ng/mL, respectively). Additionally, we identify three model-based biomarkers that enable
an accurate identification of biochemical relapse (AUC > 0.80) significantly earlier than standard practice
(p < 0.01).
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Introduction

External beam radiotherapy (EBRT) is a standard treatment for prostate cancer (PCa) that is potentially
available for patients of all ages to treat tumors ranging from low to high and very high risk [Mottet et al.,
2021; Wein et al., 2012; Tang et al., 2020; Gray et al., 2017]. During EBRT, the prostate is exposed to an
external source of radiation, which aims at disrupting the DNA in tumor cells’ nuclei. The accumulation5

of radiation-induced damage along with the multiple genetic alterations underlying the development of PCa
ultimately forces tumor cells to undergo programmed cell death [Alberts et al., 2007]. EBRT is usually
delivered as daily fractions of approximately 2 to 3 Gy until completing a total dose ranging from 60 to
80 Gy. In particular, the use of daily doses higher than 2 Gy in the recent decades has led to so-called
moderate hypofractionation [Mottet et al., 2021; Wein et al., 2012]. This treatment modality requires a10

lower number of radiation sessions, which presents pharmacoeconomic advantages. The efficacy of EBRT
can be improved through combination with neoadjuvant or adjuvant androgen deprivation therapy (ADT)
[Mottet et al., 2021]. However, since ADT can produce several side effects, it is usually prescribed for
intermediate and high-risk PCa patients only (i.e., those who present a higher risk of metastasis).

After the completion of EBRT, patients are monitored using the serum levels of prostate-specific anti-15

gen (PSA), which is a standard clinical biomarker of PCa [Mottet et al., 2021; Cornford et al., 2021; Wein
et al., 2012]. The rationale for using PSA in post-EBRT patient follow-up is that blood levels of PSA
tend to rise due to PCa growth. Thus, if the treatment is successful, radiation-induced tumor cell death
should decrease PSA values to a minimum, which may vary from patient to patient and with prostate size
[Ray et al., 2006; Roehrborn et al., 2000]. Otherwise, if EBRT does not eradicate the tumor completely,20

the surviving cancerous cells will ultimately drive tumor growth after EBRT conclusion and, hence, pro-
duce an increasing trend in PSA. This phenomenon is termed biochemical relapse and it is thus indicative
of tumor recurrence (see Figure 1). Approximately 20% to 50% of PCa patients undergoing radiotherapy
as primary curative treatment will ultimately develop biochemical relapse within 5 to 10 years after treat-
ment conclusion, respectively [Kupelian et al., 2006; Rosenbaum et al., 2004]. Following the detection25

of biochemical relapse, tumor recurrence can be confirmed through biopsy and imaging methods, such as
magnetic resonance imaging (MRI) and prostate-specific membrane antigen or choline positron emission
tomography/computed tomography (PSMA or choline PET/CT, respectively). To treat post-EBRT PCa re-
currence, there are several therapeutic strategies that depend on whether the recurrence is local or metastatic
[Cornford et al., 2021; Wein et al., 2012].30

Serum PSA may exhibit natural fluctuations (e.g., due to diet and lifestyle), a smooth increase caused
by benign prostatic enlargement (i.e., benign prostatic hyperplasia), and transient peaks due to ADT ter-
mination or the so-called PSA bounce, which consists of a temporary PSA increase of 0.1 to 0.5 ng/mL
usually occurring within the first 24 months after EBRT conclusion [Wein et al., 2012; Pinkawa et al., 2010;
Freiberger et al., 2017; Carobene et al., 2018; Christensson et al., 2011; Roehrborn et al., 2000]. These35

phenomena may hamper the detection of biochemical relapse following EBRT. Thus, the clinical criteria to
identify a biochemical relapse require PSA to exhibit a consistent rising trend over time [Wein et al., 2012;
Cornford et al., 2021]. For example, a standard criterion with widespread use in current clinical practice
identifies a biochemical relapse as a PSA increase larger than 2 ng/mL over the detected PSA nadir (i.e.,
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the minimum PSA value measured for a patient) [Roach et al., 2006; Cornford et al., 2021]. Additionally,40

multiple studies have been devoted to analyze PSA dynamics after EBRT and its correlation with the patho-
logical features of tumor recurrence to define further PSA-based markers that improve the identification and
prognostic assessment of biochemical relapse and PCa recurrence. For instance, the detection of a rapid de-
cline of PSA right after treatment, overall high PSA values during post-treatment monitoring, an early nadir,
a high value of the nadir, and a low PSA doubling time during biochemical relapse (i.e., the time it would45

take PSA to exhibit a two-fold increase) have been correlated with a poorer prognosis, including metastatic
disease and lower patient survival [Freiberger et al., 2017; Zelefsky et al., 2005; Zumsteg et al., 2015; Ray
et al., 2006; Bates et al., 2005; Cheung et al., 2006; Cavanaugh et al., 2004; Shi et al., 2013; Wein et al.,
2012]. Alternatively, post-EBRT PSA dynamics has also been analyzed by fitting empirical equations to
patient-specific longitudinal series of PSA values. In particular, very successful results have been reported50

by leveraging a biexponential formula, which consists of the sum of two terms: an exponential decay to
capture the usual post-treatment decline in PSA observed in all patients and a rising exponential to represent
biochemical relapse, which vanishes when this empirical model is fit to data from cured patients [Zagars
and Pollack, 1997; Cox et al., 1994; Hanlon et al., 1998; Vollmer and Montana, 1999; Taylor et al., 2005].

However, the current criteria of biochemical relapse and the majority of PSA-based markers only enable55

to assess this event upon its direct observation. Hence, these approaches may ultimately delay the diagnosis
and treatment of tumor recurrence, thereby potentially reducing the chances of successfully controlling the
disease. Additionally, observational metrics and models of PSA dynamics offer a limited representation of
the underlying tumor dynamics that ultimately regulate the observed changes of PSA in each patient. To ad-
dress these limitations, we propose to leverage mechanistic models of PCa response to EBRT (see Figure 1)60

in order to forecast PSA dynamics on a patient-specific basis [Lorenzo et al., 2019b]. Our goal is to use this
approach to predict the occurrence of biochemical relapse and, hence, ultimately facilitate an early diagnosis
and treatment of tumor recurrence after EBRT. The mechanistic modeling of tumor growth and therapeu-
tic response is an established approach that aims at mathematically describing the biophysical mechanisms
underlying these phenomena in order to increase our understanding of cancer diseases and advance their65

clinical management on a personalized basis [Yankeelov et al., 2013; Rockne et al., 2019; Karolak et al.,
2018; Jarrett et al., 2020; Mang et al., 2020; Wang et al., 2009; Lorenzo et al., 2019a; Oden et al., 2016]. In
particular, these models can be fit to patient-specific data and then leveraged to render personalized computer
forecasts of tumor prognosis and treatment outcomes capable to assist clinical decision-making [Kazerouni
et al., 2020; Lorenzo et al., 2021; Mang et al., 2020].70

Several studies have investigated mechanistic models of PCa growth and PSA dynamics in various
scenarios, including untreated tumor growth [Lorenzo et al., 2016, 2019b; Swanson et al., 2001; Vollmer,
2010; Farhat et al., 2017], hormone therapy [Brady-Nicholls et al., 2021, 2020; Ideta et al., 2008; Hirata
et al., 2010; Jain et al., 2011; Morken et al., 2014; Phan et al., 2019; Jackson, 2004], cytotoxic and an-
tiangiogenic therapies [West et al., 2018, 2019; Colli et al., 2020, 2021], and after radical prostatectomy75

[Vollmer and Humphrey, 2003; Truskinovsky et al., 2005]. Since radiotherapy is used for the treatment
of many types of cancer, the study of tumor response to radiation and the forecasting of patient-specific
radiotherapeutic outcomes using mechanistic models constitute a rich area of research [Corwin et al., 2013;
Hormuth et al., 2021; Rockne et al., 2015; Lipková et al., 2019; Lima et al., 2017; Ayala-Hernández et al.,
2021; Pérez-Garcı́a et al., 2015; Zahid et al., 2021; Alfonso et al., 2021; Powathil et al., 2007]. Neverthe-80
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Figure 1. Mechanistic modeling of PSA dynamics after EBRT. This figure illustrates the mechanisms included in our models
of PCa response to EBRT, which assume that serum PSA is proportional to the number of cells in the patient’s tumor. The
upper row shows the PCa cells in a generic tumor region at four instants before, during, and after EBRT. The bottom row shows the
corresponding PSA evolution up to each depicted time instant. (A) Before treatment, we assume that tumor cells grow exponentially
at a rate ρs, which also describes the characteristic increase of PSA in untreated PCa (rose solid line). (B) After the first EBRT
dose, a fraction of tumor cells R survives to radiation, while the complementary fraction, 1−R, is irreversibly damaged and will
ultimately die. This process will repeat with each consecutive EBRT dose. (C) During EBRT, while the surviving cells may
continue to proliferate at a rate ρs, the radiation-damaged cells undergo programmed cell death at a rate ρd . This becomes the
dominant mechanism during EBRT, and produces a decreasing trend in PSA (gray solid line). (D) After the conclusion of EBRT,
the remainder of the radiation-damaged cells die and PSA continues to progressively drop. If the treatment does not fully eliminate
the tumor, the surviving cells continue proliferating at a rate ρs and ultimately produce a biochemical relapse (red solid line). If
the treatment eradicates all tumor cells, then PSA reaches a plateau (gray dashed line). Our mechanistic models also enable a
quantitative estimation of the PSA nadir (Pn) and the time to PSA nadir since EBRT termination (∆tn). See the STAR Methods for
further details on mathematical modeling.

less, there is a dearth of mechanistic models providing a coupled description of tumor and PSA dynamics
following radiotherapy [Lorenzo et al., 2019b; Sosa-Marrero et al., 2021; Yamamoto et al., 2016].

In [Lorenzo et al., 2019b], we presented a mechanistic modeling framework to describe how the
response of PCa to EBRT drives PSA dynamics after treatment and identified promising model-based
biomarkers to detect biochemical relapse. Our modeling framework relies on five key assumptions, which85

are illustrated in Figure 1. We assume that PCa cells proliferate following an exponential law and that PSA is
proportional to the number of tumor cells. We further assume that each radiation dose irreversibly damages
a fraction of the tumor cells that ultimately undergoes programmed cell death, whereas the complementary
fraction survives to EBRT and continues proliferating. Additionally, we consider that EBRT is delivered
either periodically or as an equivalent single dose. This last assumption leads to two alternative models90

that we have termed as the periodic dose model and the single dose model, respectively (see STAR Meth-
ods for further details on mathematical modeling). In the present work, we first validate our models and
model-based biomarkers of biochemical relapse from [Lorenzo et al., 2019b] in a new cohort, whose main
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Table 1. Summary of patient cohort characteristics. All patients received a total of nd = 28 radiation doses in their EBRT plan. The
number of PSA values (nP) includes the baseline PSA (Pd). The PSA test frequency refers to post-EBRT monitoring exclusively.
IQR: interquartile range.

Characteristic
All patients (n=166) Non-relapsing patients (n=156) Relapsing patients (n=10)

Median IQR Range Median IQR Range Median IQR Range

Clinical

Age at diagnosis (y) 73 (68, 76) (49, 83) 73 (68, 76) (49, 83) 73 (68, 76) (65, 79)

Baseline PSA, Pd (ng/mL) 6.3 (4.6, 8.6) (0.6, 81.0) 6.2 (4.5, 8.4) (0.6, 22.0) 9.6 (5.9, 13.1) (4.9, 81.0)

Gleason score 6 (6, 7) (4, 8) 6 (6, 7) (5, 8) 7 (6, 7) (4, 7)

EBRT

Age at EBRT (y) 74 (68, 77) (49, 84) 74 (68, 77) (49, 84) 75 (73, 76) (66, 80)

Total dose (Gy) 74.2 (71.4, 74.2) (65.8, 77.4) 74.2 (71.4, 74.2) (71.4, 77.4) 74.2 (71.4, 74.2) (65.8, 74.2)

Dose per fraction (Gy) 2.65 (2.55, 2.65) (2.35, 2.76) 2.65 (2.55, 2.65) (2.55, 2.76) 2.65 (2.55, 2.65) (2.35, 2.65)

Duration (mo) 1.3 (1.3, 1.4) (1.2, 2.1) 1.3 (1.3, 1.4) (1.2, 2.1) 1.3 (1.3, 1.4) (1.2, 1.7)

Patient monitoring

No. PSA values, nP 11 (8, 13) (6, 25) 11 (8, 13) (6, 25) 14 (10, 19) (7, 22)

Follow-up since EBRT (y) 5.7 (4.5, 7.6) (3.0, 14.0) 5.7 (4.5, 7.5) (3.0, 14.0) 5.7 (4.2, 8.1) (3.3, 11.2)

PSA test frequency (mo) 6.3 (4.0, 10.3) (0.0, 59.4) 6.4 (4.1, 11.4) (0.0, 59.4) 4.9 (3.2, 7.3) (1.0, 20.5)

characteristics are summarized in Table 1 (see STAR Methods for further details). To this end, we perform a
global fitting study in which we parameterize our models with all PSA data available for each patient. Then,95

we assess the predictive performance of our models in a series of fitting-forecasting scenarios. Each sce-
nario leverages an increasing number of the PSA values collected for each patient for model fitting, which is
followed by a corresponding personalized model forecast of PSA dynamics that we compare against the re-
mainder of the patient’s PSA data. This approach would simulate the utilization of our models during actual
patient monitoring: each newly collected PSA value enables to update the models for a given patient and,100

hence, obtain an updated prediction of PSA dynamics on an individual basis. Additionally, we analyze the
ability of our model-based biomarkers as determined in these fitting-forecasting scenarios to early identify
biochemical relapse, and we further assess whether they outperform the standard clinical criteria that were
used in this cohort.

Results105

Mechanistic models recapitulate patient-specific PSA dynamics after EBRT

We begin by performing a global fitting analysis to assess the ability of our mechanistic models in
reproducing the longitudinal PSA series collected for each patient in the cohort. To this end, we fit the
periodic dose model and the single dose model to all the PSA values available for each patient (see STAR
Methods for methodological details). Figure 2 illustrates representative global fitting results for three non-110

relapsing and three relapsing patients. Using the periodic dose model, the median and interquartile range
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Figure 2. Mechanistic models reproduce the observed PSA dynamics during post-EBRT monitoring. Panels (A-C) show
global fitting results for three non-relapsing patients, while panels (D-F) show similar results for three patients exhibiting a bio-
chemical relapse. For each patient, the PSA measurements are plotted as red bullet points and EBRT is represented as a rectangular
area shaded in light gray. The fits obtained with the periodic dose model (PD) are represented with a solid green line, while the
fits produced by the single dose model (SD) are depicted as a dashed blue line. The same color scheme is also used for the 95%
confidence intervals, which are depicted as the shaded areas around the model fits, and the font of the quality of fit metrics for either
model. Additionally, each plot also includes the prediction of the patient’s PSA nadir using the periodic dose model (green upward
triangle) and the single dose model (blue downward triangle). This figure illustrates the remarkable performance of our mechanistic
models to fit patient-specific longitudinal PSA datasets collected during standard monitoring following EBRT. Additionally, there
is a good agreement between both models, since corresponding fit curves and 95% confidence intervals practically coincide.

of the root mean squared error (RMSE) and the coefficient of determination (R2) of our model fits are 0.17
(0.08, 0.28) ng/mL and 0.99 (0.97, > 0.99) over the whole cohort (n = 166), 0.15 (0.07, 0.24) ng/mL and
0.99 (0.98, > 0.99) in the non-relapsing subgroup (n = 156), and 0.53 (0.40, 0.59) ng/mL and 0.95 (0.91,
0.98) in the relapsing subgroup (n = 10), respectively. For the single-dose model, the RMSE and R2 of the115

model fits are distributed with median and interquartile range of 0.16 (0.07, 0.26) ng/mL and 0.99 (0.98,
> 0.99) over the whole cohort (n = 166), 0.15 (0.07, 0.23) ng/mL and 0.99 (0.98, > 0.99) in the non-
relapsing subgroup (n = 156), and 0.53 (0.39, 0.59) ng/mL and 0.95 (0.92, 0.98) in the relapsing subgroup
(n= 10), respectively. Thus, the results from global fitting analysis demonstrate that the periodic dose model
and the single dose model successfully recapitulate the observed patient-specific PSA dynamics. We also120

observe a good agreement between the fits provided by either model, as shown in Figure 2.

According to two-sided Wilcoxon rank-sum tests, the differences in quality of fit between the relapsing
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and the non-relapsing subgroups are significant for both the periodic dose model (RMSE: p < 0.001, R2:
p = 0.0033) and the single dose model (RMSE: p < 0.001, R2: p = 0.0027). Corresponding one-sided
tests show that superior fits are achieved for non-relapsing patients in terms of significantly lower RMSE125

and higher R2 with both the periodic dose model (RMSE: p < 0.001, R2: p = 0.0017) and the single dose
model (RMSE: p < 0.001, R2: p = 0.0013). On a patient-wise basis, Wilcoxon signed-rank testing shows
that the single dose model outperforms the periodic dose model in the non-relapsing subgroup, yielding
significantly lower RMSE and higher R2 (p < 0.001 for both metrics in two- and one-sided tests). However,
these results do not hold in the subgroup of relapsing patients. Additionally, no significant global differences130

in the RMSE and R2 distributions obtained using the periodic versus the single dose model are detected in
any two-sided Wilcoxon rank-sum test performed across the whole cohort, the non-relapsing subgroup, and
the relapsing one.

Mechanistic models provide promising biomarkers of biochemical relapse

Following global fitting, we define a panel of model-based quantities of interest to examine their per-135

formance as biomarkers of biochemical relapse. As in [Lorenzo et al., 2019b], this panel is composed by
three groups of quantities. First, we include the models’ parameters: the baseline PSA (P0), the proliferation
rate of tumor cells (ρs), the rate of EBRT-induced death of tumor cells (ρd), and the fraction of tumor cells
surviving to EBRT (R; R = Rd in the periodic dose model, R = RD in the single dose model, and statistical
analyses test Rnd

d versus RD; see STAR Methods). Second, we also consider two non-dimensional metrics140

that represent the ratio or tumor cell proliferation to EBRT-induced death (β ) and EBRT efficacy (α). Fi-
nally, we further use the models to calculate the PSA nadir (Pn) and the time to PSA nadir since EBRT
termination (∆tn), which are two common metrics in the analysis of post-EBRT PSA dynamics [Lorenzo
et al., 2019b; Freiberger et al., 2017; Zelefsky et al., 2005; Zumsteg et al., 2015; Ray et al., 2006; Bates
et al., 2005; Cheung et al., 2006; Cavanaugh et al., 2004; Shi et al., 2013; Wein et al., 2012]. The inter-145

ested reader is referred to the STAR Methods for further information on the definition of these model-based
quantities of interest.

Figure 3 shows the boxplots of the distributions of all model-based quantities of interest across the
cohort as well as the subgroups of non-relapsing and relapsing patients. Two-sided Wilcoxon rank-sum
tests identify significant differences in the values obtained for P0, ρs, β , and Pn using either the periodic150

dose model (p = 0.011, < 0.001, < 0.001, and < 0.001, respectively) or the single dose model (p = 0.0098,
< 0.001, < 0.001, and < 0.001, respectively). Corresponding one-sided tests further show that relapsing
patients exhibit higher P0, ρs, β , and Pn than non-relapsing patients utilizing either the periodic dose model
(p = 0.0053, < 0.001, < 0.001, and < 0.001, respectively) or the single dose model (p = 0.0049, < 0.001,
< 0.001, and < 0.001, respectively). Additionally, a two-sided Wilcoxon rank-sum test identified significant155

differences in ∆tn calculated with the single dose model (p = 0.040), but not in those obtained with the
periodic dose model (p = 0.053). However, corresponding one-sided tests resulted in significantly lower
values of ∆tn for relapsing patients using either the periodic dose model (p = 0.027) or the single dose
model (p = 0.020). As a result of this statistical analysis, we henceforth define ρs, β , Pn, and ∆tn as model-
based biomarkers of biochemical relapse. We do not consider P0 for two reasons. First, the baseline PSA160

measured in the clinic and reported in Table 1 (Pd) was already significantly higher in relapsing patients
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Figure 3. Distributions of the candidate model-based biomarkers of biochemical relapse obtained in the global fitting study.
Each panel (A-H) shows the boxplots corresponding to the distribution of a model-based quantity of interest over the whole cohort
(CH), the non-relapsing subgroup (NRL), and the relapsing one (RL). Green boxplots show results from the periodic dose model
(PD), while blue boxplots correspond to the single dose model (SD). Outliers are represented as hollow circles. A double asterisk
(**) indicates statistical significance in both two-sided and one-sided Wilcoxon rank-sum tests, while a single asterisk (*) denotes
statistical significance only under a one-sided Wilcoxon rank-sum test (p < 0.05). (A) Initial PSA, P0. (B) Fraction of tumor cells
surviving to EBRT (R = Rd in the PD model, R = RD in the SD model, and here we test Rnd

d versus RD; see STAR Methods). (C)
Rate of EBRT-induced death of tumor cells, ρd . (D) Proliferation rate of tumor cells, ρs. (E) Non-dimensional ratio α , representing
EBRT efficiency (see STAR Methods). (F) Non-dimensional ratio β , representing the ratio of tumor cell proliferation to EBRT-
induced death (see STAR Methods). (G) PSA nadir, Pn. (H) Time to PSA nadir since EBRT termination, ∆tn. Table S1 further
provides the median, interquartile range, and full range of the distribution of global fitting values for all the model-based quantities
of interest.

(two-sided Wilcoxon rank-sum test p = 0.017). Additionally, P0 is bound to take values close to Pd as
result of model fitting (see Figure 2 and [Lorenzo et al., 2019b]), thereby providing a limited contribution
to the sequential patient-specific predictions of PSA dynamics and biochemical relapse obtained during the
fitting-forecasting study.165

Figure 4 shows the receiver operating characteristic (ROC) curves and corresponding optimal perfor-
mance points for the model-based biomarkers identified from the analysis of the global fitting study results.
For each biomarker and model, Table 2 further provides the area under the ROC curve (AUC) along with
the optimal performance point threshold, sensitivity, and specificity. We observe that the ROC curves and
optimal performance points obtained for each biomarker with either model are very similar, which suggests170
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Figure 4. ROC curves for the model-based biomarkers of biochemical relapse identified in the analysis of the global fitting
study results. Panels (A-D) show the ROC curves and 95% bootstrap confidence intervals (CI) for each biomarker constructed
using the global fitting results from the periodic dose model (PD, top row, in green) single dose model (SD, bottom row, in blue).
In each plot, the vertical axis quantifies the true positive rate (TPR, i.e., sensitivity), while the horizontal axis measures the false
positive rate (FPR, i.e., 1-specificity). The solid black line represents the unity line. The optimal performance point (OPP) and
corresponding 95% bootstrap confidence intervals along both axes are depicted as a red solid point and errorbars, respectively. (A)
Proliferation rate of tumor cells, ρs. (B) Non-dimensional ratio β , representing the ratio of tumor cell proliferation to EBRT-inuced
death (see STAR Methods). (C) PSA nadir, Pn. (D) Time to PSA nadir since EBRT termination, ∆tn.

that the biomarker performance is independent of the model leveraged in its calculation. The shape of the
ROC curves, the AUC, and the optimal performance points show that ρs exhibited the best performance in
identifying relapsing patients, followed closely by β , then Pn, and finally ∆tn, which only shows a mildly
satisfactory performance. Notice that ρs operates as a perfect classifier, yielding maximal AUC along with
100% sensitivity and specificity at optimal performance point. This result can also be hinted in the boxplots175

of this biomarker shown in Figure 3, where a straight line could separate the values of ρs obtained with both
models for relapsing and non-relapsing patients.

Mechanistic models accurately forecast short-term PSA dynamics after EBRT

To assess the predictive potential of the model-based biomarkers of biochemical relapse identified in
the global fitting study, we first analyze the accuracy of the predictions of PSA dynamics obtained with180

our mechanistic models. To this end, we run a fitting-forecasting study as follows: first, we estimate the
models parameters by fitting them to a subset of the earliest PSA values for each patient, we then calculate
the corresponding personalized models’ forecasts of PSA dynamics, and we finally compare each of these
predictions to the remainder of the patient’s PSA data in posterior dates. For each patient, we perform this
calculation in a collection of sequential scenarios: we start using a minimum of five PSA values for fitting185

(nP, f it = 5) including the baseline PSA at diagnosis (Pd), and we progressively increase nP, f it until only one
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Table 2. Analysis of the ROC curves of the model-based biomarkers of biochemical relapse identified in the global fitting study.
Values in brackets are 95% bootstrap confidence intervals of the reported metrics. AUC: area under the ROC curve.

Metric
Biomarker

ρs β Pn ∆tn

Periodic dose model

AUC 1.00 [1.00, 1.00] 0.98 [0.93, 1.00] 0.88 [0.68, 0.95] 0.68 [0.45, 0.85]

Optimal performance point

Sensitivity 1.00 [1.00, 1.00] 1.00 [0.92, 1.00] 0.80 [0.50, 0.92] 0.70 [0.28, 1.00]

Specificity 1.00 [1.00, 1.00] 0.90 [0.82, 0.96] 0.87 [0.52, 0.97] 0.76 [0.11, 0.84]

Value 14.6 [13.9, 14.6] ·10−3/mo 9.0 [6.7, 22.8] ·10−3 0.6 [0.3, 0.9] ng/mL 19.0 [15.9, 53.6] mo

Single dose model

AUC 1.00 [1.00, 1.00] 0.98 [0.94, 1.00] 0.88 [0.71, 0.95] 0.69 [0.47, 0.87]

Optimal performance point

Sensitivity 1.00 [1.00, 1.00] 1.00 [0.92, 1.00] 0.80 [0.50, 0.91] 0.70 [0.33, 1.00]

Specificity 1.00 [1.00, 1.00] 0.90 [0.82, 0.96] 0.87 [0.68, 0.97] 0.77 [0.12, 0.85]

Value 14.7 [13.9, 14.7] ·10−3/mo 9.0 [7.6, 23.4] ·10−3 0.6 [0.4, 0.9] ng/mL 19.8 [16.2, 54.7] mo

PSA value is left for assessing the models’ predictions (i.e., nP, f it = 5, . . . ,nP−1 for each patient; see STAR
Methods for further methodological details). Additionally, in this study we consider a maximum nP, f it = 21,
since this is the last scenario for which there is at least one relapsing and one non-relapsing patient with at
least one remaining PSA value to assess the models’ forecasts.190

Figure 5 illustrates representative results from the fitting-forecasting study for the relapsing and non-
relapsing patients considered in Figure 2 in the global fitting study. The results in Figure 5 show that
our models can accurately predict PSA in the short term after the date of the last PSA used in model
fitting. This is the case for both non-relapsing and relapsing patients across the different nP, f it scenarios
considered in our analysis. While the prediction of the long-term PSA plateau in the non-relapsing subgroup195

is accurate even with a low nP, f it (see Figure 5(A-C)), our models may require exposition to an incipient
rising trend to accurately identify a biochemical relapse and estimate long-term PSA values (see Figure 5(D-
F) versus Figure 5(G-I)). However, Figure 5(G-I) further shows that our model forecasts are able to identify
rising PSA dynamics in relapsing patients earlier than standard clinical detection methods (e.g., using the
nadir+2 ng/mL criterion). Additionally, as in the global fitting study, we observe an overall good agreement200

between the fitting and forecasting results obtained with the periodic dose and the single dose models.
Comparing Figure 5 and Figure 2, we also observe that, as the number of PSA values used for model fitting
increases (i.e., for higher nP, f it), the uncertainty in the model predictions of PSA decreases accordingly and
progressively approaches the level of uncertainty obtained in the global fitting scenario.

To analyze the distribution of the global RMSE values across all the fitting and forecasting scenarios,205

we pool the corresponding results obtained with either model for all nP, f it cases run for each patient in the
cohort. Since our mechanistic models provide an accurate prediction of short-term dynamics in both non-
relapsing and relapsing patients, we will focus the analysis of the forecasting results on the subsequent two
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Figure 5. Mechanistic models provide personalized forecasts of PSA dynamics during post-EBRT monitoring. Panels (A-
C) and (D-F) show an early forecast of the PSA dynamics obtained with our mechanistic models for the same non-relapsing and
relapsing patients considered in Figure 2, respectively. The early model forecasts for the non-relapsing patients accurately predict
both short and long-term PSA dynamics. However, our early forecasts of PSA are only accurate in the short term for the relapsing
patients. Panels (G-I) show the model forecasts of PSA dynamics obtained at a later date in the course of post-EBRT monitoring for
the same non-relapsing patients (i.e., in a higher nP, f it scenario). In this case, while the models can still predict only the following
short-term PSA values accurately, they can already detect a rising PSA trend earlier than standard clinical practice (e.g., using the
nadir+2 ng/mL criterion). Moreover, the PSA predictions and corresponding 95% confidence intervals in this figure demonstrate
an overall good agreement between the models in forecasting PSA dynamics. For each patient, the PSA measurements used for
model fitting are plotted as red bullet points, while the remainder PSA data to assess model predictions are represented as hollow
red circles. EBRT is represented as a light gray rectangular area. The fits and forecasts obtained with the periodic dose model (PD)
are represented with a solid green line, while the corresponding results produced by the single dose model (SD) are depicted with a
dashed blue line. The same color scheme is also used for the 95% confidence intervals, which are depicted as shaded areas around
the model fits, and the font of the fitting and forecasting RMSEs for either model. The forecasting RMSE is reported for both all the
remaining PSA values and the immediately next two PSA values after the date of the last PSA used for model fitting. Additionally,
each plot also includes the prediction of the patient’s PSA nadir using the periodic dose model (green upward triangle) and the
single dose model (blue downward triangle).
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PSA values that were not used in model fitting in each nP, f it scenario for each patient. Hence, this two-value
forecast corresponds to a short-term prediction of PSA dynamics over approximately a one year horizon210

according to the PSA test frequency in our cohort (see Table 1). Note that not all patients for which it is
possible to fit nP, f it PSA values are eligible for a short-term prediction of two PSA values, because of limited
PSA data for forecast validation. For the sake of completeness, Figure S1 further depicts the boxplots of
the RMSE for model fitting and short-term PSA prediction in each fitting-forecasting scenario across the
whole cohort (nP, f it = 5, . . . ,21). Additionally, Tables S2 and S3 summarize these RMSE distributions for215

the whole cohort as well as the non-relapsing and relapsing subgroups.

Using the periodic dose model, the median and interquartile range of the RMSE of the model fits are
0.16 (0.08, 0.25) ng/mL across the whole cohort (n = 1043), 0.15 (0.08, 0.23) ng/mL in the non-relapsing
subgroup (n = 949), and 0.34 (0.16, 0.76) ng/mL in the relapsing subgroup (n = 94). For the short-term
prediction of PSA using the patient-specific periodic dose model fits, the corresponding median and in-220

terquartile range of the RMSE are 0.18 (0.08, 0.36) ng/mL across the whole cohort (n = 878), 0.17 (0.07,
0.32) ng/mL in the non-relapsing subgroup (n= 794), and 0.67 (0.22, 1.20) ng/mL in the relapsing subgroup
(n= 84). Furthermore, the median and interquartile range of the RMSE of the single dose model fits are 0.15
(0.08, 0.25) ng/mL across the whole cohort (n = 1043), 0.14 (0.07, 0.22) ng/mL in the non-relapsing sub-
group (n = 949), and 0.34 (0.17, 0.72) ng/mL in the relapsing subgroup (n = 94). Using the patient-specific225

single dose model fits to perform a short-term forecast of PSA, the corresponding median and interquartile
range of the RMSE are 0.18 (0.08, 0.34) ng/mL across the whole cohort (n = 878), 0.16 (0.07, 0.31) ng/mL
in the non-relapsing subgroup (n = 794), and 0.63 (0.22, 1.19) ng/mL in the relapsing subgroup (n = 84).
These RMSE results demonstrate that our models can reproduce the observed PSA dynamics, and that the
resulting personalized models can yield a reasonably accurate prediction of PSA to inform the monitoring230

strategy for each patient (see Discussion).

Considering the pooled results across all nP, f it cases, the RMSE values of the model fits and the short-
term PSA predictions obtained for non-relapsing patients were significantly lower than those obtained for
relapsing patients. This happens using both the periodic dose and the single dose model (p < 0.001 in all
corresponding two- and one-sided Wilcoxon rank-sum tests). On a patient-wise basis, Wilcoxon signed-235

rank testing shows that the single dose model rendered significantly lower RMSE values than the periodic
dose model during both fitting and short-term forecasting in the non-relapsing subgroup (p < 0.001 for
both two- and one-sided tests). However, this result does not hold in the relapsing subgroup. Furthermore,
two-sided Wilcoxon rank-sum tests do not detect significant differences between the distributions of the
global RMSE values of the model fits obtained with either model across the whole cohort, the non-relapsing240

subgroup, and the relapsing subgroup. The same result is also obtained when comparing the short-term PSA
forecasts obtained with either model. Using two-sided Wilcoxon rank-sum test to compare the global RMSE
distributions obtained for model fits against those calculated for the short-term PSA predictions, we obtain
significant differences across the whole cohort, the non-relapsing subgroup, and the relapsing subgroup for
both the periodic dose model (p < 0.001, p < 0.001, and p = 0.018, respectively) and the single dose model245

(p < 0.001, p < 0.001, and p = 0.025, respectively). Corresponding one-sided tests further confirm that the
RMSE values for the model fits are significantly lower than those of the short-term PSA predictions for both
the periodic dose model (p < 0.001, p < 0.001, and p = 0.0092, respectively) and the single dose model
(p < 0.001, p < 0.001, and p = 0.013, respectively).
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Figure 6. ROC curves for the early estimates of the biochemical relapse biomarkers obtained in the fitting-forecasting
studies. Panels (A-D) show the ROC curves and 95% bootstrap confidence intervals (CI) for each biomarker constructed using
the fitting-forecasting results from the periodic dose model (PD, top row, in green) single dose model (SD, bottom row, in blue).
In each plot, the vertical axis quantifies the true positive rate (TPR, i.e., sensitivity), while the horizontal axis measures the false
positive rate (FPR, i.e., 1-specificity). The solid black line represents the unity line. The optimal performance point (OPP-FF)
and corresponding 95% bootstrap confidence intervals along both axes are depicted as a red solid point and errorbars, respectively.
Additionally, the optimal performance point identified during global fitting (OPP-GF) and corresponding 95% bootstrap confidence
intervals are represented with a pink solid point and errorbars, respectively. (A) Proliferation rate of tumor cells, ρs. (B) Non-
dimensional ratio β , representing the ratio of tumor cell proliferation to EBRT-inuced death (see STAR Methods). (C) PSA nadir,
Pn. (D) Time to PSA nadir since EBRT termination, ∆tn.

Early estimates of model-based biomarkers accurately predict biochemical relapse earlier250

than standard practice

The patient-specific model fits obtained for each nP, f it scenario in the fitting-forecasting study provide
a set of values for the model-based biomarkers of biochemical relapse identified during global fitting (i.e.,
ρs, β , Pn, and ∆tn). Since each nP, f it scenario can only be performed once the latest PSA value used for
model fitting is collected, the corresponding estimates of the biomarkers are associated with its collection255

date. Thus, we proceed to analyze whether early estimates of our model-based biomarkers enable an accu-
rate identification of relapsing patients and whether they anticipate the detection of relapse with respect to
standard clinical practice. To further motivate this analysis, we recall that, for the three relapsing patients
shown in Figure 5(G-I), our models predict a rising PSA trend before the usual nadir+2 ng/mL criterion is
satisfied.260

To assess the performance of our early model-based biomarker estimates as biochemical relapse clas-
sifiers, we perform a ROC curve analysis. We first pool all the values obtained for each biomarker in all
the nP, f it scenarios across all patients. Then, we construct the ROC curve by using each pooled biomarker
value as a threshold that we compare to the corresponding nP, f it values obtained for each patient in the
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Table 3. Analysis of the ROC curves of the model-based biomarkers to identify early biochemical relapse using the fitting-
forecasting study results. Values in brackets are 95% bootstrap confidence intervals of the reported metrics. For each biomarker,
the global fitting threshold was fixed to the optimal cutoff reported in Table 2 in order to determine the corresponding 95% bootstrap
confidence intervals for its sensitivity and specificity using the fitting-forecasting study results. AUC: area under the ROC curve.

Metric
Biomarker

ρs β Pn ∆tn

Periodic dose model

AUC 0.99 [0.97, 1.00] 0.97 [0.93, 0.99] 0.81 [0.71, 0.90] 0.62 [0.42, 0.77]

Optimal performance point

Fitting-forecasting study

Sensitivity 1.00 [1.00, 1.00] 1.00 [1.00, 1.00] 1.00 [0.86, 1.00] 0.70 [0.11, 0.89]

Specificity 0.96 [0.90, 0.99] 0.92 [0.85, 0.96] 0.60 [0.45, 0.68] 0.63 [0.25, 0.95]

Value 5.6 [2.0, 9.1] ·10−3/mo 13.0 [8.8, 16.4] ·10−3 0.6 [0.5, 0.7] ng/mL 16.7 [8.3, 36.6] mo

Global fitting study

Sensitivity 0.30 [0.00, 0.67] 1.00 [1.00, 1.00] 0.90 [0.57, 1.00] 0.70 [0.33, 1.00]

Specificity 0.99 [0.97, 1.00] 0.89 [0.83, 0.94] 0.63 [0.55, 0.70] 0.55 [0.47, 0.62]

Value 14.6 ·10−3 1/mo 9.0 ·10−3 0.6 ng/mL 19.0 mo

Single dose model

AUC 0.99 [0.97, 1.00] 0.97 [0.93, 0.99] 0.81 [0.70, 0.90] 0.63 [0.44, 0.78]

Optimal performance point

Fitting-forecasting study

Sensitivity 1.00 [1.00, 1.00] 1.00 [1.00, 1.00] 1.00 [0.86, 1.00] 0.70 [0.14, 0.89]

Specificity 0.96 [0.91, 0.99] 0.91 [0.83, 0.95] 0.61 [0.47, 0.69] 0.65 [0.28, 0.94]

Value 5.7 [2.4, 10.0] ·10−3/mo 13.3 [7.6, 17.4] ·10−3 0.6 [0.6, 0.7] ng/mL 18.1 [7.9, 39.6] mo

Global fitting study

Sensitivity 0.30 [0.00, 0.70] 1.00 [1.00, 1.00] 0.90 [0.50, 1.00] 0.70 [0.33, 1.00]

Specificity 0.99 [0.97, 1.00] 0.88 [0.82, 0.93] 0.63 [0.56, 0.71] 0.59 [0.52, 0.67]

Value 14.7 ·10−3 1/mo 9.0 ·10−3 0.6 ng/mL 19.8 mo

fitting-forecasting study (nP, f it = 5, . . . ,nP− 1). If any of these patient-specific nP, f it values satisfies the265

classification criterion for the biomarker (i.e., a larger ρs, β , and Pn or a lower ∆tn), then we identify the
patient as relapsing under the considered threshold. As in the global fitting study, we perform this ROC
curve analysis for each model separately. We refer the interested reader to the STAR Methods for further
methodological details.

Figure 6 shows the ROC curve and optimal performance point for each biomarker obtained by using270

both the periodic and the single dose model results of the fitting-forecasting study. Table 3 further reports the
corresponding AUC value along with the optimal performance point threshold, sensitivity, and specificity.
Additionally, both Figure 6 and Table 3 represent the ability of the optimal performance point threshold
identified in the global fitting study to classify biochemical relapse using the early biomarker estimates from
the fitting-forecasting study. The ROC curves and optimal performance points obtained with either model275
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Figure 7. Distribution of the Days Gained to Biochemical Relapse Diagnosis (DGBRD) for the model-based biomarkers
of biochemical relapse. The boxplots in this figure represent the distribution of the DGBRD in the relapsing subgroup (n = 10)
obtained for each biomarker of biochemical relapse by leveraging the optimal threshold calculated in the ROC curve analysis of the
fitting-forecasting study results for both the periodic dose and the single dose model. From left to right: proliferation rate of tumor
cells ρs, non-dimensional ratio β (i.e., ratio of tumor cell proliferation to EBRT-induced death; see STAR Methods), PSA nadir
Pn, and time to PSA nadir since EBRT termination ∆tn. Green boxplots show results from the periodic dose model (PD), while
blue boxplots correspond to the single dose model (SD). Outliers are represented as hollow circles. A single asterisk (*) denotes
statistical significance in one-sided Wilcoxon signed-rank tests for a median larger than zero (p < 0.05).

are virtually equivalent, as we had previously observed in the ROC curve analysis of the global fitting re-
sults (see Figure 4 and Table 2). Furthermore, we obtain again that the best performing biomarkers are ρs

and β , followed by Pn, and finally ∆tn, which exhibits a comparably poorer classifying ability with respect
to the other three biomarkers. Comparing the ROC curve metrics obtained in the global fitting study and
the fitting-forecasting study, the AUC is slightly lower when the biomarkers obtained with either model are280

assessed to early identify biochemical relapse. While parameter ρs acted as a perfect classifier in the global
fitting study, we observe a minor loss of specificity when it is leveraged as an early biomarker for biochem-
ical relapse. Note also that the optimal threshold required to provide an early classification of biochemical
relapse with ρs is notably lower with respect to the one obtained in the global fitting study. Thus, a less
conservative threshold is needed to provide an early identification of biochemical relapse using ρs. This285

is also suggested by comparing the model predictions for the relapsing patients in Figure 2(D-F) and Fig-
ure 5(G-I). Conversely, the β ratio exhibits a slightly better performance in the fitting-forecasting study due
to a moderate increase in specificity, and the optimal threshold stays in the same order of magnitude. This
last observation also holds for the PSA nadir Pn, which shows maximal sensitivity in the fitting-forecasting
study. However its specificity to early detect biochemical relapse is lower than in the global fitting study.290

Finally, ∆tn also exhibits a lower specificity in the fitting-forecasting study than in the global fitting scenario.
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Table 4. Distribution of the Days Gained to Biochemical Relapse Diagnosis (DGBRD) in the relapsing subgroup (n = 10) for each
biomarker obtained leveraging the optimal threshold calculated in the ROC curve analysis of the fitting-forecasting results for both
the periodic dose and the single dose model. IQR: interquartile range.

Biomarker
Periodic dose model Single dose model

Median IQR Range Median IQR Range

ρs 125 (90, 450) (-66, 1100) 175 (90, 450) (-66, 1100)

β 222 (90, 450) (-66, 1259) 222 (90, 450) (-66, 1625)

Pn 971.5 (51, 1639) (-66, 3505) 443.5 (0, 1639) (-66, 3505)

∆tn 0 (0, 245) (-66, 330) 0 (0, 245) (-66, 330)

We further leverage the optimal threshold calculated for the ROC curve of each model-based biomarker
in the fitting-forecasting study to assess whether it may enable an earlier detection of biochemical relapse
than standard clinical criteria (e.g., nadir+2 ng/mL). To this end, we define a metric termed Days Gained
to Biochemical Relapse Diagnosis (DGBRD) for each biomarker and for every patient in the relapsing295

subgroup. This metric is computed as the difference between the reported date of biochemical relapse and
the earliest date in which each biomarker classifies a patient as relapsing according to the optimal threshold
calculated in the ROC curve analysis of the fitting-forecasting study. A positive value of DGBRD indicates
that a biomarker enables the early detection of biochemical relapse with respect to standard clinical practice.
Note that the second date in the DGBRD definition corresponds to one of the dates in which PSA was300

measured for each relapsing patient, since these are the dates at which we calculate the model fits in each of
the nP, f it scenarios of the fitting-forecasting study.

Figure 7 shows the distribution of the DGBRD for each biomarker calculated with both the periodic
and the single dose model, and Table 4 reports the corresponding median, interquartile range, and full
range. Using one-sided signed-rank Wilcoxon tests on median larger than zero, we obtain that the early305

estimates of ρs, β , and Pn provide a significantly earlier detection of biochemical relapse than standard
clinical practice either leveraging the periodic dose model (p = 0.0029,0.0029, and 0.0056, respectively) or
the single dose model (p = 0.0029,0.0029, and 0.0098, respectively) for their calculation. For both models,
we observe that, while ρs and β exhibited the best classifier performance in the ROC curve analysis (see
Figure 6 and Table 3), Pn is the biomarker yielding the earliest identification of biochemical relapse. Indeed,310

two-sided Wilcoxon signed-rank tests identify significant patient-wise differences in the DGBRD for Pn

with respect to those calculated for ρs, β , and ∆tn for both the periodic dose model (p = 0.016,0.016, and
0.0078, respectively) and the single dose model (p = 0.019,0.019, and 0.016, respectively). Corresponding
one-sided tests confirm that the DGBRD calculated for Pn provided a significantly earlier identification of
biochemical relapse than the DGBRD obtained for ρs, β , and ∆tn for each patient with both the periodic315

dose model (p = 0.0078,0.0078, and 0.0039, respectively) and the single dose model (p = 0.0098,0.0098,
and 0.0078, respectively). The comparison of the DGBRD for ρs and β with respect to the DGBRD for ∆tn
from the single dose model was not significant under two-sided Wilcoxon signed-rank testing. However,
the corresponding one-sided tests do identify a significantly larger DGBRD for ρs and β (p = 0.039 and
p = 0.027, respectively). For the periodic dose model, this observation only holds for the comparison of320

the DGBRD values of β and ∆tn (p = 0.027 for the one-sided Wilcoxon signed-rank test). Comparing the
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overall DGBRD distributions between the biomarkers under two-sided Wilcoxon rank-sum testing only the
DGBRD values of Pn and ∆tn show significant differences for the periodic dose model (p = 0.022). The
corresponding one-sided tests identify a significantly larger DGBRD for Pn than for ∆tn for both models
(p = 0.011 and p = 0.026, respectively). In addition, no significant differences are identified between the325

DGBRD values obtained for each biomarker with both models by using either two-sided Wilcoxon rank-sum
or signed-rank tests.

Discussion

Patient-specific predictions of PSA based on mechanistic models to design personalized PSA
monitoring strategies330

The detection of a consistent rising trend in PSA constitutes a biochemical relapse, which is indicative of
a potential PCa recurrence [Wein et al., 2012; Mottet et al., 2021; Cornford et al., 2021]. Here, we posit that
patient-specific forecasts of PSA evolution obtained via mechanistic modeling of post-EBRT PSA dynamics
can accurately identify relapsing patients earlier than the current PSA threshold criteria for detection (e.g.,
nadir+2 ng/mL) [Wein et al., 2012; Roach et al., 2006; Cornford et al., 2021]. To this end, we leverage335

our previously proposed mechanistic models of PSA dynamics after EBRT [Lorenzo et al., 2019b]. These
models feature key advantages for their clinical use to forecast PSA during post-EBRT patient monitoring.
First, they are defined upon the essential mechanisms underlying the tumor response to radiation and the
ensuing changes in PSA dynamics after EBRT conclusion (see STAR Methods and Figure 1). Consequently,
our models have a simple formulation with only four parameters to be identified patient-wise from the340

longitudinal PSA data that are routinely collected during standard patient follow-up (see STAR Methods
and Figure 1). Finally, the mathematical solutions to our model span the plateauing trend observed in non-
relapsing patients as well as the biexponential response expected for relapsing patients [Zagars and Pollack,
1997; Cox et al., 1994; Hanlon et al., 1998; Vollmer and Montana, 1999; Taylor et al., 2005].

In this work, we first demonstrate that our models exhibit a remarkable accuracy in reproducing the345

complete post-EBRT PSA dynamics observed in a new patient cohort from a different center to the one from
our previous study [Lorenzo et al., 2019b], thereby providing preliminary evidence of cross-institutional
validation. We further demonstrate that our models can provide reasonably accurate short-term forecasts
of PSA for both non-relapsing and relapsing patients over the course of post-EBRT monitoring. To this
end, we focused on predicting the immediately next two PSA values that were not used to parameterize our350

models in the serial nP, f it scenarios run for each patient (nP, f it = 5, . . . ,nP−1) during the fitting-forecasting
study. As noted in the Results section, our short-term PSA predictions correspond to a time horizon of
approximately one year according to the PSA testing frequency in our cohort (see Table 1). This prediction
time horizon overlaps with standard PSA monitoring protocols, which usually define routine PSA tests more
frequently over the first years following EBRT termination (e.g., every 3 to 6 months) and more sparsely355

afterwards (e.g., every 6 to 12 months) [Hamdy et al., 2016; Wein et al., 2012], unless the collected PSA
values rise suspicion of a potential relapse that would warrant more frequent testing (e.g., moderately high
PSA levels, an incipient rising trend) [Freiberger et al., 2017; Zelefsky et al., 2005; Zumsteg et al., 2015;
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Ray et al., 2006; Bates et al., 2005; Cheung et al., 2006; Cavanaugh et al., 2004; Shi et al., 2013; Wein
et al., 2012]. Thus, our model forecasts could facilitate the systematic design of personalized monitoring360

plans, which can be adapted as the collection of further PSA data become available to inform our models.
For instance, the consistent prediction of a plateauing trend during post-EBRT monitoring could be used to
extend the time interval between consecutive PSA tests. Conversely, the detection of rising PSA dynamics
would motivate a decision to prescribe more frequent PSA tests to confirm a biochemical relapse and then
proceed to assess PCa recurrence (e.g., via biopsy and medical imaging) [Cornford et al., 2021; Wein et al.,365

2012]. Hence, our mechanistic modeling forecasts could advance patient monitoring after EBRT from
routine and observational PSA testing to a dynamic predictive paradigm optimizing PSA data collection on
a patient-specific basis.

Promising model-based biomarkers to early detect biochemical relapse

In addition to the explicit forecast of PSA values with our models, we further explore the performance370

of model-based biomarkers of biochemical relapse. By analyzing our global model fits to the whole PSA
dataset available for each patient, we identify four candidate biomarkers of biochemical relapse: the prolif-
eration rate of tumor cells (ρs), its ratio to the radiation-induced tumor cell death rate (β ), the PSA nadir
(Pn), and the time to PSA nadir since EBRT termination (∆tn).

As in [Lorenzo et al., 2019b], we observe a superior performance in classifying relapsing patients for375

the biomarkers that are directly related to the underlying tumor dynamics (ρs and β ) than for the biomarkers
that are more closely linked to PSA dynamics (Pn and ∆tn; see Figure 4 and Table 2). In particular, our
results show that relapsing patients exhibit high ρs and β (see Figure 3 and Table S1). A high proliferation
activity measured via Ki-67 staining in PCa tissue samples has been correlated with worse prognosis, ra-
diotherapeutic outcome, and survival [Cowen et al., 2002; Li et al., 2004; Berlin et al., 2017]. An elevated380

tumor cell proliferation has also been correlated with an increased risk of PCa aggressiveness in terms of
a higher Gleason score [Tretiakova et al., 2016], which is a histopathological metric that is ubiquitously
used in the clinical management of PCa. In particular, a higher pre-treatment Gleason score has been linked
to higher probability of both local and distant PCa recurrence [Zumsteg et al., 2015; Zelefsky et al., 2005;
Wein et al., 2012]. The measurement of both the Ki-67 staining index and the Gleason score require an385

invasive approach to extract patient-specific tissue samples. However, our mechanistic models could pro-
vide a non-invasive surrogate method to estimate the proliferation activity of PCa in terms of ρs and β , and
thereby refine the estimation of patient-specific prognosis to guide therapeutic planning [Cowen et al., 2002;
Li et al., 2004; Berlin et al., 2017].

Pn and ∆tn are common metrics in clinical studies of PSA dynamics after EBRT. According to our390

modeling framework, a high PSA nadir or a short time to reach it after EBRT conclusion are predictive
for biochemical relapse (see Figure 3 and Table S1). Indeed, previous clinical studies have also linked
these observations to worse prognosis, such as a higher likelihood of tumor recurrence and reduced patient
survival [Zumsteg et al., 2015; Ray et al., 2006; Freiberger et al., 2017; Wein et al., 2012]. The estimation
of Pn and ∆tn with our models relies on ρs and β , but also on other model quantities that are not significantly395

different between non-relapsing and relapsing patients (see STAR Methods). This may partially explain
their comparatively poorer performance in identifying biochemical relapse with respect to ρs and β [Lorenzo
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et al., 2019b]. Additionally, the post-EBRT PSA doubling time during biochemical relapse, a PSA metric
linked to a poor PCa prognosis [Freiberger et al., 2017; Zumsteg et al., 2015; Bates et al., 2005; Wein et al.,
2012], can also be estimated by leveraging our models [Lorenzo et al., 2019b].400

Therefore, we believe that our model-based biomarkers could be leveraged to assess the probability of
tumor recurrence and estimate patient survival after EBRT, thereby assisting the treating physician in ther-
apeutic decision-making. We plan to explore these important applications of our modeling technology in
future studies over larger cohorts. Additionally, in this study, we further investigate the performance of our
model-based biomarkers to early identify biochemical relapse in the course of post-EBRT PSA monitoring.405

Our results show that the estimation of ρs, β , Pn, and ∆tn with a fraction of the total PSA values available
for each patient also enables to identify relapsing patients (see Figure 6 and Table 3). In general, we observe
a similar classifier performance as in the global fitting scenario (see Figure 4 and Table 2), although a more
conservative cutoff value may be required to optimally detect biochemical relapse with ρs (see Figure 6 and
Table 3). The promising early classifier performance reported in this study suggests that our model-based410

biomarkers are robust with respect to the amount of data required to identify biochemical relapse, and thus
may enable to anticipate the diagnosis of this event with respect to current methods relying on PSA thresh-
old criteria (e.g., nadir+2 ng/mL). In this work, we perform a preliminary investigation of this hypothesis
revealing that ρs, β , and Pn may enable to detect biochemical relapse a median of 125 to 971.5 days (or
equivalently 4.2 to 32.4 months), significantly outperforming the standard clinical practice. Interestingly,415

while Pn exhibits a poorer classifier performance than ρs and β according to the ROC curve analyses in
this study (see Table 2 and Table 3), this biomarker rendered the earliest detection of biochemical relapse
in our cohort. Future studies over larger cohorts of relapsing patients are necessary to precisely assess the
predictive power of our model-based biomarkers and their combined ability to anticipate the detection of
biochemical relapse with respect to standard practice.420

A flexible modeling framework to address practical and research applications

Regarding the comparative performance of the periodic and of the single dose model, this study does
not provide conclusive results to select one over the other. First, both models show a remarkable agreement
during fitting and forecasting PSA (e.g., see Figures 2 and 5). Despite the significantly superior fitting and
forecasting results obtained with the single dose model for each patient in the non-relapsing subgroup, this425

difference is marginal in absolute terms (e.g., see Figures 2 and 5, Figure S1, and Tables S2 and S3). This
observation was also confirmed when a comparison of the overall distributions of fit quality and prediction
metrics did not identify significant differences in neither patient subgroup in the global fitting and the fitting-
forecasting studies. Additionally, no significant differences were found in the fitting and forecasting of PSA
values in the relapsing subgroup. Second, both models provide the same biomarkers of biochemical relapse,430

which exhibit comparatively equivalent classifier performance and predictive ability. This is demonstrated
in the ROC analysis of the global fitting and the fitting-forecasting results as well as in the analysis of the
DGBRD metric (see Figures 4, 6, and 7 along with Tables 2, 3, and 4). In our previous study [Lorenzo
et al., 2019b], we highlighted that the single dose model exhibited an extraordinary performance despite its
simplicity, which we observe again in the present work. Based on the similar performance of both models,435

we think that the simplicity of the single dose model makes it more amenable to facilitate the fitting and
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forecasting of PSA dynamics in real clinical scenarios. However, since the periodic dose model and the
general parent formulation from which our models are derived account for the timing of radiation doses (see
STAR Methods) [Lorenzo et al., 2019b], these modeling options may also be of interest to investigate the
personalization of radiation plans (e.g., dose escalation, hypofractionation) [Mottet et al., 2021]. We provide440

additional comments on this point in the forthcoming section on the limitations of this study.

Towards a robust clinical implementation

Around 20% to 50% of PCa patients undergoing radiotherapy are estimated to exhibit a biochemical
relapse within 5 to 10 years of treatment conclusion [Kupelian et al., 2006; Rosenbaum et al., 2004]. Their
early identification and the accurate estimation of the severity of their tumor recurrence is crucial to optimize445

disease control and survival. Further developments of our patient-specific forecasting methods based on
mechanistic models of PSA dynamics could constitute a robust enabling technology to accurately address
those timely needs in post-treatment patient monitoring. In particular, casting our models in a Bayesian
framework would advance the current state of our forecasting technology by incorporating the uncertainty
in PSA values [Carobene et al., 2018; Christensson et al., 2011] as well as the uncertainty emanating from the450

model parameterization and ensuing predictions [Lima et al., 2017; Hawkins-Daarud et al., 2019; Lorenzo
et al., 2021]. We plan to investigate this approach to seamlessly integrate our mechanistic model predictions
with uncertainty quantification and risk assessment. This strategy has the potential to guide clinical decision-
making during the post-treatment monitoring of individual patients, including the frequency of PSA data
collection, the timing of tests to ascertain the suspicion of tumor recurrence, the estimation of clinical risks455

and survival (e.g., biochemical relapse, local and distant recurrence, or death), and the planning of optimal
primary and salvage treatments by maximizing therapeutic outcomes and minimizing toxicities.

Limitations of the study

While the work presented herein shows promises for the use of mechanistic models of PSA dynamics
to assist decision-making in post-EBRT monitoring of PCa, it also features some limitations that we plan460

to address in forthcoming studies. First, the patient cohort used for our analysis has a reduced number of
relapsing patients (n = 10). Thus, to obtain a more robust analysis of the predictive performance of our
mechanistic models and biomarkers, we need to extend our cohort to increase the number of patients show-
ing biochemical relapse. This cohort extension would also provide enough statistical power to examine
the correlations between our proposed model-based biomarkers and usual PCa clinical characteristics (e.g.,465

Gleason score, TNM stage). To facilitate this effort, we plan to pool cohorts from multiple centers, which
would also enable us to assess the applicability of our models across various institutions. Indeed, we believe
that this is a key step towards the future clinical use of our predictive technology. Additionally, our analysis
was focused on biochemical relapse detection as a surrogate for PCa recurrence [Mottet et al., 2021; Corn-
ford et al., 2021; Wein et al., 2012]. To address this limitation, we specifically aim at extending our cohort470

with patients for whom PCa recurrence has been confirmed, including the type of recurrence (e.g., local or
metastatic), which would let us analyze their correlation with our biomarkers and model predictions.

Second, all patients in the cohort leveraged in this study only had a single pre-EBRT PSA measurement.
This limitation probably hindered the precise identification of baseline tumor cell dynamics by rendering
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tumor cell proliferation rates (ρs) close to the minimal admissible value (see STAR Methods) in the non-475

relapsing subgroup and in the fitting-forecasting scenarios where observed PSA dynamics do not provide
sufficient information to detect a rising branch (e.g., see Table S1 and [Lorenzo et al., 2019b]). However,
this issue is compatible with our models to represent the early PSA decay usually observed in most patients
after EBRT conclusion as well as the long-term plateauing PSA dynamics in cured patients [Zagars and Pol-
lack, 1997; Cox et al., 1994; Hanlon et al., 1998; Vollmer and Montana, 1999; Taylor et al., 2005; Lorenzo480

et al., 2019b]. Thus, we think that underestimation of the tumor cell proliferation rate did not impede the
performance of our models and biomarkers to respectively predict PSA dynamics and biochemical relapse,
as shown by the results presented herein. Further pre-EBRT PSA values would specifically facilitate the
estimation of the PCa cell proliferation rate, which may also lead to a more reliable estimation of the other
model parameters. This improvement would refine our model and biomarker predictions, while also en-485

abling the calculation of a surrogate for the proliferation activity of the tumor enabling the assessment of
prognostic risks and expected survival [Cowen et al., 2002; Li et al., 2004; Berlin et al., 2017]. Moreover,
the availability of several PSA values before EBRT may even allow to consider a different proliferation
rate before and after EBRT (see STAR Methods). This modeling feature would enable the investigation of
EBRT-mediated changes in tumor cell population dynamics, for example, due to direct changes to tumor cell490

cycle distribution and proliferation rates [Lima et al., 2017; Hormuth et al., 2018; Powathil et al., 2013] or
due to the evolutionary treatment-induced promotion of a radiation-resistant, proliferative tumor phenotype
[Greaves and Maley, 2012; Enriquez-Navas et al., 2015; Forouzannia et al., 2018; West et al., 2018].

Finally, our models assume that all PSA changes after EBRT conclusion emanate from radiation-
induced tumor cell death and the proliferation of a potential tumor cell survival fraction. However, the495

mathematical formulation of our models could be extended to accommodate other mechanisms underlying
PSA dynamics after EBRT. For instance, post-radiotherapy PSA bounces [Wein et al., 2012; Pinkawa et al.,
2010; Freiberger et al., 2017] have been described via mechanistic modeling of the interplay between tu-
mor cell dynamics and tumor immune response [Yamamoto et al., 2016]. Indeed, a recent study has also
found this complex interplay to be central for the prediction of the probability of radiocurability of can-500

cer patients [Alfonso et al., 2021]. Our models could also accommodate the increase in PSA caused by
prostatic enlargement due to concomitant benign prostatic hyperplasia by means of an additional disease-
specific PSA production term [Lorenzo et al., 2019b,a; Hanlon et al., 1998; Swanson et al., 2001], which
could be informed by either population-based, age-stratified estimates of PSA changes due to this pathology
[Roehrborn et al., 2000] or longitudinal patient-specific, imaging measurements of prostatic whole or central505

gland volumes [Lorenzo et al., 2019b,a; Cao et al., 2017; Roehrborn et al., 2000; Lieber et al., 2010]. Addi-
tionally, our mechanistic models of post-EBRT dynamics feature a model-naı̈ve formulation of the survival
fraction as a free parameter that is directly estimated from PSA data (see STAR Methods). This definition
of the survival fraction could be refined by leveraging a radiobiological dose-dependent formulation, for
which there exists a rich literature [Forouzannia et al., 2018; Corwin et al., 2013; Lima et al., 2017; Bodgi510

et al., 2016; Rockne et al., 2015; Powathil et al., 2007, 2013; Lewin et al., 2018; O’Rourke et al., 2008;
Kal and Gellekom, 2003; Wang and Li, 2005]. Hence, our modeling framework would enable to investigate
alternative radiation plans and systematically select clinically-feasible, optimal regimens for individual pa-
tients [Forouzannia et al., 2018; Henares-Molina et al., 2017; Brüningk et al., 2021; Lipková et al., 2019;
Ayala-Hernández et al., 2021]. The aforementioned model extensions increase the number of parameters515
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to be identified on a patient-specific basis. Thus, global sensitivity analysis and model selection would be
recommendable to identify a minimal set of driving parameters requiring personalized calibration and assess
whether the extended models are superior to the parent formulations used in this study [Oden et al., 2016;
Lorenzo et al., 2021].

STAR Methods520

Key resources table

Table 5. Key resources table

Resource Source Identifier

Deposited data

De-identified patient data This paper https://doi.org/10.5281/zenodo.

6277674

Software and algorithms

MATLAB R2021a The Mathworks (Natick, MA, USA) https://www.mathworks.com/

products/matlab.html

MATLAB scripts for model fitting and
forecasting

This paper https://doi.org/10.5281/zenodo.

6277674

MATLAB scripts for statistical analysis This paper https://doi.org/10.5281/zenodo.

6277674

Resource availability

Lead contact

Further information and requests for resources should be directed to the lead contact, Guillermo Lorenzo
(guillermo.lorenzo@unipv.it).525

Materials availability

This study did not generate new unique reagents.

Data and code availability

De-identified patient data and all original code have been deposited at Zenodo (https://doi.org/
10.5281/zenodo.6277674) and are publicly available as of the date of publication. Any additional infor-530

mation required to reanalyze the data reported in this paper is available from the lead contact upon request.
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Subject details

Anonymized patient data were retrospectively collected at Istituto di Ricovero e Cura a Carattere Scien-
tifico Ospedale San Raffaele (IRCCSOSR, Milan, Italy). Ethics approval and informed consent waiver were
obtained from the Internal Review Board at IRCCSOSR for this study. The inclusion criteria were diagnosis535

of localized or locally advanced PCa (clinical TNM stage: T1 to T3, not N1 or M1), availability of complete
basic diagnostic data (i.e., baseline PSA, Gleason score, and TNM stage), EBRT as primary treatment with
curative intent and without (neo)adjuvant ADT, follow-up for at least 3 years since the onset of radiotherapy,
and a PSA history featuring at least 5 values after EBRT conclusion. The exclusion criteria were a previ-
ous diagnosis of cancer prior to PCa, any other prior or concomitant treatment for PCa (e.g., ADT, radical540

prostatectomy, radiotherapy, chemotherapy), EBRT without curative intent, incomplete diagnostic data, and
insufficient PSA monitoring for this study.

A total of 206 men treated with EBRT at IRCCS Ospedale San Raffaele between years 2006 and 2018
were initially considered for this study. The application of the inclusion and exclusion criteria resulted
in a final cohort of 166 patients. A total of 10 patients in this cohort were diagnosed with biochemical545

relapse and tumor recurrence was confirmed in five of them with choline PET/CT. PCa recurrence was
local in one patient and metastatic in the other four patients. Nine relapsing patients received a secondary
treatment, which consisted of ADT for seven patients, radiotherapy in one patient, and combined ADT and
radiotherapy for another patient. The PSA data collected after the onset of the second treatment is not
considered in the present study. We recall that Table 1 summarizes the characteristics of the study cohort,550

the relapsing subgroup, and the non-relapsing subgroup. The total number of PSA values reported for each
patient (nP) includes a single pre-EBRT value (i.e., the baseline PSA, Pd) and the series of PSA values
collected during post-EBRT follow-up. A Wilcoxon rank-sum test identified significantly larger PSA at
diagnosis (Pd , p = 0.017), higher number of PSA values (np, p = 0.040), and more frequent PSA testing
(p < 0.001) in the relapsing subgroup. Additionally, the proportion of T1, T2, and T3 disease in the non-555

relapsing/relapsing subgroups are 88/6, 64/4, and 4/0, respectively.

Method details

General mathematical model

We call P(t) the serum PSA at time t. Our time interval of interest is (t0, t f ), where t0 is the time
at which the pre-EBTR PSA measurement in our database was taken, and t f is the latest time at which560

we forecast the PSA. For simplicity, we rescale time such that t0 = 0 for all patients. The patients in our
database received nd radiation doses at times {tk}k=1,...,nd

, where t0 < t1 < · · · < tnd < t f . Note that the tk’s
may vary from patient to patient.

We assume that the serum PSA is proportional to the number of tumor cells N(t), that is

P(t) = κN(t), (1)

where κ is a constant. Prior to EBRT treatment, we assume that N grows exponentially in time from565

N(t0) = N0, at a characteristic rate ρn. Thus,

P(t) = κN0eρnt in t ∈ (t0, t1). (2)
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From Eq. (2), we define P0 = P(0) = κN0.

For each time interval, Ik = (tk, tk+1), k = 1, . . . ,nd−1, we define Sk(t), which represents the fraction of
tumor cells surviving to the k-th radiation dose, and D̃k(t), which is the fraction of tumor cells irreversibly
damaged after the k-th radiation dose. For compactness of the notation, we also define S0(t) and D̃0(t) in570

the interval (t0, t1) as S0(t) = N(t) and D̃0(t) = 0. This assumes that there are no damaged cells before
treatment.

The values of Sk and D̃k at time tk are obtained from D̃k−1 and Sk−1 as

D̃k(tk) = (1−Rd)Sk−1(tk), (3a)

Sk(tk) = RdSk−1(tk). (3b)

Eq. (3a) assumes that the radiation dose at time tk immediately produces irreversible damage to a fraction
of cells (1−Rd), where 0 < Rd < 1. The remaining fraction of cells, Rd , continues in the compartment
of surviving cells. The parameter Rd is patient specific, but constant for all doses. We do not assume
any specific formulation for Rd , but simply compute it from the PSA data. Eqs. (3a)–(3b) provide initial
conditions for the ordinary differential equations (ODEs) that govern the dynamics of D̃k(t) and Sk(t) in
the time interval Ik. These ODEs are based on the assumptions that irreversibly damaged cells undergo
programmed cell death at a rate ρd , and surviving cells continue their proliferation at a characteristic rate
ρs,

dD̃k

dt
=−ρdD̃k in Ik, (4a)

dSk

dt
= ρsSk in Ik. (4b)

We further define the cumulative number of irreversibly damaged tumor cells in the time interval Ik as

Dk(t) = Dk−1(tk)+ D̃k(t), (5)

with D0(t) = 0. Hence, the total population of tumor cells in the interval Ik is

Nk(t) = Sk(t)+Dk(t), (6)

and the PSA is given by575

Pk(t) = κNk(t) = κ (Sk(t)+Dk(t)) , (7)

Note that Eqs. (3a)–(4b) can be solved recursively on all time intervals from I1 to Ind−1 through direct
integration, which leads to

D̃k(t) = (1−Rd)Sk−1(tk)e−ρd(t−tk) in Ik, (8a)

Sk(t) = RdSk−1(tk)eρs(t−tk) in Ik. (8b)

From Eqs. (8a) and (5), we obtain

Dk(t) = Dk−1(tk)+(1−Rd)Sk−1(tk)e−ρd(t−tk) in Ik. (9)
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By applying Eqs. (8b) and (5) recursively, we derive

Sk(t) = Rk
dN0θ1eρst in Ik, (10a)

Dk(t) = (1−Rd)

[
k

∑
i=1

Ri−1
d e(ti−t1)(ρs+ρd)

]
N0θ1θ2e−ρdt in Ik, (10b)

where θ1 = et1(ρn−ρs) and θ2 = et1(ρs+ρd). Then, the expression for the serum PSA is

Pk(t) = P0θ1

[
Rk

deρst +(1−Rd)

(
k

∑
i=1

Ri−1
d e(ti−t1)(ρs+ρd)

)
θ2e−ρdt

]
in Ik. (11)

Periodic dose model

In the periodic dose model, we assume that the radiation doses are evenly spaced in time with a constant
intertreatment interval τr, i.e., tk = t1 +(k−1)τr for k = 1, . . . ,nd . This allows us to simplify Eq. (10b) into580

Dk(t) = (1−Rd)
1−Rk

dekτr(ρs+ρd)

1−Rdeτr(ρs+ρd)
N0θ1θ2e−ρdt in Ik. (12)

Then, the PSA is given by

Pk(t) = P0θ1

[
Rk

deρst +(1−Rd)
1−Rk

dekτr(ρs+ρd)

1−Rdeτr(ρs+ρd)
θ2e−ρdt

]
in Ik. (13)

Single dose model

In the single dose model, we assume that the entire radiation treatment is given in one single dose at
time tD. Then,

S(t) = RDN0θ1Deρst , t > tD, (14a)

D(t) = (1−RD)N0θ1Dθ2De−ρdt , t > tD, (14b)

where RD is the fraction of surviving tumor cells after the entire treatment dose, θ1D = etD(ρn−ρs) and θ2D =

etD(ρs+ρd). Then, the PSA is given by

P(t) = P0θ1D
[
RDeρst +(1−RD)θ2De−ρdt] . (15)

Dimensional analysis and predicted PSA nadir585

The PSA dynamics after treatment completion can be obtained from Eq. (13) as

P(t) = P0θ1

[
Rnd

d eρst +(1−Rd)

(
nd

∑
i=1

Ri−1
d e(ti−t1)(ρs+ρd)

)
θ2e−ρdt

]
, t > tnd . (16)

We nondimensionalize PSA and time using the scales P0θ1(1−Rd)
(
∑

nd
i=1 Ri−1

d e(ti−t1)(ρs+ρd)
)

and 1/ρd , re-
spectively. Then, using hats to denote dimensionless quantities, we have

P̂(t̂) =
Rnd

d

(1−Rd)∑
nd
i=1 Ri−1

d e(t̂i−t̂1)(
ρs
ρd

+1)
e

ρs
ρd

t̂
+θ2e−t̂ . (17)
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Defining the nondimensional groups

β =
ρs

ρd
, (18a)

α =
Rnd

d

(1−Rd)∑
nd
i=1 Ri−1

d e(t̂i−t̂1)(
ρs
ρd

+1)
, (18b)

we can express the dimensionless PSA as

P̂(t̂) = αeβ t̂ +θ2e−t̂ . (19)

The parameter α represents the efficacy of the radiation plan and β defines the dynamics of the tumor cell590

population after radiation. While β is independent from the treatment plan, α can be specialized to the two
treatment plans studied in this paper. For the periodic dose treatment

α =
Rnd

d
1−Rd

1−Rdeτr(ρs+ρd)

1−Rnd
d endτr(ρs+ρd)

, (20)

while for the single dose treatment

α =
RD

1−RD
. (21)

The nondimenzionalized PSA velocity is defined as

v̂P(t̂) =
dP̂(t̂)

dt̂
= αβeβ t̂ −θ2e−t̂ . (22)

The PSA nadir is achieved at a dimensionless time t̂n defined by v̂P(t̂n) = 0. Using Eq. (22), we find595

t̂n =
1

1+β
ln
(

θ2

αβ

)
. (23)

The corresponding dimensional time is

tn = t1 +
1

ρd(1+β )
ln
(

1
αβ

)
. (24)

and the time to PSA nadir since the completion of the treatment is given by ∆tn = tn− tnd .

Further modeling assumptions

Some patient may experience delays in their radiation plans due to treatment side effects, local holidays,
or machine routine maintenance. Additionally, the patient dataset used in this study only includes the times600

of EBRT initiation and conclusion, the radiation dose, and the number of doses. This information is not
compatible with an accurate use of our general model, which would require the exact dates of each EBRT
fraction for each patient. To overcome this limitation, we introduced the assumptions on radiation delivery
that lead to the periodic and single dose models presented above. Thus, here we perform our analyses with
these two models, which can be leveraged as surrogates of the general model as shown in [Lorenzo et al.,605

2019b].
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Table 6. Parameter initial values and bounds for model fitting. Pd is the baseline PSA value for each patient (see Table 1).

Parameter Units Initial value Lower bound Upper bound

P0 (ng/mL) Pd 0 100

Rd - 0.9 0.5 1

RD - 0.9nd 0.5nd 1

ρs (1/mo) 0.02 0.001 2

ρd (1/mo) 0.5 0.001 2

We further assume that EBRT does not change the proliferation rate of the surviving tumor cells, such
that ρn = ρs and θ1 = θ1D = 1. This is a common assumption in the literature [Lima et al., 2017; Corwin
et al., 2013; Pérez-Garcı́a et al., 2015] that facilitates the parameterization of our models using the cohort of
this study, which only features one pre-EBRT PSA value to inform ρn. Additionally, we set tD = t1 for the610

single dose model as in [Lorenzo et al., 2019b].

Model fitting and forecasting

We fit the PSA data from each patient to both the periodic and single dose models. We perform model
fitting by leveraging a nonlinear least-squares method based on a trust-region reflective algorithm. Table 6
provides the initial guess as well as the lower and upper bounds of the model parameters for both the periodic615

and the single dose models. Our model fitting method aims at minimizing an objective functional J, given
by

J =
nP, f it

∑
i=1

(
P̂(ti)−P(ti)

)2
+wr (ρs−ρs,min)

2 . (25)

The first term in the right-hand side of Eq. (25) represents the mismatch between PSA data (P̂) and the model
estimation of PSA (P) at each of the PSA test times ti (i = 1, . . . ,nP, f it). For each model and patient, we run
a total of nP, f it model fits in the fitting-forecasting study (nP, f it = 5, . . . ,nP− 1), whereas we only perform620

a single model fit with nP, f it = nP in the global fitting study. The second term in the right-hand side of
Eq. (25) regularizes the proliferation rate of the surviving tumor cells (ρs) to low values and was introduced
to limit overfitting, especially when only a small number of PSA values were available to calculate the model
parameters. The regularization weight wr is empirically set at 2500 and ρs,min is the minimum admissible
value for this parameter in Table 6.625

We further cast our model fitting problem within a multi-start strategy to facilitate convergence for
all patient datasets and avoid the selection of local minima in the minimization problem outlined above.
In brief, this strategy consists of solving the model fitting problem multiple times, each of them using a
different initial guess and resulting in a parameter set if convergence is achieved. Then, the algorithm
selects the resulting parameter set that renders the lowest value of the objective functional as the global630

minimum. We use a collection of 20 initial guesses that are randomly sampled within the parameter space
and always includes the one provided in Table 6.
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Code implementation

The calculations based on the numerical methods described in this section are performed using MAT-
LAB (R2021a, The Mathworks, Natick, MA, USA). In particular, model fitting is implemented by leverag-635

ing the Global Optimization Toolbox.

Quantification and statistical analysis

Quantitative assessment of model fits and forecasts

In the global fitting study, the quality of fit is assessed by means of the root mean squared error (RMSE)
and the coefficient of determination (R2). Given that some nP, f it scenarios involved a reduced number of640

PSA values to assess the model forecasts, we only use the RMSE to analyze the quality of fit and validate
the model predictions of PSA dynamics in the fitting-forecasting study. Additionally, we calculate the 95%
nonlinear regression prediction confidence intervals for our model fits and forecasts.

Receiver operating characteristic curves

We calculate the receiver operating characteristic (ROC) curves for our model-based biomarkers ob-645

tained from global fitting and the fitting-forecasting study with either PSA model. Global fitting produces a
unique value for each model-based biomarker per patient. We use the resulting set of values obtained across
the whole cohort as the thresholds to construct the corresponding ROC curves. Since all PSA values for
each patient are used in global fitting, these ROC curves assess the ability of the model-based biomarkers
to retrospectively classify patients as relapsing or non-relapsing. The fitting-forecasting study produces a650

set of values for each model-based biomarker per patient, which result from the sequential model fits to
an increasing number of PSA values ranging from nP, f it = 5 to nP, f it = nP− 1. Hence, each set contains
the temporal evolution of each model-based biomarker during post-EBRT monitoring for each patient. To
construct the ROC curve of each model-based biomarker in the fitting-forecasting study, we first pool all
the biomarker values across all patients to define the thresholds. Then, for each patient, we assess whether655

each threshold can identify any of the biomarker values obtained across the nP, f it scenarios as predictive
for biochemical relapse. Thus, in this scenario, the ROC curves provide an assessment of the ability of
the model-based biomarkers to early classify the patients as relapsing or non-relapsing during the course of
post-EBRT PSA monitoring.

For each ROC curve, we further calculate the area under the curve (AUC) using the trapezoidal rule660

and the optimal performance point according to Youdens index. Additionally, we calculate the 95% boot-
strap confidence intervals of the ROC curves and their corresponding AUC and optimal performance point.
We use 2000 bootstrap samples for these calculations. The 95% bootstrap confidence interval for each
ROC curve is obtained as the envelope of the 95% bootstrap confidence interval regions obtained for each
threshold value used in the construction of the ROC curve along the sensitivity and specificity axes.665
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Statistical analysis

We use Wilcoxon rank-sum and signed-rank tests for the statistical analyses performed in this work. In
the Results section, we specify when we use each type of test and whether it is two-tailed or one tailed for
each statistical analysis of the global fitting and fitting-forecasting study results. The level of significance
for all statistical tests is set at 5%.670

Code implementation

The calculations based on the statistical methods described in this section are performed using MAT-
LAB (R2021a, The Mathworks, Natick, MA, USA). In particular, we use the Statistics and Machine Learn-
ing Toolbox to calculate the 95% nonlinear regression prediction confidence intervals for our model fits and
forecasts, construct the 95% bootstrap confidence intervals for the ROC curve analysis, and perform the675

aforementioned statistical tests.
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Supplemental Information

Table S1. Distribution of model-based quantities of interest obtained in the global fitting study using the periodic dose and the
single dose models. This table complements Figure 3 in the main text. IQR: interquartile range.

QOI
All patients (n=166) Non-relapsing patients (n=156) Relapsing patients (n=10)

Median IQR Range Median IQR Range Median IQR Range

Periodic dose model

P0 (ng/mL) 6.4 (4.6, 8.8) (0.6, 81.0) 6.2 (4.5, 8.3) (0.6, 20.5) 9.6 (5.9, 13.1) (5.0, 81.0)

Rd 0.89 (0.88, 0.91) (0.80, 0.98) 0.89 (0.88, 0.91) (0.80, 0.98) 0.88 (0.84, 0.91) (0.80, 0.94)

ρd (1/mo) 0.31 (0.22, 0.47) (0.05, 2.0) 0.30 (0.22, 0.47) (0.05, 2.0) 0.35 (0.17, 0.39) (0.06, 2.0)

ρs

(10−3/mo)
1.0 (1.0, 1.0) (1.0, 46.8) 1.0 (1.0, 1.0) (1.0, 13.9) 17.6 (16.0, 20.1) (14.6, 46.8)

β (10−3) 3.6 (2.3, 5.2) (0.5, 802.5) 3.5 (2.2, 4.8) (0.5, 75.6) 51.2 (37.1, 133.8) (9.0, 802.5)

α (10−2) 3.6 (2.3, 6.8) (0.1, 29.6) 3.7 (2.4, 6.8) (0.1, 29.6) 2.3 (0.6, 6.6) (0.2, 15.6)

Pn (ng/mL) 0.3 (0.2, 0.5) (0.0, 1.8) 0.3 (0.2, 0.5) (0.0, 1.8) 0.8 (0.6, 1.0) (0.3, 1.3)

∆tn (mo) 26.8 (17.5, 36.6) (3.1, 142.7) 27.1 (19.3, 37.4) (3.1, 142.7) 16.5 (10.9, 33.8) (3.6, 50.8)

Single dose model

P0 (ng/mL) 6.4 (4.6, 8.8) (0.6, 81.0) 6.2 (4.5, 8.3) (0.6, 20.7) 9.6 (5.9, 13.1) (5.0, 81.0)

RD (10−2) 4.0 (2.6, 6.9) (0.0, 55.1) 4.0 (2.6, 7.0) (0.0, 55.1) 2.5 (0.8, 6.7) (0.2, 16.0)

ρd (1/mo) 0.29 (0.21, 0.43) (0.05, 2.0) 0.29 (0.21, 0.43) (0.05, 2.0) 0.32 (0.17, 0.37) (0.06, 2.0)

ρs

(10−3/mo)
1.0 (1.0, 1.0) (1.0, 47.5) 1.0 (1.0, 1.0) (1.0, 13.9) 17.7 (16.3, 21.0) (14.7, 47.5)

β (10−3) 3.9 (2.5, 5.5) (0.5, 838.0) 3.7 (2.4, 5.1) (0.5, 76.1) 60.6 (39.3, 138.9) (9.0, 838.0)

α (10−2) 4.2 (2.6, 7.4) (0.0, 122.5) 4.2 (2.7, 7.5) (0.0, 122.5) 2.6 (0.8, 7.2) (0.2, 19.1)

Pn (ng/mL) 0.3 (0.2, 0.5) (0.0, 1.7) 0.3 (0.2, 0.4) (0.0, 1.7) 0.8 (0.6, 1.0) (0.3, 1.3)

∆tn (mo) 28.6 (18.9, 38.8) (2.4, 384.8) 29.2 (20.6, 39.2) (2.4, 384.8) 17.0 (11.8, 34.6) (3.2, 51.4)
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Figure S1. Distributions of the RMSE of model fitting and short-term PSA forecasting across the nP, f it scenarios of the
fitting-forecasting study. Panel (A) shows the boxplots of the RMSE (ng/mL) obtained in the fitting of the mechanistic models
of PSA dynamics to nP, f it = 5, . . . ,21 PSA values. Panel (B) shows the boxplots of the RMSE (ng/mL) obtained in the short-
term prediction of 2 PSA values using the mechanistic models of PSA dynamics fitted to nP, f it = 5, . . . ,21 PSA values. For each
individual patient nP, f it = 5, . . . ,nP − 1, where nP is the number of PSA values available for each of them (see Table 1). The
horizontal axis in each panel features the number of patients (Pts.) included in each nP, f it scenario. The last boxplots in each panel
further provide the RMSE distribution obtained during global fitting for each model (GF) as a reference of the ultimate RMSE
value when the models are informed with all available PSA data from each patient. Green boxplots show results from the periodic
dose model (PD), while blue boxplots correspond to the single dose model (SD). Outliers are represented as hollow circles. This
figure is complemented by Tables S2 and S3.
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Table S2. Distribution of the RMSE values (ng/mL) resulting from fitting the periodic and single dose models to np, f it PSA values
in the fitting-forecasting study. This table complements Figure S1. IQR: interquartile range.

np, f it
All patients Non-relapsing patients Relapsing patients

n Median IQR Range n Median IQR Range n Median IQR Range

Periodic dose model

5 166 0.11 (0.05, 0.19) (0.00, 3.62) 156 0.11 (0.05, 0.18) (0.00, 3.62) 10 0.16 (0.09, 0.78) (0.02, 1.21)

6 154 0.13 (0.07, 0.21) (0.01, 3.74) 144 0.13 (0.07, 0.21) (0.01, 3.74) 10 0.18 (0.10, 0.80) (0.03, 1.60)

7 138 0.14 (0.08, 0.24) (0.00, 3.84) 129 0.14 (0.08, 0.23) (0.00, 3.84) 9 0.17 (0.10, 0.97) (0.05, 2.07)

8 124 0.16 (0.08, 0.26) (0.01, 3.61) 115 0.16 (0.08, 0.25) (0.01, 3.61) 9 0.19 (0.12, 0.92) (0.06, 2.09)

9 105 0.17 (0.08, 0.27) (0.01, 2.02) 97 0.17 (0.08, 0.26) (0.01, 1.80) 8 0.18 (0.14, 1.07) (0.05, 2.02)

10 88 0.18 (0.09, 0.28) (0.01, 1.95) 81 0.18 (0.09, 0.27) (0.01, 1.73) 7 0.22 (0.13, 1.21) (0.05, 1.95)

11 67 0.16 (0.09, 0.22) (0.01, 1.92) 60 0.16 (0.08, 0.22) (0.01, 1.66) 7 0.27 (0.17, 1.28) (0.06, 1.92)

12 54 0.18 (0.09, 0.25) (0.01, 1.84) 48 0.16 (0.08, 0.23) (0.01, 1.60) 6 0.28 (0.18, 0.60) (0.09, 1.84)

13 39 0.19 (0.10, 0.26) (0.01, 1.79) 34 0.19 (0.09, 0.24) (0.01, 1.53) 5 0.27 (0.21, 0.88) (0.17, 1.79)

14 31 0.19 (0.13, 0.26) (0.01, 1.73) 27 0.18 (0.10, 0.24) (0.01, 1.48) 4 0.42 (0.25, 1.14) (0.21, 1.73)

15 23 0.20 (0.16, 0.27) (0.07, 1.67) 19 0.18 (0.14, 0.24) (0.07, 1.43) 4 0.48 (0.31, 1.11) (0.20, 1.67)

16 20 0.19 (0.14, 0.27) (0.07, 1.63) 16 0.18 (0.13, 0.21) (0.07, 1.38) 4 0.49 (0.34, 1.08) (0.22, 1.63)

17 14 0.20 (0.13, 0.48) (0.08, 1.59) 11 0.19 (0.12, 0.23) (0.08, 1.34) 3 0.51 (0.48, 1.32) (0.48, 1.59)

18 9 0.32 (0.17, 0.70) (0.10, 1.54) 6 0.19 (0.13, 0.32) (0.10, 1.30) 3 0.51 (0.49, 1.28) (0.48, 1.54)

19 6 0.26 (0.13, 0.48) (0.10, 0.55) 4 0.16 (0.12, 0.26) (0.10, 0.33) 2 0.51 - (0.48, 0.55)

20 3 0.47 (0.36, 0.55) (0.32, 0.58) 1 0.32 - - 2 0.52 - (0.47, 0.58)

21 2 0.45 - (0.32, 0.57) 1 0.32 - - 1 0.57 - -

Pooled 1043 0.16 (0.08, 0.25) (0.00, 3.84) 949 0.15 (0.08, 0.23) (0.00, 3.84) 94 0.34 (0.16, 0.76) (0.02, 2.09)

Single dose model

5 166 0.10 (0.05, 0.19) (0.00, 3.62) 156 0.10 (0.05, 0.18) (0.00, 3.62) 10 0.18 (0.09, 0.74) (0.01, 1.20)

6 154 0.13 (0.07, 0.20) (0.01, 3.74) 144 0.13 (0.07, 0.20) (0.01, 3.74) 10 0.19 (0.10, 0.75) (0.02, 1.61)

7 138 0.15 (0.08, 0.24) (0.00, 3.79) 129 0.14 (0.07, 0.21) (0.00, 3.79) 9 0.19 (0.10, 0.93) (0.04, 2.08)

8 124 0.16 (0.08, 0.25) (0.01, 3.56) 115 0.15 (0.08, 0.25) (0.01, 3.56) 9 0.19 (0.11, 0.89) (0.04, 2.11)

9 105 0.17 (0.08, 0.26) (0.01, 2.03) 97 0.16 (0.08, 0.25) (0.01, 1.80) 8 0.18 (0.14, 1.05) (0.04, 2.03)

10 88 0.17 (0.09, 0.26) (0.01, 1.96) 81 0.17 (0.08, 0.25) (0.01, 1.71) 7 0.22 (0.13, 1.20) (0.04, 1.96)

11 67 0.17 (0.08, 0.23) (0.01, 1.94) 60 0.16 (0.08, 0.22) (0.01, 1.63) 7 0.27 (0.19, 1.27) (0.05, 1.94)

12 54 0.17 (0.08, 0.24) (0.01, 1.87) 48 0.16 (0.08, 0.23) (0.01, 1.56) 6 0.28 (0.19, 0.56) (0.09, 1.87)

13 39 0.19 (0.10, 0.26) (0.01, 1.81) 34 0.18 (0.09, 0.23) (0.01, 1.50) 5 0.27 (0.21, 0.86) (0.17, 1.81)

14 31 0.19 (0.12, 0.27) (0.01, 1.74) 27 0.18 (0.09, 0.24) (0.01, 1.45) 4 0.41 (0.25, 1.13) (0.21, 1.74)

15 23 0.19 (0.16, 0.27) (0.07, 1.69) 19 0.18 (0.13, 0.23) (0.07, 1.40) 4 0.46 (0.31, 1.10) (0.21, 1.69)

16 20 0.18 (0.14, 0.28) (0.07, 1.65) 16 0.18 (0.12, 0.21) (0.07, 1.36) 4 0.48 (0.34, 1.07) (0.22, 1.65)

17 14 0.19 (0.13, 0.48) (0.08, 1.60) 11 0.18 (0.12, 0.24) (0.08, 1.32) 3 0.48 (0.48, 1.32) (0.48, 1.60)

18 9 0.31 (0.16, 0.68) (0.10, 1.55) 6 0.18 (0.12, 0.31) (0.10, 1.28) 3 0.48 (0.48, 1.28) (0.48, 1.55)

19 6 0.25 (0.12, 0.48) (0.10, 0.53) 4 0.15 (0.11, 0.25) (0.10, 0.32) 2 0.50 - (0.48, 0.53)

20 3 0.47 (0.35, 0.53) (0.31, 0.56) 1 0.31 - - 2 0.51 - (0.47, 0.56)

21 2 0.43 - (0.31, 0.55) 1 0.31 - - 1 0.55 - -

Pooled 1043 0.15 (0.08, 0.25) (0.00, 3.79) 949 0.14 (0.07, 0.22) (0.00, 3.79) 94 0.34 (0.17, 0.72) (0.01, 2.11)
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Table S3. Distribution of the RMSE values (ng/mL) for a short-term forecast of two PSA values using the periodic and single dose
models fitted to np, f it PSA values in the fitting-forecasting study. This table complements Figure S1. IQR: interquartile range.

np, f it
All patients Non-relapsing patients Relapsing patients

n Median IQR Range n Median IQR Range n Median IQR Range

Periodic dose model

5 154 0.22 (0.11, 0.43) (0.01, 6.19) 144 0.21 (0.09, 0.42) (0.01, 6.19) 10 0.52 (0.25, 1.68) (0.12, 3.62)

6 138 0.21 (0.10, 0.40) (0.01, 5.69) 129 0.21 (0.09, 0.37) (0.01, 5.53) 9 0.58 (0.14, 1.39) (0.07, 5.69)

7 124 0.20 (0.07, 0.37) (0.01, 3.14) 115 0.20 (0.07, 0.35) (0.01, 3.14) 9 0.44 (0.12, 1.08) (0.07, 2.48)

8 105 0.17 (0.07, 0.30) (0.01, 2.94) 97 0.17 (0.06, 0.30) (0.01, 2.94) 8 0.45 (0.13, 0.77) (0.04, 1.21)

9 88 0.19 (0.07, 0.31) (0.01, 1.89) 81 0.18 (0.07, 0.30) (0.01, 0.80) 7 0.47 (0.20, 1.35) (0.08, 1.89)

10 67 0.13 (0.08, 0.28) (0.00, 3.40) 60 0.12 (0.07, 0.25) (0.00, 0.83) 7 0.39 (0.15, 1.63) (0.12, 3.40)

11 54 0.14 (0.06, 0.26) (0.01, 1.35) 48 0.12 (0.06, 0.25) (0.01, 1.04) 6 0.65 (0.35, 0.88) (0.11, 1.35)

12 39 0.18 (0.08, 0.34) (0.00, 1.59) 34 0.16 (0.07, 0.29) (0.00, 0.52) 5 0.86 (0.36, 1.05) (0.11, 1.59)

13 31 0.15 (0.08, 0.32) (0.00, 1.37) 27 0.14 (0.07, 0.25) (0.00, 0.61) 4 0.43 (0.22, 0.94) (0.09, 1.37)

14 23 0.16 (0.07, 0.34) (0.03, 1.10) 19 0.14 (0.06, 0.22) (0.03, 0.60) 4 0.75 (0.39, 1.02) (0.22, 1.10)

15 20 0.16 (0.06, 0.24) (0.02, 0.92) 16 0.10 (0.06, 0.19) (0.02, 0.57) 4 0.75 (0.47, 0.88) (0.27, 0.92)

16 14 0.13 (0.06, 0.36) (0.03, 1.10) 11 0.12 (0.06, 0.16) (0.03, 0.55) 3 0.69 (0.44, 1.00) (0.36, 1.10)

17 9 0.17 (0.12, 0.66) (0.09, 3.93) 6 0.13 (0.11, 0.17) (0.09, 0.49) 3 0.98 (0.66, 3.19) (0.55, 3.93)

18 6 0.23 (0.15, 0.37) (0.15, 1.50) 4 0.16 (0.15, 0.27) (0.15, 0.37) 2 0.90 - (0.29, 1.50)

19 3 1.41 (0.60, 1.52) (0.33, 1.55) 1 0.33 - - 2 1.48 - (1.41, 1.55)

20 2 0.86 - (0.38, 1.34) 1 0.38 - - 1 1.34 - -

21 1 0.39 - - 1 0.39 - - 0 - - -

Pooled 878 0.18 (0.08, 0.36) (0.00, 6.19) 794 0.17 (0.07, 0.32) (0.00, 6.19) 84 0.67 (0.22, 1.20) (0.04, 5.69)

Single dose model

5 154 0.21 (0.09, 0.42) (0.01, 6.19) 144 0.21 (0.09, 0.38) (0.01, 6.19) 10 0.50 (0.18, 1.69) (0.07, 3.62)

6 138 0.19 (0.10, 0.37) (0.01, 5.63) 129 0.19 (0.09, 0.35) (0.01, 5.53) 9 0.58 (0.13, 1.39) (0.11, 5.63)

7 124 0.20 (0.07, 0.35) (0.01, 3.14) 115 0.19 (0.07, 0.34) (0.01, 3.14) 9 0.44 (0.11, 1.08) (0.05, 2.51)

8 105 0.17 (0.07, 0.30) (0.01, 2.94) 97 0.17 (0.07, 0.29) (0.01, 2.94) 8 0.45 (0.15, 0.78) (0.02, 1.22)

9 88 0.18 (0.07, 0.31) (0.01, 1.89) 81 0.17 (0.07, 0.28) (0.01, 0.80) 7 0.48 (0.20, 1.35) (0.09, 1.89)

10 67 0.14 (0.07, 0.27) (0.01, 3.39) 60 0.11 (0.07, 0.24) (0.01, 0.83) 7 0.40 (0.16, 1.64) (0.11, 3.39)

11 54 0.14 (0.06, 0.25) (0.01, 1.35) 48 0.12 (0.06, 0.24) (0.01, 1.04) 6 0.65 (0.35, 1.02) (0.10, 1.35)

12 39 0.15 (0.08, 0.33) (0.00, 1.58) 34 0.15 (0.07, 0.29) (0.00, 0.48) 5 0.68 (0.36, 1.06) (0.11, 1.58)

13 31 0.15 (0.07, 0.31) (0.00, 1.37) 27 0.13 (0.07, 0.25) (0.00, 0.60) 4 0.35 (0.22, 0.87) (0.09, 1.37)

14 23 0.16 (0.08, 0.33) (0.02, 1.10) 19 0.11 (0.07, 0.22) (0.02, 0.58) 4 0.68 (0.39, 0.96) (0.22, 1.10)

15 20 0.15 (0.06, 0.23) (0.02, 0.91) 16 0.10 (0.05, 0.19) (0.02, 0.55) 4 0.73 (0.45, 0.88) (0.27, 0.91)

16 14 0.13 (0.05, 0.36) (0.03, 1.15) 11 0.11 (0.05, 0.16) (0.03, 0.53) 3 0.69 (0.44, 1.03) (0.36, 1.15)

17 9 0.17 (0.12, 0.66) (0.07, 3.87) 6 0.13 (0.10, 0.17) (0.07, 0.46) 3 0.98 (0.66, 3.15) (0.55, 3.87)

18 6 0.23 (0.15, 0.35) (0.14, 1.50) 4 0.16 (0.15, 0.26) (0.14, 0.35) 2 0.90 - (0.29, 1.50)

19 3 1.39 (0.58, 1.51) (0.31, 1.55) 1 0.31 - - 2 1.47 - (1.39, 1.55)

20 2 0.84 - (0.36, 1.32) 1 0.36 - - 1 1.32 - -

21 1 0.37 - - 1 0.37 - - 0 - - -

Pooled 878 0.18 (0.08, 0.34) (0.00, 6.19) 794 0.16 (0.07, 0.31) (0.00, 6.19) 84 0.63 (0.22, 1.19) (0.02, 5.63)
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