
1 

A multi-phenotype analysis reveals 19 novel susceptibility loci 

for basal cell carcinoma and 15 for squamous cell carcinoma. 

Mathias Seviiri* (ORCiD 0000-0002-8610-3283)1,2, Matthew H. Law (ORCiD 0000-0002-4303-

8821)1,2, Jue-Sheng Ong (ORCiD 0000-0002-6062-710X)1, Puya Gharahkhani (ORCiD 0000-

0002-4203-5952)1, Pierre Fontanillas (ORCiD 0000-0002-8944-4454)3, 23andMe Research 

Team3, Catherine M. Olsen (ORCiD 0000-0003-4483-1888)4,5, David C. Whiteman (ORCiD 

0000-0003-2563-9559)5 and Stuart MacGregor (ORCiD 0000-0001-6731-8142)1,2 

 

Affiliations 

1. Statistical Genetics Lab, QIMR Berghofer Medical Research Institute, 300 Herston 

Road, Herston QLD 4006, Australia. 

2. School of Biomedical Sciences, Faculty of Health, and Center for Genomics and 

Personalised Health, Queensland University of Technology, 60 Musk Avenue, Kelvin 

Grove QLD 4059, Australia. 

3. 23andMe, Inc, Sunnyvale, CA, USA. 

4. Cancer Control Group, QIMR Berghofer Medical Research Institute, 300 Herston Road, 

Herston QLD 4006, Australia. 

5. Faculty of Medicine, University of Queensland, 20 Weightman St, Herston QLD 4006, 

Australia. 

*corresponding author- Mathias Seviiri, Mathias.Seviiri@qimrberghofer.edu.au  

+61738453809, Statistical Genetics Lab, QIMR Berghofer Medical Research Institute, 300 Herston 

Road, Herston QLD 4006, Australia. 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted March 8, 2022. ; https://doi.org/10.1101/2022.03.06.22271725doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

https://doi.org/10.1101/2022.03.06.22271725
http://creativecommons.org/licenses/by-nd/4.0/


2 

ABSTRACT  

Basal cell carcinoma (BCC) and squamous cell carcinoma (SCC) are the most common forms of 

skin cancer. There is genetic overlap between skin cancers, pigmentation traits, and autoimmune 

diseases. We use linkage disequilibrium score regression to identify 20 traits (melanoma, 

pigmentation traits, autoimmune diseases, and blood biochemistry biomarkers) with a high genetic 

correlation (rg > 10%, P < 0.05) with BCC (20,791 cases and 286,893 controls in the UK Biobank) 

and SCC (7,402 cases and 286,892 controls in the UK Biobank), and use a multi-trait genetic 

analysis to identify 78 and 69 independent genome-wide significant (P < 5 × 10-8) susceptibility loci 

for BCC and SCC respectively; 19 BCC and 15 SCC loci are both novel and replicated (P < 0.05) in 

a large independent cohort; 23andMe, Inc (BCC: 251,963 cases and 2,271,667 controls, and SCC: 

134,700 cases and 2,394,699 controls. Novel loci are implicated in BCC/SCC development and 

progression (e.g. CDKL1), pigmentation (e.g. DSTYK), cardiometabolic pathways (e.g. FADS2), 

and immune-regulatory pathways including; innate immunity against coronaviruses (e.g. IFIH1), 

and HIV-1 viral load modulation and disease progression (e.g. CCR5). We also report a powerful 

and optimised BCC polygenic risk score that enables effective risk stratification for keratinocyte 

cancer in a large prospective Canadian Longitudinal Study of Aging (794 cases and 18139 

controls); e.g. percentage of participants reclassified; MTAGPRS = 36.57%, 95% CI = 35.89-37.26% 

versus UKBPRS= 33.23%, 95% CI=32.56-33.91%). 
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INTRODUCTION 

Keratinocyte cancers (KC), including basal cell carcinoma (BCC) and squamous cell carcinoma 

(SCC), are the most commonly diagnosed cancers globally. KC resulted in over 5.4 million 

diagnoses and $8 billion dollars in expenditure in the US in 2011 alone 1, while in Australia they 

account for > 24% of all cancer diagnoses 2, and impose a huge economic burden on the health 

sector costing over AUD $700 million for treatment annually 3. KC is responsible for upto 8,700 

deaths a year in the US 4. The relative rates, and morbidity, from KC is even higher in Australia 5. 

BCC and SCC share many common risk factors including sun exposure, skin and hair pigmentation, 

and immunosuppression.  

 

Skin cancers, and pigmentation traits and autoimmune diseases have several susceptibility genes 

overlapping 6–9. For example, several variants in pigmentation genes ASIP/RALY, IRF4, MC1R, 

OCA2, SLC45A2 and TYR, are associated with BCC, SCC and melanoma 8,10. Shared immune 

regulatory genes in the HLA and LPP regions have been found to influence susceptibility to BCC, 

SCC, melanoma and autoimmune diseases such as rheumatoid arthritis, vitiligo, type 1 diabetes and 

psoriasis 6–9. There are also some tumor-genesis related genes which are expressed in both KC and 

other non-skin cancers. For example, oncogene TNS3 which is overregulated in BCC is also 

associated with breast cancer, lung cancer and prostate cancer 8,11,12. Furthermore, HAL at 12q23.1 

has been found to be associated with KC risk 13 as well as vitamin D levels 14. However, standard 

single GWAS meta-analysis approaches are unable to utilise this multi-trait genetic overlap to 

further explore the genetic risk for BCC, and SCC. 

 

Multivariate GWAS approaches, such as multi-trait analysis of GWAS (MTAG) 15, can draw on 

this overlapping genetics to identify new risk regions (here for BCC or SCC). MTAG is a 

generalisation of inverse-variance-weighted meta-analysis that importantly accounts for incomplete 

genetic correlation, and sample overlap, between GWAS. A key property of MTAG is that it 
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outputs estimates of trait-specific effect sizes and p-values for each of the input traits - in this case 

BCC or SCC. We have previously used MTAG to identify loci for KC based on the genetic 

correlation between BCC and SCC only 13. BCC and SCC are different in terms of polygenicity and 

aetiology and therefore, we sought to identify novel susceptibility genetic loci for BCC and SCC by 

exploring their genetic overlap with melanoma, pigmentation traits, autoimmune diseases, and 

blood biochemistry biomarkers in a multi-phenotype analysis of GWAS. 
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RESULTS 

 

Genetic correlation 

Using linkage disequilibrium score (LDSC) regression 16, 20 phenotypes were significantly 

genetically correlated (P < 0.05, rg > 10%) with either BCC or SCC (Figure 1 and Supplementary 

Table 1). In the first instance, 35 phenotypes that we considered as possibly correlated with skin 

cancer (including body mass index) were excluded for not meeting aforementioned criteria above 

(Supplementary Table 2). Using the same selection criteria, no additional new phenotypes were 

included following analysis using collated GWAS summary statistics (over 700 phenotypes) in the 

LD hub database 17. In total, subsequent analyses included 22 genetically correlated traits; cancers; 

BCC and SCC GWAS from the UK Biobank (UKB) 18,19, a cutaneous melanoma GWAS meta-

analysis 20, KC from the QSkin Sun and Health Study (QSkin) 21, KC from the Electronic Medical 

Records and Genomics Network (eMERGE) cohort 22,23 and all-cancer  from the Resource for 

Genetic Epidemiology Research on Aging (GERA) cohort 24; skin and hair pigmentation related 

traits; skin burn type (QSkin), red hair (QSkin), hair colour excluding red hair (UKB), skin colour 

(UKB), and mole count excluding melanoma cases (QSkin), autoimmune conditions; type 1 

diabetes and hypothyroidism  25, and vitiligo  26, lifestyle-related traits; educational attainment in 

years spent in school  27 and smoking (cigarettes per day) 28, and biochemistry blood biomarkers 

from the UKB; aspartate aminotransferase, C-reactive protein, albumin, and gamma-glutamyl 

transferase, glucose and vitamin D (adjusted for monthly variation). The sample sizes and 

phenotype measurement for all the included and excluded traits are presented in Supplementary 

Tables 3 and Supplementary Table 2 respectively.  
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Figure 1: Heatmap for the genetic correlation between 22 traits with a significant 

correlation with either BCC or SCC  

Bivariate genetic correlation 22 traits that were significantly correlated (P<0.05, rg >10%) with 

the UKB BCC or SCC GWAS. Abbreviations: basal cell carcinoma in the UK Biobank (BCC UKB), 

squamous cell carcinoma in the UK Biobank (SCC UKB), cutaneous melanoma (CM), keratinocyte 

cancer in the QSkin cohort (KC QSkin), keratinocyte cancer in the eMERGE cohort (KC eMERGE), 

hypothyroidism (Hypothyr), type 1 diabetes (T1D), education attainment (EA), vitamin D (VitD), 

aspartate aminotransferase (AAT), C-reactive protein (CRP), gamma-glutamyl transferase (GGT) 

and correlation (Corr).  
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Discovery of genome-wide significant susceptibility loci for BCC and SCC. 

Adding 20 traits genetically correlated with either BCC or SCC (rg > 0.1, P < 0.05) (from UKB) 

increased the effective sample sizes for BCC and SCC by 2.6 and 8.3 times respectively. Using the 

MTAG approach we identified 78 and 69 independent genome-wide significant (P < 5 × 10-8) 

susceptibility loci for BCC (Figure 2 and Supplementary Table 4) and SCC (Figure 3 and 

Supplementary Table 5) respectively. Although the results for the peak single nucleotide 

polymorphisms (SNPs) were more significant following the MTAG analysis due to the greater 

statistical power, the log (odds ratio) effect sizes for the MTAG output and the respective UKB 

BCC or SCC GWAS inputs were highly concordant. For BCC the Pearson's correlation of effect 

sizes was 0.93 (95% confidence interval [CI]= 0.89-0.96, P < 2.20 x 10-16; Figure 4a). Similarly, 

concordance was high for SCC loci (Pearson's correlation = 0.71, 95% CI=0.57-0.81, P = 7.34 x 10-

12; Figure 4b).  

 

In the 23andMe, Inc replication sample (252,931 cases and 2,281,246 controls), 71 of the 78 

susceptibility loci for BCC replicated at genome-wide level (P < 5 x 10-8), 74 replicated after 

Bonferroni correction (P = 6.49 x 10-4), and 77 loci replicated at a nominal P = 0.05 

(Supplementary Table 4). There was high concordance with the BCC effect estimates between the 

MTAG and the replication set with Pearson's correlation = 0.97 (95% CI = 0.95-0.98, P = 2.20 x 10-

16; Figure 4c). Of the 69 susceptibility loci for SCC, 25 replicated at genome-wide level (P = 5 x 

10-8), 31 replicated after Bonferroni correction (P = 7.24 x 10-4) and 38 loci replicated at a nominal 

P = 0.05 in the 23andMe cohort (135,214 cases and 2,404,735 controls) (Supplementary Table 5). 

For SCC there was also high concordance with the effect estimates between the MTAG and the 

replication set with Pearson's correlation = 0.69 (95% CI=0.55-0.80, P = 3.48 x 10-11; Figure 4d). 
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Figure 2: Manhattan plot for basal cell carcinoma susceptibility 

 
Figure 2: Manhattan plot for basal cell carcinoma susceptibility. The Manhattan plot shows the 

association between SNPs and basal cell carcinoma susceptibility based on the MTAG approach. 

The Y-axis represents the level of significance recorded in negative log 10 (P-value), whilst the X-

axis represents the chromosome 1-22, alternated with light blue and light pink colours. The 

horizontal blue line represents a suggestive level of significance at P-value =10-6, while the red one 

represents the genome-wide level of significance; P = 5x 10-8. The green dots represent the 78 

genome-wide significant independent loci for basal cell carcinoma susceptibility. 
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Figure 3: Manhattan plot for squamous cell carcinoma susceptibility  
 

 
 
Figure 3: Manhattan plot for squamous cell carcinoma susceptibility. The Manhattan plot 

shows the association between SNPs and squamous cell carcinoma susceptibility based on the 

MTAG approach. The Y-axis represents the level of significance recorded in negative log 10 (P-

value), whilst the X-axis represents the chromosome 1-22, alternated with light blue and light pink 

colours. The horizontal blue line represents a suggestive level of significance at P-value =10-6, 

while the red one represents the genome-wide level of significance; P = 5x 10-8. The green dots 

represent the 69 genome-wide significant independent loci for squamous cell carcinoma 

susceptibility. 
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Figure 4: Concordance of the log(OR) effect estimates for MTAG versus UK GWAS and replication 

 
Figure 4: Concordance of the log (OR) effect estimates for MTAG versus UK single trait GWAS and 23andMe replication.  
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Figure 4 shows the comparison of the effect estimates in log (odds ratio) for both basal cell carcinoma and squamous cell carcinoma based on the 

respective MTAG approach results versus UKB single trait GWAS and replication results from 23andMe. The blue line is the line of best fit with the 

95% confidence intervals. The blue dots represent loci that overlap between BCC and SCC, whilst the red dots show the loci that are respectively 

unique to BCC or SCC. The dotted purple lines represent null effects (i.e. log (OR) =0). The Y- and X- axes represent log (OR). 4 a: Shows BCC 

MTAG versus UKB BCC effect estimates, yielding a high concordance with a Pearson's correlation of 0.93 (95% confidence interval [CI]= 0.89-

0.96). 4 b: Shows SCC MTAG versus UKB SCC effect estimates, yielding a high concordance; Pearson's correlation = 0.71, 95% CI=0.57-0.81). 4 c: 

Shows BCC MTAG versus BCC replication (23andMe) effect estimates, yielding a high concordance i.e. Pearson's correlation = 0.97 (95% CI = 0.95-

0.98). 4 d: Shows SCC MTAG versus SCC replication effect estimates, also resulting in a high correlation i.e. 0.69 (95% CI=0.55-0.80). 
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Table 1: BCC susceptibility novel loci that replicated at P < 0.05 in 23andMe cohort. 

rsID Locus CHR BP EA NEA EAF 
log 
(OR) SE P-value Nearest Gene(s) eQTL Gene (skin) eQTL Gene P-value 

rs12142181 2 1 41,912,985 T C 0.08 -0.092 0.015 2.86E-09 EDN2 (-31kb) |FOXO6 (+63kb) EDN2 6.26E-05 
rs2369633 7 1 205,181,062 C T 0.10 -0.100 0.015 9.81E-12 DSTYK (+0.33kb) CNTN2 4.96E-06 
rs2111485 13 2 163,110,536 G A 0.40 -0.052 0.009 3.46E-09 FAP (+10 kb) |IFIH1 (-13 kb) - - 
rs2373232 16 3 46,444,383 A G 0.32 -0.050 0.009 4.77E-08 CCRL2 (-4 kb) |CCR5 (+26 kb) CCR2/CCR5 8.61E-6/7.88E-9 
rs9878566 19 3 156,493,213 T C 0.48 0.048 0.009 2.36E-08 LINC00886 (0) LINC00886 1.56E-24 
rs6889986 24 5 90,207,399 A G 0.44 -0.054 0.009 5.44E-10 GPR98 (0) - - 
rs706779 47 10 6,098,824 C T 0.48 0.058 0.009 1.43E-11 IL2RA (0) FHIT (eQTL Gen) 8.16E-07 
rs7098111 51 10 119,573,178 T C 0.15 -0.080 0.012 6.19E-12 RAB11FIP2 (-191 kb) - - 
rs10766301 52 11 16,217,413 T C 0.38 0.054 0.009 2.93E-10 SOX6 (0) - 6.15E-11 
rs174570 53 11 61,597,212 T C 0.16 -0.081 0.013 2.67E-10 FADS2 (0) |FADS1 (+12 kb) - - 
rs2924552 56 11 68,889,367 T C 0.41 0.061 0.009 3.50E-12 TPCN2 (+31 kb)  TPCN2/eQTL Gen 2.18E-5/8.94E-157 
rs4409785 58 11 95,311,422 C T 0.19 -0.073 0.011 9.51E-11 FAM76B (-190 kb) SESN3 (eQTL Gen) 5.37E-62 
rs73008229 59 11 108,187,689 A G 0.16 -0.071 0.012 5.40E-09 ATM (0) C11orf65 3.18E-05 
rs10876864 61 12 56,401,085 A G 0.41 0.055 0.009 2.56E-10 IKZF4 (-13 kb) |SUOX (+1.78kb) RPS26/IKZF4/SUOX 3.92E-251/9.86e-9/3.97e-54 
rs17425489 62 12 89,015,138 A G 0.09 -0.091 0.015 4.54E-10 KITLG (+40 kb) -  

rs10774625 64 12 111,910,219 G A 0.48 0.053 0.009 4.03E-10 ATXN2 (0) ALDH2 (blood) 1.58E-08 
rs11059675 65 12 122,668,326 A G 0.44 -0.049 0.009 1.21E-08 LRRC43 (0) |IL31(+9 kb) LRRC43 6.92E-06 
rs7301141 66 12 133,138,503 G A 0.46 0.052 0.009 6.21E-09 FBRSL1 (0) P2RX2 4.76E-06 
rs1136165 69 14 103,988,180 T G 0.38 0.054 0.009 1.11E-09 CKB (0) CKB/MARK3 1.88E-22/3.15E-31 
CHR- chromosome BP -base pair position  EA -effect allele  NEA – non-effect allele   
OR -odds ratio SE - standard error           
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Table 2: SCC susceptibility novel loci that replicated at P < 0.05 in 23andMe cohort 

rsID Locus CHR BP EA NEA EAF log (OR) SE P Nearest Gene eQTL Gene (skin) eQTL Gene P-value 
rs3768321 3 1 40,035,928 T G 0.19 0.041 0.007 1.32E-09 PABPC4 (0) PABPC4 2.65E-28 
rs12142181 4 1 41,912,985 T C 0.08 -0.054 0.010 2.41E-08 EDN2 (-31.46kb) EDN2 6.26E-05 
rs17391694 6 1 78,623,626 T C 0.10 0.054 0.008 2.12E-12 GIPC2 (+20.51kb) FUBP1 5.49E-15 
rs3851290 13 1 205,149,508 T C 0.39 -0.039 0.006 1.17E-12 DSTYK (0) DSTYK 5.52E-18 
rs1260326 14 2 27,730,940 C T 0.41 -0.030 0.005 3.57E-08 GCKR (0) NRBP1 3.09E-18 
rs9878566 18 3 156,493,213 T C 0.48 0.034 0.005 3.52E-10 LINC00886 (0) LINC00886 1.56E-24 
rs6889986 24 5 90,207,399 A G 0.44 -0.041 0.005 6.75E-14 GPR98 (0) - 8.94E-11 
rs77758638 33 8 42,014,917 T C 0.11 0.045 0.008 4.35E-08 AP3M2 (0) POLB/AP3M2 4.39E-26 
rs35563099 40 10 119,572,403 T C 0.15 -0.046 0.007 1.19E-10 RAB11FIP2 (-192kb) -  

rs2924552 42 11 68,889,367 T C 0.41 0.049 0.005 3.19E-19 TPCN2 (+31.3kb) TPCN2 2.18E-05 
rs10899466 44 11 78,013,674 A G 0.18 -0.061 0.007 1.47E-16 GAB2 (0) GAB2 1.24E-13 
rs10876864 47 12 56,401,085 A G 0.41 0.031 0.005 5.95E-09 SUOX (+1.78kb) |IKZF4 (-13 kb) SUOX/IKZF4 3.97E-54/9.86E-9 
rs142004400 53 14 50,829,560 C A 0.03 -0.109 0.014 4.83E-14 CDKL1 (0) CDKL1 (eQTL Gen) 1.13E-19 
rs10141120 55 14 103,923,008 C T 0.35 -0.047 0.006 5.18E-17 MARK3 (0) MARK3/CKB 7.60E-39/3.33E-31 
rs472385 57 15 44,186,844 A G 0.25 -0.035 0.006 1.37E-08 FRMD5 (0) AC011330.5 5.74E-19 
CHR- chromosome BP -base pair position  EA -effect allele  NEA – non-effect allele   
OR -odds ratio SE - standard error           
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Description of the BCC and SCC novel loci 

A locus was considered novel for BCC or SCC if it had not previously been significantly associated 

with either BCC, SCC or KC at genome-wide level (P <5 x 10-8), and if it replicated at minimum P 

< 0.05) in the 23andMe replication cohort. By this criterion we identified 19 and 15 novel loci for 

BCC (Table 1) and SCC (Table 2), respectively. After correcting for multiple testing, 18 and 12 

novel loci replicated for BCC (Bonferroni P < 2.38 x 10-3) (Supplementary Tables 4) and SCC 

(Bonferroni P < 2.63 x 10-3) (Supplementary Tables 5) respectively. The novel loci were 

annotated to the pigmentation, cardiometabolic and immune-regulatory pathways, whilst others are 

known loci for cutaneous melanoma susceptibility. We now discuss the novel loci in broader 

biological groups. For loci that are unique to BCC or SCC, or overlap between BCC and SCC refer 

to Table 1 and Table 2.  

 

Novel loci for keratinocyte cancer development and progression 

We identified seven novel loci with a potential role in the development and progression of 

keratinocyte cancer. rs10141120 in MARK3; MARK3 is a cell cycle regulator involved in the DNA 

damage response (e.g. following radiotherapy or treatment with alkylating agents) 29, and 

implicated in carcinogenesis e.g. for hepatocellular carcinoma 30. In addition, rs10141120 is in LD 

with rs3825566 (r2=0.94) and rs55859054 (r2=0.96) which are lead SNPs for hair colour 31,32.  

 

We also identified two novel variants for BCC and SCC; rs35563099 and rs7098111 respectively, 

near RAB11FIP2 that were in high LD (r2=0.98). RAB11FIP2 is overexpressed in colorectal and 

gastric cancer cells where it facilitates their migration leading to cancer metastases 33,34. It is likely 

that RAB11FIP2 promotes keratinocyte cancer progression. rs35563099 is a lead SNP for skin low 

tanning response 35 and in LD with rs11198112 (r2=0.99) for sunburns31. rs7098111 also is in LD 

with SNPs for skin/hair colour (rs11198112, r2=0.57), freckles (rs10444039, r2=0.99) and sunburns 

(rs11198112, r2=0.98)31,36,37. 
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rs10899466 in GAB2 is in LD with rs10899501 for hair colour (r2=0.80) 31,38. Following 

inflammatory stimuli (e.g. by cytokines) GAB2 is required in inflammatory signalling during 

tumorigenesis 39,40. It enhances cancer cell proliferation e.g. in breast cancer 41,42. Another novel 

variant was rs10766301, an intronic variant in SOX6. Although the direct role of SOX6 in 

keratinocyte cancer biology is unknown, it facilitates apoptosis in colorectal cancer, esophageal 

squamous cell carcinoma, pancreatic and ovarian cancer 43–46. Conversely, its downregulation 

facilitates cancer progression 43,45,47. rs10766301 is in LD with rs2953060 (r2=0.60) for sunburns 31. 

 

rs142004400 in CDKL1 promotes tumor cell proliferation, migration and invasion in melanoma, 

colorectal cancer, and breast cancer 48–50, whose downregulation facilitates apoptosis 48. We also 

identified rs472385 in FRMD5; FRMD5 modulates tumour progression by regulating cancer cell 

mobility and ROCK1-triggered kinase activity 51,52. Its expression is downregulated in renal, breast 

and colorectal cancers 52. rs472385 is also in LD with rs35654783 (r2=0.76), a lead SNP for 

diastolic blood pressure 53. 

 

We also identified rs10876864 near SUOX (+1.78kb); expression of SUOX is associated with both 

proliferation and progression of oral squamous cell carcinoma, gastric cancer and hepatocellular 

carcinoma  54–56. In addition, eQTL analysis showed that rs10876864 was strongly linked to 

expression of SUOX and RPS26 in skin tissues (Table 1 and Table 2). RPS26 regulates the tumour 

suppression activities of p53 in response to DNA damage 57. Thus, it is possible that rs10876864 is 

involved in proliferation and progression of keratinocyte cancers. However, it is also likely that 

rs10876864 might have pleiotropic effects on KC through immunomodulating pathways since it is 

also near IKZF4 (-13.6kb); IKZF4 is required to suppress/maintain FOXP3+ regulatory T cells 58,59, 

important in auto-immunity and self-recognition. It is in LD with lead SNPs for auto-immune traits 

e.g. T1D, and allergic disease, rheumatoid arthritis (in LD with rs773125, r2=0.83) 60–62, immune-
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suppressive medication use e.g.  glucocorticoids (in LD with rs1689510, r2=0.72), thyroid 

preparations (in LD with rs7302200, r2= 0.71) and anti-asthmatic adrenergics inhalant use (in LD 

with rs34415530, r2=0.72) 63.  

 

Novel loci in the immune regulation pathway 

Previous studies have reported a relationship between immune response and skin cancer and a 

number of our novel loci for BCC and SCC suggested links to immune regulatory processes. 

rs2373232 is an intergenic variant between CCRL2 (-4.337kb) and CCR5 (+26.69kb) in high 

linkage disequilibrium (LD) r2=1, with rs1015164 (in CCR5), a known SNP for HIV-1 viral load 

variation 64,65. CCR5 is generally involved in coordination of the immune response 66, and 

specifically regulates HIV-1 viral load and progression 67,68. CCRL2 is involved in regulating 

immune responses induced by chemokines 69. 

 

rs2111485 is an intergenic variant between FAP (+10.49kb) and IFIH1 (-13.05kb) and in  high LD 

(r2=0.89) with a nonsense SNP rs1990760 in IFIH1; IFIH1 is involved in innate (anti-viral) 

immune response (e.g. against coronaviruses), autoimmunity and autoinflammatory response 70–72. 

In addition, FAP plays a pro-tumourigenic role in several cancers including breast, colorectal, 

gastric and esophageal cancer 73, and also facilitates immunosuppression to enhance colorectal and 

gastric cancer progression 74,75.  

 

rs10774625, an intronic variant in ATXN2, is a lead SNP for hypothyroidism susceptibility 76, and in 

high LD (r2=0.9) with a missense SNP rs3184504 in SH2B3; SH2B3 is involved in mediating 

immune cell stimulation and inflammatory signalling 77,78. Another novel SNP rs4409785 near 

FAM76B ( -190.7kb) is an eQTL for SESN3 (in eQTLGEN), which regulates senescence in T-cells 

to influence the immune response during aging 79,80. rs4409785 is also associated with thyroid 

preparations (medication use), hypothyroidism, vitiligo and rheumatoid arthritis 31,63,81,82.  
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At 10p15.1 rs706779 is an intronic variant in the interleukin 2 receptor subunit alpha (IL2RA) gene 

and lies a strong transcriptionally active enhancer in immune cells 83. IL2RA controls the immune 

response (tolerance) by modulating the function of regulatory T-cells 84. rs706779 is a lead SNP for 

T1D, Crohn's disease, vitiligo and in LD with rs7090530 (r2=0.73) for hypothyroidism and thyroid 

medication 26,31,60,63,85. rs11059675 in LRRC43, and near IL31 (+9.58kb) is a lead SNP for psoriasis 

86, and is in LD with rs7968808 (r2= 0.98), a lead SNP for eczema 31. IL31 induces and modulates 

skin allergic diseases 87. rs17391694 near GIPC2 (+20.51kb) is a lead SNP for Crohn's disease, an 

inflammatory autoimmune disorder 85, and lung cancer 88. 

 

 

Cardiometabolic pathway  

For both BCC and SCC, we also identified novel loci that have been previously reported as being 

associated with cardiometabolic biomarkers. The BCC novel loci for this pathway included; 

rs174570 in FADS2, rs10774625 in ATXN2, and rs1136165 near CKB in BMI, whilst for SCC they 

included; rs3768321 in PABPC4, and rs1260326 near GCKR. 

 

rs174570 is an intronic variant in FADS2 and 12.68kb away from FADS1 and it is a lead SNP for 

higher LDL cholesterol, total cholesterol and triglycerides levels, and is in LD with lead SNPs for 

PUFA levels in people of European descent e.g. rs174547 (r2=0.36), rs174577 (r2=0.34), and 

rs174538 (r2=0.42) 89,90. FADS1/2 genes are involved in the downstream metabolism of the plasma 

omega-6 and omega-3 PUFA resulting in oncogenic inflammatory biomarkers (prostaglandins E, 

thromboxane A2, and leukotriene B) 91. rs1260326 in GCKR is a lead SNP for triglycerides, total 

cholesterol and fasting plasma glucose 92,93. Mutations in GCKR are known to be diabetogenic 94. 

rs3768321 in PABPC4 is a lead SNP for HDL cholesterol 92. 
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Some novel variants in the cardiometabolic pathway had pleiotropic effects with pigmentation and 

autoimmune traits. For example rs1136165 in CKB, a lead SNP for BMI 31 is in LD with 

rs55859054 (r2=0.89) and rs3825566 (r2=0.88) which are associated with hair colour 31,32. 

rs10774625 in ATXN2 is linked to a spectrum of cardiometabolic markers; diastolic and systolic 

blood pressure, CVD, coronary artery disease, and LDL cholesterol (Supplementary Table 4) 

31,53,95,96, is also a lead SNP for immune regulatory phenotypes; hypothyroidism and T1D 76,97.  

 

Pigmentation pathways 

Pigmentation is a crucial pathway in the development of BCC, SCC and melanoma. Known 

pigmentation genes like MC1R and IRF4 play an important role in the genetic susceptibility to skin 

cancers and many new loci were associated with pigmentation traits. rs2924552 near TPCN2 

(+31.3kb); rare mutations in TPCN2 results in blond rather than brown hair among Icelanders and 

the Dutch 98. rs9878566 in LINC00886 is in perfect LD (r2=1.00) with rs9818780 for sunburns 31. 

rs6889986 in GPR98 is in LD with lead SNPS for hair colour; rs60325490 (r2=0.69) and rs6860111 

(r2=0.69) 31,32. rs77758638 in AP3M2 is in LD with rs113060680 (r2=0.93) for hair colour and skin 

tanning response 32. However, there were also a number of loci with a potential role in KC initiation 

and progression that had pleiotropic effects with pigmentation traits (as explained above) e.g. 

rs35563099 and rs7098111 near RAB11FIP2. 

 

Novel BCC and SCC loci previously known for cutaneous melanoma susceptibility 

Some novel BCC loci were previously known for CM; rs73008229 near ATM in LD (r2 ~1) with 

rs1801516 a missense variant (i.e. L76I) in ATM; ATM has a cell cycle function in DNA damage 

response due to radiotoxicity after radiotherapy 99–101.  rs1801516  has previously been associated 

with cutaneous melanoma 102103,104. Several other novel BCC SNPs are in high LD with lead SNPs 
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for cutaneous melanoma; rs2369633 near DSTYK is in LD with rs11240396 (r2=0.73), rs6889986 

near GPR98 locus is in LD with rs10942621 (r2=0.71), rs10766301 in SOX6 is in LD with 

rs2054095 (r2=0.65) 20.  

 

 

Unknown for any trait at genome-wide significance level 

Some novel loci have not been associated with any trait before (at a genome-wide significance 

level); rs12142181 (near RNA5SP45), rs7301141 (near FBRSL1) for BCC and rs12142181 (near 

RNA5SP45) for SCC. However, rs12142181 is in LD with rs111599055 (r2=0.53) for early onset of 

prostate cancer 105. 

 

Gene-set pathways 

After multiple correction testing (P = 0.05/18,188 genes; 2.75 x10-6) gene set analysis revealed 

curated and gene ontology (GO) pathways that are important in development of keratinocyte cancer 

(Supplementary Table 6). A number of pathways are involved in melanogenesis (e.g. melanin 

biosynthesis, melanin biosynthetic process and melanosome membrane); a process which influences 

the nature of pigmentation traits and response to UV exposure. Genes in the “response to 

trabectedin” pathway are likely to play an important role in DNA damage response. Trabectedin is 

an alkylating agent used to treat certain cancers resulting in DNA damage. Other pathways are 

important in the downregulation of the immune response (e.g. “GO negative regulation of 

regulatory t cell differentiation”), and enhancement of the immune response (IL2-PI3K pathway, 

MHC class II receptor activity, and nuclear factor of activated T-cells (NFAT) pathway for 

development and function of regulatory T cells). 
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BCC MTAG-derived polygenic risk score for KC prediction in the Canadian Longitudinal 

Study on Aging (CLSA) 

During the validation of the PRSs,  S5 (i.e. P < 10-4 with 273 SNPs for the MTAGPRS and 462 SNPs 

for the UKBPRS) was the optimal PRS models for  both MTAGPRS and UKBPRS with  Nagelkerke R2 

of 10.65% and 9.55% respectively (Figure 5a). The SNPs for the optimal models are presented in 

Supplementary Table 7 and Supplementary Table 8 for the UKBPRS and MTAGPRS respectively. 

When we tested the performance for both the UKBPRS and MTAGPRS in the CLSA (N=18,933), the 

MTAGPRS outperformed the UKBPRS in terms of association with KC risk, KC risk prediction, and 

stratification. For example, after adjusting for age at recruitment, sex and the first 10 PCs, the 

MTAGPRS outperformed the UKBPRS for association with KC risk i.e. MTAGPRS OR = 1.66 95% CI 

= 1.55-1.79, P = 1.95x10-41 versus UKBPRS OR = 1.56 95% CI = 1.45-1.67, P = 3.38x10-33 (Figure 

5b). In addition, the net reclassification index for KC risk was greater for MTAGPRS than the 

UKBPRS (Figure 5c), when added to the base model containing age, sex and 10 PCs. Consequently, 

the MTAGPRS compared to the UKBPRS reclassified more participants for KC risk to the appropriate 

risk group (low risk, moderate risk and high risk) (i.e. percentage of people reclassified; MTAGPRS= 

36.57% 95% CI = 35.89-37.26% versus UKBPRS= 33.23% 95% CI=32.56-33.91%) (Figure 5d). 
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Figure 5: Validation and application of the basal cell carcinoma MTAGPRS and UKBPRS in the 
Canadian Longitudinal Study on Aging. The red colour represents the UKB PRS version whilst cyan 
indicates the MTAG-derived PRS. 5a: Validation of the BCC MTAGPRS and UKBPRS models to select the best 
performing index based on clumped SNPs at S1 (P < 5x10-8), S2 (P < 10-7), S3 (P < 10-6), S4 (P < 10-5), S5 
(P < 10-4), S6 (P < 10-3), S7 (P < 10-2) and S8 (P < 10-1) on the x-axis. The y-axis represents Nagelkerke's R2 
(%), a measure for model fitness. PRS model S1 and S5 are the optimal PRS models for UKBPRS and 
MTAGPRS respectively. 5b: Shows and compares the association between the UKBPRS and MTAGPRS and KC 
risk in CLSA (N=18,515) expressed in odds ratios per standard deviation (y-axis) increase in the PRS 
adjusted for age, sex and the ancestral 10 PCs. 5c: Illustrates that the MTAGPRS performs better than the 
UKBPRS based on both the categorical and continuous net reclassification improvement indices. 5d: 
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Compares the percentage of people reclassified to an appropriated KC risk group after adding the MTAGPRS 
vs the UKBPRS to a model with age, sex and 10 ancestral principal components. 
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DISCUSSION 

In this large multi-trait GWAS analysis we show that cutaneous melanoma, “all-cancer”, 

pigmentation traits, autoimmune diseases and other serum metabolic biomarkers are genetically 

correlated with BCC and SCC. We have leveraged this genetic correlation using the MTAG 

approach to identify 78 and 69 independent genome-wide significant loci for BCC and SCC risk 

respectively, the most common skin cancers among fair skinned people. 19 BCC and 15 SCC novel 

loci were replicated in the 23andMe cohort, indicating our study uncovers a number of novel 

findings relevant to keratinocyte cancer biology. 

 

Firstly, we identify novel loci in the pigmentation pathways for both BCC and SCC susceptibility. 

Due to the importance of sun exposure in keratinocyte cancer biology 106, several new loci for BCC 

and SCC were linked to pigmentation traits including skin colour, red hair, skin tanning response 

and sunburns. The gene set analysis results also confirmed we identified biological pathways 

involved in melanin biosynthesis and DNA damage response.  

 

Second, our study affirms the role of immune-regulatory processes and pathways in the BCC and 

SCC susceptibility. We show novel BCC and SCC loci known for immune regulatory processes 

including; HIV viral load modulation 67,68, innate immune response for coronaviruses (through 

IFIH1) 107–109, autoimmune disease susceptibility and medication use especially for thyroid or 

hypothyroidism. It indicates possible shared biology between keratinocyte cancers and immune-

related viruses.  

 

Third, immunosuppressive medication including azathioprine and cyclosporin A have been 

implicated in BCC and SCC risk 110,111. While we uncovered novel KC loci linked to immune-

related medication use including; anti-asthmatic inhalants, and thyroid preparations 63, it is likely 
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that medication-related loci underpinned here are just a proxy indicator for the autoimmune disease. 

Thus, these medications are unlikely to cause BCC or SCC. In addition, even if these diseases were 

all treated with drugs that greatly increased the risk of KC they are (a) too rare to lead to a cryptic 

genetic correlation as large as what we see here e.g. for hypothyroidism (rg = -0.19, P = 1.05 x10-4) 

(Supplementary Table 1), and (b) the genetic correlation e.g. for hypothyroidism was negative 

with BCC where a drug induced cryptic overlap would give a positive genetic correlation.  

 

Fourth, our study also highlights the potential role of cardiometabolic biomarkers in BCC/SCC risk. 

Besides the PUFA levels, whose causal association link with the BCC risk has been established 

through a Mendelian randomisation study 112, our results highlight a potential causal relationship 

between cardiometabolic biomarkers including; diastolic and systolic blood pressure, lipids, serum 

glucose, cholesterol and adiposity, and the risk of BCC and SCC. As it is the case for PUFA, 

downstream metabolism of these cardiometabolic biomarkers such as lipids and cholesterol results 

in oncogenic inflammatory biomarkers (e.g. prostaglandins E, thromboxane A2, and leukotriene B). 

However, some novel variants for the cardiometabolic pathway could be influencing BCC and SCC 

risk through already known pigmentation and immune regulatory biological pathways e.g. 

rs1136165 in CKB, and rs10774625 in ATXN2 31,32,76,97. 

 

Fifth, we also unveil important genes with a potential role in BCC and SCC initiation and 

progression e.g. FAP, CDKL1, MARK3, RAB11FIP2, GAB2, SUOX and SOX6. Although loci 

within these genes had pleiotropic effects with pigmentation traits, the aforementioned genes have 

established roles in tumor cell proliferation, migration and invasion, and downregulation of 

apoptosis in a number of cancers e.g. melanoma, colorectal cancer, and breast cancer 39,48–50,74,75,113.  
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Besides the novel findings, our results further emphasise the shared biology between cutaneous 

melanoma and keratinocyte cancers. In total four novel loci for BCC and SCC at ATM, DSTYK, 

GPR98, and SOX6 were previously known for CM 20,103,104.  

 

One strength of the MTAG method is the increase in statistical power to identify several loci that a 

standard single trait GWAS would not have done. For example, using MTAG we increased our 

sample size by 2.6 times and 8.3 times for BCC and SCC respectively. Owing to the great 

improvement in statistical power, our MTAG-derived BCC PRS outperformed (for KC risk 

stratification) the one derived from a single trait BCC GWAS.  

 

One caveat with the MTAG approach is that it assumes that the genetic variants have a 

homogeneous effect across all the included traits so that the results are not driven by a certain trait 

to result in false positives  15. Firstly, when we compared the genetic correlation and the MTAG 

results before and after excluding genomic regions with very large effect sizes including; HLA, 

ASIP, IRF4, MC1R, SLC45A2, and CDKN2A, the MTAG results were essentially unchanged (BCC; 

78 vs 66 loci; SCC: 69 vs 64 loci; and Supplementary Figure 1) and there was a high concordance 

(Supplementary Figure 2). Secondly, there was good replication of our results in an independent 

cohort, which counters concerns of false positives. 

 

In conclusion, leveraging the genetic correlation between skin cancers, autoimmune diseases and 

pigmentation traits revealed novel susceptibility loci for SCC and BCC, as well as produced a 

powerful and optimised PRS for KC risk stratification. Novel loci are implicated in keratinocyte 

cancer development and progression, pigmentation, cardiometabolic pathways, and immune-

regulatory pathways including; innate immunity against coronaviruses, HIV-1 viral load modulation 

and disease progression. 
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METHODS AND MATERIALS 

 

Cohorts 

Discovery cohorts 

Participants that contributed to the phenotype-specific genome-wide association studies were of 

homogenous European ancestry drawn from different cohorts from Australia, Europe and America. 

While there was sample overlap across the included GWAS, MTAG adjusts and corrects for biases 

due to sample overlap 15. The major cohorts used included; the UK Biobank (UKB)  18,19, QSkin 

Sun and Health Study (QSkin) (Olsen et al. 2012), eMERGE (dbGaP, study accession: 

phs000360.v3.p1) and GERA (dbGaP, study accession: phs000674.v3.p3), a melanoma meta-

analysis consortium (Supplementary Table 9)  20, as well as publicly available GWAS summary 

statistics from international cohorts and consortium. Details for each cohort including ethics 

oversight are described in the Supplementary Information.  

 

Replication cohort: 23andMe Research Cohort 

23andMe, Inc. is a direct-to-consumer genetic company that collected both self-reported phenotypes 

and genetic data from participants who provided informed consent and participated in the research 

online, under a protocol approved by the external Association for the Accreditation of Human 

Research Protection Program (AAHRPP)- accredited Institutional Review Board (IRB), Ethical & 

Independent Review Services (E&I Review). The BCC cohort included 2,523,630 participants of 

European ancestry; 251,963 BCC cases and 2,271,667 controls, and 44.65% males. The SCC 

dataset included 2,529,399 participants of European ancestry; 134,700 SCC cases and 2,394,699 

controls, and 44.65% males. Further details on data collection, validation, genotyping, imputation 

and quality control have been published before 8,114.  
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BCC PRS application cohort: The Canadian Longitudinal Study on Aging (CLSA). 

The Canadian Longitudinal Study on Aging (CLSA) is a prospective large population-based cohort 

in Canada comprising about 50,000 participants (45-85 years) randomly recruited between 2010 

and 2015 from ten provinces 115,116. More information about the cohort has been published 

elsewhere 115,116 and summarised here. It consists of two cohorts; the “Tracking cohort” of ~ 20,000 

participants recruited through a telephone questionnaire in ten provinces, and the “Comprehensive 

cohort” with ~ 30,000 individuals who provided data through an in-person questionnaire, 

clinical/physical tests and biological samples (e.g for genetic data) in seven provinces. 

 

In general, at baseline information on relevant variants including age, and sex were recorded, and 

participants were also asked whether they had been diagnosed with any cancer including KC 

(yes/no) by a health professional. Between 2015 and 2018 the first follow up assessment was 

conducted and participants were asked again if they had been diagnosed with cancer, and KC 

during the follow up period. Thus, the CLSA dataset we used included; the “Baseline 

Comprehensive Dataset version 4.0” and “Follow-up 1 Comprehensive Dataset version 1.0”.  At the 

time of analysis, ~ 30,000 individuals had genetic data available, genotyped using 820K UK 

Biobank Axiom Array (Affymetrix)115, and imputed using the TopMed imputation server117. The 

CLSA is overseen by the Canadian Institutes of Health Research (CIHR) and its protocol has been 

reviewed and approved by 13 research ethics boards in Canada. All participants provided written 

informed consent. 
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Firstly, for purposes of validation and selection of the optimal PRS models (as described below in 

Stage 6 analysis) we randomly selected 1,523 cancer-free controls and 388 prevalent KC cases at 

the baseline. Thus, our validation sample included 1,911 participants with a mean age of 65.81 

years (sd =10.25) and 52.75% males.  

Secondly, for we tested the BCC PRSs a second sample (unrelated to the validation dataset) of 

18,933 participants of European ancestry, with a mean age of 61.80 years (sd = 9.84), followed up 

for a mean duration of 2.9 years (sd = 0.3) and 49.63% males. Only participants with complete data 

on age, sex, and cancer status and KC diagnosis were included. Thus, 18,139 controls with no 

history of any cancer (at follow up 1) and 794 participants who developed KC during follow up.  

 

 

 

Statistical analysis 

 

Stage 1: GWAS for BCC, SCC and related traits 

We conducted two case-control GWAS using UKB data for BCC, N = 307,684 (20,791 cases and 

286,893 controls) and SCC, N = 294,294 (7,402 SCC cases and 286,892 controls) of European 

ancestry. We adjusted for age and sex as well as the first ten ancestral principal components (PCs) 

in order to control for biases from population stratification. We used Scalable and Accurate 

Implementation of GEneralized mixed model (SAIGE) software for the analysis since it controls for 

sample relatedness and case-control imbalance 25. Analysis was restricted to single nucleotide 

polymorphism (SNPs) with minor allele frequency (MAF) > 1% and an imputation quality score of 

0.3. BCC/SCC. Case ascertainment and definition are described in Supplementary Information. 

In addition, we conducted GWAS for pigmentation traits (e.g. skin colour, hair colour, tanning 

response, skin burn, sunburn, etc.), all-cancer, autoimmune conditions, and blood biochemistry 

biomarkers (e.g. C-reactive protein, vitamin D, glucose, albumin, aspartate aminotransferase, 
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gamma-glutamyl transferase, etc.) using data from international cohorts including; UKB, QSkin, 

and GERA as described in Supplementary Information, Supplementary Table 2 and 

Supplementary Table 3. We also conducted GWAS on KC and all-cancer after accessing data 

from eMERGE (dbGaP, study accession: phs000360.v3.p1) and GERA (dbGaP, study accession: 

phs000674.v3.p3) cohorts respectively (Supplementary Information). We also accessed publicly 

available GWAS summary statistics e.g. for cutaneous melanoma 20, smoking 28, education 

attainment 27, body mass index 118, hypothyroidism, type 1 diabetes, and rheumatoid arthritis 25, 

vitiligo 26 (Supplementary Information, Supplementary Table 2 and Supplementary Table 3) 

 

 

Stage 2: Genetic correlation between BCC, SCC and related traits 

We used LDSC version 1.0.1 119, to compute the genetic correlation (rg) 16 between BCC and a 

range of other traits including; other skin cancer types, pigmentation traits, autoimmune traits and 

biochemistry biomarkers (recently released in the UKB). We then repeated this process for SCC 

instead of BCC. We used data from publicly available GWAS, as well as GWAS data from 

international cohorts of participants of European ancestry (conducted in stage 1 above). Traits with 

a statistically significant (P < 0.05) rg greater than 10% with either BCC or SCC were selected and 

included in the MTAG model (Figure 1 & Supplementary Table 1). We further sought for 

additional traits that were genetically correlated with BCC or SCC using data from the LD hub 

catalog 17. Out of about 700 phenotypes, no additional phenotypes were selected to be included in 

the final MTAG model.  

 

In total 22 traits including the initial input BCC and SCC GWAS from different cohorts of 

European ancestry met the inclusion criteria. The 22 genetically correlated traits included; BCC, 

SCC, skin colour, hair colour excluding red hair, hypothyroidism, type 1 diabetes, gamma-

glutamyltransferase, aspartate aminotransferase, serum vitamin D levels, albumin, C-reactive 
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protein, and glucose in the UK Biobank 19, KC, red hair and mole count in the QSkin 21, KC in 

eMERGE (dbGaP, study accession: phs000360.v3.p1), all-cancer in GERA cohort (dbGaP, study 

accession: phs000674.v3.p3), melanoma risk as measured by the latest and largest melanoma risk 

gwas meta-analysis 20, vitiligo 26, education attainment 27 and smoking 28. All the above studies 

excluded 23andMe, to enable us to utilise the 23andMe data as a replication set. Details on the 

phenotypic measurements and definitions are described in the Supplementary Information, 

Supplementary Table 2 and Supplementary Table 3 

 

Stage 3: Multi-trait analysis of GWAS summary statistics 

Next, using a total of 22 genetically correlated traits we conducted a multi-phenotype analysis of 

GWAS summary statistics (generated at stage 1 analysis and selected in stage 2) using MTAG 

software version 1.0.8 15. MTAG default settings were used. MTAG combines GWAS summary 

statistics for genetically correlated traits into a meta-analysis while accounting for genetic 

correlation, sample overlap, maximising power to identify loci associated with the trait(s) of interest 

(here BCC and SCC) 15. MTAG generates trait specific results for each phenotype included in the 

model. BCC and SCC GWAS summary data from UKB from stage 1 were included as trait 1 and 2 

respectively in the model below; 

MTAG model: BCC + SCC + melanoma + pigmentation traits + autoimmune traits + ……. 

+ trait n.  

After the quality control measures, the analysis was restricted to 5,301,239 SNPs common in all the 

22 GWAS with a minor allele frequency of >1%, and no ambiguous alleles. We assessed the 

effective increase in sample size after MTAG by comparing the average chi-squared before and 

after MTAG for BCC and for SCC using the following formula:  

(1-average_chi_MTAG_output)/(1-average_chi_MTAG_input)  

Where MTAG input corresponds to the input for either BCC or SCC in the UKB dataset. 
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We took forward the a) BCC and b) SCC MTAG output summary statistic results for further post-

gwas analysis in stage 4 and replication in stage 5. BCC and SCC Manhattan plots, and Q-Q plots 

are presented in Figures 2, and Figure 3, and in Supplementary Figure 1 and Supplementary 

Figure 2. 

 

Stage 3.1 Sensitivity analyses 

MTAG assumes a homogeneous effect across all the included traits 15. However, due to their strong 

association with some input traits the following genomic regions were removed; CDKN2A, 

SLC45A2, IRF4 and HLA for autoimmune, and ASIP and MC1R for pigmentation or CM, violate 

this assumption. We conducted sensitivity analyses excluding these regions before implementing 

our MTAG model. Using the stage 1 BCC GWAS summary statistics, we removed extended 

regions for ASIP on chromosome 20 (30-36 mega bases (mb)), MHC regions on chromosome 6 (25 

- 36 mb), and MC1R on chromosome 16 (87-90.3 mb). We also removed 2mb around the most 

significant SNP in the following regions; rs12203592 (6:396321) in the IRF4 region on 

chromosome 6, rs3731239 (9:21974218) in the CDKN2A region on chromosome 9, and 

rs16891982 (5:33951693) in the SLC45A2 region on chromosome 5. We compared the genetic 

correlation between BCC/SCC before and after removing the genomic regions with known strong 

associations and high LD (Supplementary Figure 2), before running the full MTAG model of 22 

traits described above. The MTAG results with and without the above genomic regions were also 

compared (Supplementary Figure 1).  

 

Stage 4: Post-GWAS analysis 

We used FUMA v.1.3.6 120, to identify independent, genome wide significant SNPs and the 

genomic risk loci, and performed annotation of candidate SNPs in the genomic loci and functional 

gene mapping. We also conducted gene-based and pathway analyses using MAGMA v.1.7, as 

implemented in FUMA v.1.3.6 121. For the gene pathway analysis, gene ontology (GO) and curated 
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gene sets from MSigDB (v5.2) 122 were used and corrected for multiple testing. GWAS catalog 123 

and Open Targets platform 124 were used to annotate novel loci and their relationship with other 

traits.  

 

Stage 5: Replication of the BCC and SCC MTAG results 

Next, we sought to replicate the BCC and SCC susceptibility loci in a large independent cohort 

using data from the 23andMe research cohort. For BCC the replication cohort included 251,963 

self-reported cases and 2,271,667 controls while the SCC replication comprised 134,700 cases and 

self-reported cases and 2,394,699 controls of European ancestry filtered to remove close relatives. 

Previous studies have shown high accuracy of 23andMe BCC/SCC self-reported cases 8 and high 

genetic correlation (rg > 0.9) between the histologically confirmed UKB BCC/SCC data and 

23andMe data 13. Age, sex, and population stratification using five PCs were adjusted for in both 

analyses in a logistic regression i.e.  

BCC or SCC ~ genotype + age + sex + pc.0 + pc.1 + pc.2 + pc.3 + pc.4 + v2_platform + 

v3_0_platform + v3_1_platform + v4_platform.  

The BCC results were adjusted for a genomic control inflation factor λ=1.286. The equivalent 

inflation factor for 1000 cases and 1000 controls λ1000=1.001, and for 10000, λ10000=1.006. In a 

similar way, the SCC results were adjusted for a genomic control inflation factor λ=1.172. The 

equivalent inflation factor for 1000 cases and 1000 controls λ1000=1.001, and for 10000, 

λ10000=1.007. 

 

We compared the concordance of the effect sizes (log OR) for the MTAG results versus the 

replication results (Figure 4c and Figure 4d). We further analysed the number of loci that 

replicated at genome-wide significant level (P = 5.0 x 10-8), after multiple testing correction (i.e. 

Bonferroni correction P = 6.49 x 10-4 for BCC and P = 7.24 x 10-4 for SCC) and at a nominal P = 

0.05. 
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Stage 6: Validation of the BCC Polygenic Risk Score in a selected sample of 

participants in CLSA. 

To construct two comparable polygenic risk scores (PRSs) for BCC, we separately used the BCC 

MTAG output (generated in stage 3) and the UKB BCC single-trait GWAS (generated in stage 1) 

summary statistics as the discovery data sets. MTAG 15 drops SNPs with extremely significant 

associations with any input trait, which resulted in a number of previously reported pigmentation 

associated SNPs being dropped from the model. Hence in both the MTAG and UKB discovery 

GWAS summary statistics we also included four functional SNPs (rs1805007 for MC1R, rs1126809 

for TYR, rs6059655 for ASIP, and rs12203592 for IRF4) that would otherwise have been dropped in 

the PRS using the weights from a previously published BCC PRS 125.  

 

Next using autosomal, non-ambiguous, and bi-allelic SNPs overlapping in the CLSA cohort 

(MTAG discovery = 5,300,872 SNPs and UKB discovery = 5,300,868 SNPs) we performed LD 

clumping based on (r2=0.005 and LD window= 5000 kb, P =1) to yield 62,494 and 62,884 

independent SNPs for MTAGPRS and UKBPRS models respectively. PLINK 1.90b6.8 126 for 

clumping. Using the clumped independent SNPs above, we generated PRS models at varying p-

value thresholds i.e. S1 (P < 5x10-8), S2 (P < 10-7), S3 (P < 10-6), S4 (P < 10-5), S5 (P < 10-4), S6 (P 

< 10-3), S7 (P < 10-2) and S8 (P < 10-1)  in validation sample of 1,911 participants split from the 

CLSA cohort using log odds ratio (from the respective discovery GWAS; MTAG or UKB) as 

weights. PLINK2 (v2.00a3LM 5 May 2021 release) 126 was used for generating the PRS scores.   

For both MTAG and UKB PRS models, we used Nagelkerke’s R2 127, a metric for model fitness 

used for selecting the optimal model. We computed the R2 by comparing the model fitness between 

models with PRSs  (BCC~MTAGPRS or UKBPRS + age + sex + 10 Pcs) and a null model using 

predictABEL package 128 in R software version 4.0.2 129. 
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Stage 7: BCC Polygenic Risk Score and Keratinocyte Cancer Risk Prediction in the 

Canadian Longitudinal Study of Aging 

To determine the ability of our MTAG GWAS data to predict skin cancer, we used 18,933 

participants of European ancestry with data on KC risk in the Canadian Longitudinal Study of 

Aging (CLSA). We included 18,139 controls with no history of any cancer (both at baseline and 

follow-up) and 794 cases who developed KC during the 2.9 years (on average) of follow-up 

following baseline recruitment. Separate BCC and SCC data were unavailable in this cohort, and as 

80% of KC cases are BCC cases 130 we tested the performance MTAGPRS vs UKBPRS derived for 

BCC.  

 

Using PLINK2 (v2.00a3LM 5 May 2021 release)  126, we generated individual scores for CLSA 

participants for both the BCC MTAGPRS and UKBPRS weighted by their respective effect sizes (log 

odds ratios). The genetic scores were standardized to variance of 1 in order to interpret the 

associations as odds ratio per standard deviation increase in the PRS. We compared the 

performance of the two BCC PRSs (MTAGPRS vs UKBPRS) based on the magnitude of the 

association (odds ratios) and the net reclassification improvement for KC risk using R version 4.0.2 

129. For net reclassification improvement, we compared the net reclassification index and the 

percentage of the participants who got reclassified to an appropriate risk group/tertile i.e. the low 

risk (bottom tertile), moderate risk (middle tertile), and high risk (top tertitle) after adding the 

MTAGPRS vs UKBPRS to the base model containing age, sex and the 10 PCs.  
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DATA AVAILABILITY  

GWAS summary statistics  

The full GWAS summary statistics for this study will be made available through the NHGRI-EBI 

GWAS Catalogue (https://www.ebi.ac.uk/gwas/downloads/summary-statistics).  

Polygenic risk scores  

The PRS developed and utilised in this study are provided in the Supplementary Tables 7 and 8 

and will also be made available via the PRS catalog https://www.pgscatalog.org/  

UK Biobank 

UK Biobank data is available through application via https://www.ukbiobank.ac.uk/. 

Information on UKB blood biochemistry biomarkers can be found in the UKB dataset: 

http://biobank.ctsu.ox.ac.uk/crystal/label.cgi?id=17518  

Canadian Longitudinal Study on Aging 

Data are available from the Canadian Longitudinal Study on Aging (www.clsa-elcv.ca) for 

researchers who meet the criteria for access to de-identified CLSA data. 

23andMe 

The variant-level data for the 23andMe replication dataset are fully disclosed in the manuscript.  

dbGaP 

https://www.ncbi.nlm.nih.gov/gap/advanced_search/ 

 

 
ONLINE RESOURCES AND SOFTWARE 

FUMA: https://fuma.ctglab.nl/  

LD hub catalog: http://ldsc.broadinstitute.org/ldhub/  

LDpair Tool: https://ldlink.nci.nih.gov/?tab=ldpair 
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Open target genetics: https://genetics.opentargets.org/  

GWAS catalog: https://www.ebi.ac.uk/gwas/  
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