Elevated levels of IL-6 in IgA nephropathy patients are induced by an epigenetically-driven mechanism triggered by viral and bacterial RNA

Sallustio Fabio1, Claudia Curci2, Maria Teresa Cimmarusti2, Angela Picerno1, Giuseppe De Palma3, Carmen Sivo2, Francesca Annese2, Giulia Fontò2, Alessandra Stasi2, Francesco Pesce2, Vincenzo Di Leo2, Loreto Gesualdo2.

1) Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", Bari, Italy
2) Nephrology, Dialysis and Transplantation Unit, DETO, University “Aldo Moro” Bari, Italy
3) Institutional Biobank, Experimental Oncology and Biobank Management Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Tumori Bari Giovanni Paolo II, Bari, Italy.

Corresponding author:
Fabio Sallustio, PhD; Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", Piazza G. Cesare,11 70124 Bari, Italy; Tel./ Fax: 0039 080 5478878; Email: fabio.sallustio@uniba.it

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
ABSTRACT

Recently, several models have been proposed to describe the pathogenesis of Immunoglobulin A nephropathy (IgAN), and among them the multihit and the gut-microbiota. These models explain the pathogenesis of IgAN caused by the production of aberrant IgA, but it is believed further predisposing factors are present, including immunological, genetic, environmental, or nutritional factors that can influence the pathogenesis and that could be useful for development of precision nephrology and personalized therapy.

Newly, the role of IL-6 in pathogenesis is becoming increasingly important. It is essential for glomerular immunoglobulin A deposition and the development of renal pathology in Cd37-deficient mice, even if the reason why levels of IL-6 are elevated in IgAN patients is not well understood. One attainable hypothesis on high levels of IL-6 in IgAN comes out from our recent whole genome DNA methylation screening in IgAN patients, that identified, among others, a hypermethylated region comprising Vault RNA 2-1 (VTRNA2-1), a non-coding RNA also known as precursor of miR-886 (pre-mi-RNA). Consistently, the VTRNA2-1 expression was found down-regulated in IgAN patients.

Here we confirm that VTRNA2-1 is low expressed in IgAN subjects compared to HS and we found that also in transplanted IgAN patients (TP-IgAN), compared to non IgAN transplanted patients (TP), the VTRNA2-1 transcript was expressed at level very low. We found that in IgAN patients with downregulated VTRNA2-1, PKR is overactivated, coherently with the role of the VTRNA2-1 that binds to PKR and inhibits its phosphorylation. The loss of the VTRNA2-1 natural restrain causes, in turn, the activation of CREB by PKR. We found CREB, a classical cAMP-inducible CRE-binding factor interacting with a region of the IL-6 promoter and leading to IL-6 production, overactivated both in IgAN and in TP-IgAN patients. Effectively, in the same patients, we found elevated levels of IL-6 correlating with CREB and PKR phosphorylation.
Since PKR is normally activated by bacterial and viral RNA we hypothesized that these microrganisms can further activate the PKR/CREB/IL-6 pathway leading to an excess of IL-6 production, explaining both the high levels of IL-6, both infection involvement in the disease, both cases of IgAN associated with COVID-19 infection and with COVID-19 RNA-vaccination, and recent data showing microbiota involvement in IgAN.

Effectively, we found that both the RNA poly(I:C) and the COVID-19 RNA-vaccine stimulation significantly increase the IL-6 levels in IgAN patient PBMCs. The PKR/CREB/IL-6 pathway may be very important also in the setting of renal transplantation. We found that this pathway is upregulated also in IgAN transplanted patients. Recent studies showed that the cumulative risk of IgA nephropathy recurrence increases after transplant and is associated with a 3.7-fold greater risk of graft loss. Finally, we showed that the IL-6 secretion can be reduced by the PKR inhibitor imoxin.

In conclusion, the discovery of the upregulated VTRNA2-1/PKR/CREB/IL-6 pathway in IgAN patients may provide novel approach to treat the disease and may be useful for development of precision nephrology and personalized therapy, possibly by checking the VTRNA2-1 methylation level in IgAN patients.
INTRODUCTION

Immunoglobulin A nephropathy (IgAN), also known as Berger's disease, is the most frequent primary glomerulonephritis characterized by the presence of IgA immune complexes in the glomeruli (1). It generally appears in the second and third decade of life, has a higher incidence in males and it is more common in whites than in blacks with a higher prevalence in Asians than Caucasians (1).

Recently, a multihit model has been proposed to describe the pathogenesis of IgAN. In this model, the first hit is given by the hypersecretion of deglycosylated IgA (Gd-IgA1) (2). In circulation, these Gd-IgA1 are recognized and attacked by autoantibodies (second hit) and this process leads to the formation of circulating immune complexes (third hit), some of which are deposited at the mesangial level in the glomeruli (2). Kidney damage resulting from the deposition of the cells is characterized by local inflammation, complement activation, cell proliferation, and finally fibrosis (3).

Moreover, in humans, the gut-associated lymphoid tissue (GALT) is the primary source of IgA, so the pathogenesis of IgAN is related to gut homeostasis. Indeed, the intestinal–renal axis is important in Berger's glomerulonephritis, where several factors (e.g. genetics (4,5), infections (6,7), and food antigens (8) may play a role in the disease complex pathogenesis and provide novel therapeutic targets to modify disease evolution.

These models explain the pathogenesis of IgAN caused by the production of aberrant IgA, but it is believed further predisposing factors are present, including immunological, genetic, environmental, or nutritional factors that can influence the pathogenesis and that could be useful for development of precision nephrology and personalized therapy.

We have recently showed that IgAN patients have a higher frequency of intestinal-activated B cells than healthy subjects (HS). IgAN patients had greater BAFF cytokine blood levels, which were linked to higher levels of five microbiota metabolites, and high APRIL cytokine serum levels. In comparison to HS, IgAN individuals had a larger number of circulating gut-homing (CCR9 β7 integrin) regulatory B cells, memory B cells, and IgA memory B cells (9).
Moreover, several studies have shown the involvement of the IL-6 pathway in IgAN. Interleukin-6 is essential for glomerular immunoglobulin A deposition and the development of renal pathology in Cd37-deficient mice (10). Moreover, the proliferation-inducing ligand (APRIL) and IL-6 are involved in the overproduction of aberrantly glycosylated IgA. In mice, the APRIL silencing blocked the overproduction of Gd-IgA1 induced by IL-6 and, conversely, neutralizing IL-6, the production of Gd-IgA1 was reduced(11). Interestingly, the mycotoxins deoxynivalenol (DON) prolonged exposure cause the expansion of IgA secreting B cells by activating macrophages and T cells. In mice it results in the early stages of human IgA nephropathy(12,13) and the overproduction of inflammatory interleukins such as IL-6(14), which in turn induces upregulation of IgA.

However, to date, the biological mechanisms leading to the elevate IL6 levels in IgAN patients are not clear. In a recent study, a whole-genome screening was performed for DNA methylation in CD4+ T cells from IgAN patients, identifying three regions with altered methylation capable of influencing the gene expression of genes involved in cell response and proliferation T CD4+(15). In particular, a hypermethylated region was identified comprising Vault RNA 2-1 (VTRNA2-1), a non-coding RNA also known as the precursor of miR-886 (Pre-mi-RNA).

Here we studied the VTRNA2-1/PKR/CREB/IL-6 pathway showing that it is upregulated in IgAN patients and that it is responsible for the elevated IL-6 levels characterizing the disease, thus providing for the first time an explanation on the abnormal levels of this cytokine. We found that this pathway is epigenetically controlled by VTRNA2-1 and triggered by bacterial and viral infections. It can explain both the high levels of IL-6 both the correlation to mucosal infections of the disease. Finally, we showed how the imoxin inhibitor, targeting this pathway, can reduce IL-6 secretion by PBMCs of IgAN patients providing a new possible approach to treat the disease.
RESULTS

VTRNA2-1 is downregulated in IgAN patients

Recently, we showed that the non-coding RNA VTRNA2-1 was epigenetically downregulated in IgAN patients (15). Since we hypothesize that it may be implicated in the pathway for the secretion of IL-6, we further confirm the involvement of VTRNA2-1 in IgAN studying its expression in PBMCs isolated from IgAN patients and healthy subjects.

VTRNA2-1 was strongly downregulated in IgAN patients compared to healthy subjects showing a decrease of 30 fold (p <0.05, Figure 1A). Moreover, recent clinical observations have shown that IL-6 production is implicated in renal allograft rejection (16,17) and that cumulative risk of IgA nephropathy recurrence increased after transplant and was associated with a 3.7-fold greater risk of graft loss (17).

We therefore analysed the expression of VTRNA2-1 in PBMCs isolated from IgAN patients with kidney transplant (T-IgAN) and in patients non-IgAN with kidney transplant (TP). Also in this case, we found that the VTRNA2-1 was extremely downregulated in transplanted IgAN patients compared to their controls (p<0.0001, fold change=100; Figure 1B), confirming that this modulation is a characteristic of IgAN disease.
Figure 1. VTRNA2-1 expression in real-time PCR. (A) Real-time PCR of VTRNA2-1 transcript differentially expressed in PBMCs of IgAN and HS. (B) Real-time PCR of VTRNA2-1 transcript differentially expressed in PBMCs of T-IgAN and TP. Data are expressed as mean ± SEM, (* p-value < 0.05, ****p-value < 0.001).

Downregulation of VTRNA2-1 In IgAN patients lead to the increase in phosphorilated PKR.

VTRNA2-1 can inhibit PKR, an interferon-inducible and double-stranded RNA (dsRNA) dependent kinase, by binding to this protein and preventing its auto-phosphorylation(18). Thus, we studied whether in the IgAN patients with low levels of VTRNA2-1 the correspective upregulation of the PKR signalling was present. We measured the levels of the phosphorilated (pPKR) and of the total PKR and found that in IgAN patients the level of pPKR protein normalized on the total PKR was significantly increased compared to HS (FC 2.6; p<0.05; Fig. 2A). At the same manner, also in T-IgAN we found the doubling of pPKR levels compared to TP (FC 2, p<0.05; Fig. 2B).

To confirm that the increase in pPKR levels was due to the auto-phosphorylation induced by the lack of VTRNA2-1 and not by a different mechanism regulating the gene expression, we checked the PKR mRNA levels in IgAN patients and in HS. We found no significant differences between the two group
(Figure 2C). However, in T-IgAN compared to TP we found rather a decrease of the PKR transcripts (Figure 2D, P<0.0001), making data of the pPKR increase even more meaningful.

Figure 2. IgAN patients with low VTRNA2-1 showed elevated levels of phosphorylated PKR

(A) ELISA assay showed significantly increased level of phosphorylated PKR in IgAN patients respect to healthy group (HS). (B) A strong increase in phospho-PKR levels was found in T-IgAN patients compared to TP group. (C) Gene expression of PKR in IgAN patients and HS. (D) Gene expression of PKR in TP and T-IgAN patients. Data are representative of 8 independent experiments (means ±SEM; * p-value < 0.05).

Phosphorilation of PKR corresponds to CREB activation in IgAN patients

In mice pPKR induced the Cyclic adenosine monophosphate (AMP) response element-binding protein (CREB) activation by increasing its phosphorilation (12). We studied whether in IgAN patients CREB phosphorilation levels were higher compared to HS. A significant 3-fold increase of pCREB levels was found in IgAN patients compared to HS (p<0.01; Fig. 3 A). Also in T-IgAN pCREB levels were significantly increase compared to TP, even if to less extent (1.67 fold, p<0.01; Fig. 3B). However, no significant difference in CREB gene expression was present among IgAN
patients and HS (Figure 3C), nor in TX compared to T-IgAN (Fig. 3D), corroborating the data of
CREB phosphorilation in IgAN patients.

![Graph](image)

Figure 3. IgAN patients with low VTRNA2-1 showed elevated levels of phosphorylated CREB (A) The assay revealed systemic activation of CREB (phospho-Thr305-CREB) in IgAN group compared to healthy subjects (HS). (B) CREB phosphorylation was also significantly increased in T-IgAN patients compared to transplanted patients without IgAN disease. (C) Gene expression of CREB in IgAN patients and HS. (D) Gene expression of CREB in TP and T-IgAN patients. Data are representative of 8 independent experiments (means ±SEM; * p-value < 0.05, ****p-value <0.001).

CREB activation by phosphorilation leads to IL-6 incerase in IgAN patients.

Since several studies showed that CREB activation may lead to IL-6 expression(20–24), we analyzed the IL-6 levels secreted by PBMCs in our IgAN patient groups. IL-6 levels showed a statistically significant increase in IgAN patients compared to HS (p<0.05; Fig. 4A). In T-IgAN compared to TP a tendence in increased levels of IL-6 was found, even if it is not significant (Fig. 4B). Both the levels of pCREB and pPKR significantly correlated with IL-6 levels in IgAN patients (r=0.97, p= 0.0006
and r=0.89, p=0.0064, respectively), indicating that the high levels of this cytokine are due to the VTRNA2-1/pPKR/pCREB signalling epigenetically regulated (Figure 4C-D).

Figure 4. VTRNA2-1/PKR/CREB activated pathway leads to elevated IL-6 secretion in IgAN patients (A) ELISA assay showed significant increased levels of IL-6 in IgAN patients with VTRNA2-1/PKR/CREB activated pathway respect to healthy group. (B) An IL-6 increase was found in T-IgAN patients with VTRNA2-1/PKR/CREB activated pathway compared to TP group, even if not statistically significant. Both the levels of pPKR (C) and pCREB (D) significantly correlated with IL-6 levels in IgAN patients (r=0.97, p=0.0006 and r=0.89, p=0.0064, respectively). Data are representative of 8 independent experiments (means ±SEM; * p-value < 0.05).
Bacterial RNA viral RNA or COVID vaccine stimulation increase and imoxin decrease IL-6 secretion by PBMCs from HS and IgAN patients.

The biological effect of triggering or blocking the PKR/CREB/IL-6 pathway on PBMCs from IgAN patients and HS was studied. Since PKR can be activated by viral or bacterial RNA (25,26) (27,28) lymphocytes were transfected with synthetic polyinosinic:polycytidylic acid (poly(I:C)), which mimics viral dsRNA or with a COVID RNA vaccine. We found that the poly(I:C) and the vaccine stimulation significantly increased the IL-6 secretion by PBMCs from both HS and IgAN patients (Figure 5, p<0.05).

We then studied the effect of the PKR inhibitor imoxin on the IL-6 secretion. When IgAN patients and HS PBMCs were stimulated with 1 μM imoxin, a drastic decrease in IL-6 levels was obtained (Figure 6 A-B, p<0.05). Interestingly, Imoxin was effective also when used 48h after stimulation with poly(I:C) (Figure 6C).
Figure 5. poly(I:C) and COVID vaccine stimulation increase and imoxin decrease IL-6 secretion by PBMCs from HS and IgAN patients.

ELISA assay showing that the poly(I:C) (A) and the COVID vaccine (B) stimulation significantly increased the IL-6 secretion by PBMCs from HS. (C) ELISA assay showing that imoxin (C16) significantly decrease the IL-6 secretion by PBMCs from HS. (D) ELISA assay showing that imoxin (C16) significantly decrease the IL-6 secretion by PBMCs from IgAN patients.

Figure 6. PKR Inhibitor Imoxin decrease the IL-6 secretion even following viral RNA triggering

ELISA assay showing that imoxin (C16) significantly decrease the IL-6 secretion in PBMCS from HS, even when used 48h after stimulation with poly(I:C).
DISCUSSION

The exact immunopathogenic mechanisms underlying IgAN are poorly understood. The original multi-hit pathogenesis model integrates findings from studies on galactose-deficient IgA1, anti-glycan response, formation, deposition of IgA1-containing immune complexes, and mechanisms of immune complex-mediated tissue injury. Very recently the role of IL-6 in IgAN pathogenesis is becoming increasingly important (29–33), even if the reason why levels of IL-6 are elevated in IgAN patients is not well understood.

It selectively increases production of galactose-deficient IgA1 in IgA1-secreting cells from patients with IgA nephropathy (29,30) and IL6/- mice displayed no glomerular IgA deposition and were protected from exacerbated renal failure following lipopolysaccharide treatment (32). Interestingly, IL-6 signalling seems to be involved in this complex intestinal immune network particularly in mediating the production of Gd-IgA (10,34).

One attainable hypothesis on high levels of IL-6 in IgAN comes out from our recent whole genome DNA methylation screening in IgAN patients, that identified, among others, three regions with altered DNA methylation capable of influencing the expression of genes involved in the response and proliferation of T and B cells (15). We identified a hypermethylated region comprising Vault RNA 2-1 (VTRNA2-1), a non-coding RNA also known as precursor of miR-886 (pre-mi-RNA). Consistently, the VTRNA2-1 expression was found down-regulated in IgAN patients (15).

Here we confirm that VTRNA2-1 is lower expressed in IgAN subjects compared to HS and we found that also in transplanted IgAN patients compared to non IgAN transplanted patients the VTRNA2-1 transcript was expressed at level very low. The VTRNA2-1 gene produces an RNA polymerase III transcript that resembles both a component of the ribonucleoprotein vault particle and a pre-microRNA. However, the RNA product does not function as a vault or microRNA; rather, it acts as a direct inhibitor of protein kinase R (also known as eukaryotic translation initiation factor 2-alpha kinase 2, EIF2AK2), and thereby plays an important role in the regulation of cell growth. This gene is nearby a differentially methylated region (DMR), is imprinted and may show allele-specific...
expression. VTRNA2-1 is a metastable epiallele with accumulating evidence that methylation at this region is heritable, modifiable, and associated with disease including risk and progression of cancer(35).

We found that, in IgAN patients with downregulated VTRNA2-1, PKR is overactivated, coherently with the role of the VTRNA2-1 that binds to PKR and inhibits its phosphorylation (36). The loss of this natural restrain causes the activation of CREB, a classical cAMP-inducible CRE-binding factor interacting with a region of the IL-6 promoter (that is known as CRE-like sequence), leading to IL-6 production (20–24).

The discovery of the upregulation of the PKR/CREB/IL-6 in IgAN patients is very suggestive. PKR is normally activated by double-strand bacterial(25,26) and single-strand viral (27,28) RNA and has long been recognized as a key mediator of the innate immunity response to viral infection. Expression of latent PKR is induced by interferon and it is activated upon binding to viral RNA containing duplex regions to undergo autophosphorylation. The data showing that, in IgAN patients, the PKR signalling is already activated due to their epigenetic background could explain why the disease has traditionally been considered as correlated to mucosal infections because of the clinical manifestation of hematuria following upper respiratory tract microbes challenge(37,38). Bacterial and viral RNA may effectively further activate the PKR/CREB/IL-6 pathway leading to an excess of IL-6 production.

Moreover, recently has been found that, upon stimulation in vitro, the Epstein-Barr virus (EBV)-infected IgA+ B cells secreted Gd-IgA1 and that B cells and their IgA+ subpopulation in PBMCs of IgAN patients displayed a significantly higher frequency of EBV infection than did cells of the same phenotype from non-IgAN patients(39). Interestingly, a different study very recently showed that PKR is regulated by EBV RNA(40).

This kind of mechanism, driven by the epigenetic silencing of VTRNA2-1, may therefore explain both the high levels of IL-6, and infection involvement in the disease, and recent data showing microbiota involvement in IgAN (9) (41) (42). Our hypothesis is also supported by studies showing
that synthetic double-stranded RNA poly(I:C) stimulation promotes IgA class-switch recombination and BAFF productions in tonsil mononuclear cells via the TLR3 pathway (43). Effectively, we showed that both the RNA poly(I:C) and the COVID-19 RNA-vaccine stimulation significantly increase the IL-6 levels in IgAN patient PBMCs.

Also, recent data showing 13 IgAN cases associated with COVID-19 infection and 4 cases of IgAN following COVID-19 RNA-vaccination (44) may be clearly explained by our discovered mechanism through the PKR activation by RNA.

The PKR/CREB/IL-6 pathway may be very important also in the setting of renal transplantation. We found that this pathway is upregulated also in IgAN transplanted patients. Recent studies showed that the cumulative risk of IgA nephropathy recurrence increases after transplant and is associated with a 3.7-fold greater risk of graft loss (45). Besides, evidence suggests that IL-6 may play an important role in donor-specific antibodies generation and chronic active antibody-mediated rejection and that the treatment with an anti-IL-6 receptor monoclonal antibody may represent a novel approach for chronic antibody-mediated rejection and transplant glomerulopathy, stabilizing allograft function and extend patient lives (17).

Finally, we showed that the IL-6 secretion can be reduced by the PKR inhibitor imoxin. This drug also known as C16 or imidazole, has shown beneficial effects on cell cultures and in vivo in animal models for numerous conditions, such as improvement in inflammation, oxidative stress, diabetes, suppression of tumor proliferation and in the control of hypertension. However, in light of our results, it may be considered as a possible therapeutic drug also in IgAN (46). Interestingly, in mice dietary exposure to the common foodborne mycotoxin deoxynivalenol (DON) upregulates serum immunoglobulin A (IgA) and IL-6 miming IgAN and activating PKR/CREB/IL-6 pathway. The dietary omega-3 fatty acids can invert these processes and ameliorate DON-induced IgA nephropathy (12,13).
In conclusion, the discovery of the upregulated VTRNA2-1/PKR/CREB/IL-6 pathway in IgAN patients may provide novel approach to treat the disease and may be useful for development of precision nephrology and personalized therapy, possibly by checking the VTRNA2-1 methylation level in IgAN patients.
MATERIALS AND METHODS

Study design and patients

The study was carried out in accordance with the Helsinki Declaration and the European Guidelines for Good Clinical Practice and approved by our institutional ethics review. A total of 15 biopsy-proven IgAN patients, 22 IgAN subjects with kidney transplant (T-IgAN), 14 patients transplanted for causes other than IgAN (TP), and 10 Healthy subjects (HS) from south Italy were included in the study after providing their written informed consent.

PBMCs were isolated by gradient centrifugation with Ficoll-Hypaque (Euroclone, Italy) from heparinized venous blood from patients and HS. PBMCs were cultured in RPMI 1640 (Euroclone) supplemented with 10% Fetal Bovine Serum (Euroclone), 100U/mL Penicillin/Streptomycin (Euroclone), 4mM Glutamine (Euroclone), 10 mM Hepes (Sigma), 0.1 mM non-essential amino acids (Euroclone), 1mM sodium pyruvate and 50 U/mL, rhIL-2.

RNA extraction and real time-PCR expression of VTRNA2-1, CREB and PKR

Total RNA were isolated from PBMCs of IgAN, T-IgAN, TP and HS using RNeasy Mini Kit (Qiagen, Hilden, Germany) according to the manufacturer’s instruction and quantified by NanoDrop One Spectrophotometer (thermoFisher Scientific). Total RNA was retro-transcribed using the miScript II RT Kit with iScript cDNA Synthesis Kit (Bio-Rad, Hercules, CA, USA) following the manufacturer’s instructions.

Real Time-PCR was performed on a StepOne Plus instrument (Applied Biosystems) by using VTRNA2-1, PKR and CREB primers (Integrated DNA Technologies, Coralville, IA, USA) GAPDH gene amplification was used as a reference standard to normalize the target signal. Real Time-PCR was performed in triplicate, and relative expression was calculated using the $2^{-\Delta \Delta C_t}$ method.
pPKR/pCREB/IL-6 pathway ELISA quantification

Colorimetric Cell-Based ELISA assays were used to detect the levels of CREB/pCREB (CREB (Phospho-Ser142) Aviva Systems Biology, USA), and PKR/pPKR (PKR (Phospho-Thr258) Aviva Systems Biology, USA).

Briefly, PBMCs of HS, IgAN, T-IgAN and TP subjects were freshly isolated and seeded overnight with RPMI medium at 37°C, 5% CO₂, in a 96-Well Cell Culture Clear-Bottom Microplate. The ELISA assay protocols were executed following manufacturer instructions.

To determine IL-6 levels, PBMCs of HS, IgAN, T-IgAN and TP subjects, were freshly isolated and seeded in a 96-Well Cell Culture Microplate supplemented with RPMI medium at 37°C, 5% CO₂. After 48 h of culture, cells were collected and, centrifuged at 230 rpm for 15 minutes. Supernatant were recovered and analysed using Human IL-6 Quantikine ELISA Kit (R&D Systems, USA), following manufacturer’s protocol.

Optical densities were determined using a microplate reader (programmable MPT reader model DV 990BV6; GDV, Italy) set to 450 nm.

Transfection experiments

PBMCs of HS and IgAN patients were seeded in 6-well plates at a density of 2 x 10⁶ cells/cm² and were incubated with specific medium. Xfect Transfection Reagent (Clontech, Takara bio, France) was used to transfect 20 ug of Poly (I:C) (InvivoGen, Europe), a synthetic analogue of dsRNA, in PBMC cells, according to manufacturer’s instructions. Imoxin (Chem Cruz) was added to PBMCs at a concentration of 1 µM. After two days of incubation with Poly (I:C) and/or Imoxin the secretion of IL-6 levels by PBMCs were measured in the cell culture supernatants.

Statistical Analysis

Statistical analyses were performed using the Student’s t-test, as appropriate. A p-value < 0.05 was considered significant. Data are expressed as means ± SEM.
REFERENCES

Angelis M, ben Mkaddem S, et al. High levels of gut-homing immunoglobulin A-positive+B
lymphocytes support the pathogenic role of intestinal mucosal hyperresponsiveness in
immunoglobulin A nephropathy patients. *Nephrology, dialysis, transplantation: official
publication of the European Dialysis and Transplant Association - European Renal

10. Rops ALWMM, Jansen E, van der Schaaf A, Pieterse E, Rother N, Hofstra J, Dijkman HBPM,
van de Logt AE, Wetzels J, van der Vlag J, et al. Interleukin-6 is essential for glomerular
immunoglobulin A deposition and the development of renal pathology in Cd37-deficient mice.

induces aberrant IgA glycosylation via APRIL- and IL-6–mediated pathways in IgA

12. Pestka JJ. Deoxynivalenol-induced IgA production and IgA nephropathy-aberrant mucosal
doi: 10.1016/S0378-4274(03)00024-9

13. Shi Y, Pestka JJ. Mechanisms for suppression of interleukin-6 expression in peritoneal

14. Yan D, Zhou HR, Brooks KH, Pestka JJ. Potential role of IL-5 and IL-6 in enhanced IgA
secretion by Peyer’s patch cells isolated from mice acutely exposed to vomitoxin. *Toxicology*

M, Schena FP. Aberrantly methylated DNA regions lead to low activation of CD4+ T-cells in

FIGURE LEGENDS

Figure 1. VTRNA2-1 expression in real-time PCR. (A) Real-time PCR of VTRNA2-1 transcript differentially expressed in PBMCs of IgAN and HS. (B) Real-time PCR of VTRNA2-1 transcript differentially expressed in PBMCs of T-IgAN and TP. Data are expressed as mean ± SEM, (* p-value < 0.05, ****p-value <0.001).

Figure 2. IgAN patients with low VTRNA2-1 showed elevated levels of phosphorylated PKR

(A) ELISA assay showed significantly increased level of phosphorylated PKR in IgAN patients respect to healthy group (HS). (B) A strong increase in phospho-PKR levels was found in T-IgAN patients compared to TP group. (C) Gene expression of PKR in IgAN patients and HS. (D) Gene expression of PKR in TP and T-IgAN patients. Data are representative of 8 independent experiments (means ±SEM; * p-value < 0.05).

Figure 3. IgAN patients with low VTRNA2-1 showed elevated levels of phosphorylated CREB

(A) The assay revealed systemic activation of CREB (phospho-Thr305-CREB) in IgAN group compared to healthy subjects (HS). (B) CREB phosphorylation was also significantly increased in T-IgAN patients compared to transplanted patients without IgAN disease. (C) Gene expression of CREB in IgAN patients and HS. (D) Gene expression of CREB in TP and T-IgAN patients. Data are representative of 8 independent experiments (means ±SEM; * p-value < 0.05, ****p-value <0.001).

Figure 4. VTRNA2-1/PKR/CRENB activated pathway leads to elevated IL-6 secretion in IgAN patients

(A) ELISA assay showed significant increased levels of IL-6 in IgAN patients with VTRNA2-1/PKR/CRENB activated pathway respect to healthy group. (B) An IL-6 increase was found in T-IgAN patients with VTRNA2-1/PKR/CRENB activated pathway compared to TP group, even if
not statistically significant. Both the levels of pPKR (C) and pCREB (D) significantly correlated with IL-6 levels in IgAN patients (r=0.97, p=0.0006 and r=0.89, p=0.0064, respectively). Data are representative of 8 independent experiments (means ±SEM; * p-value < 0.05).

Figure 5. poly(I:C) and COVID vaccine stimulation increase and imoxin decrease IL-6 secretion by PBMCs from HS and IgAN patients.

ELISA assay showing that the poly(I:C) (A) and the COVID vaccine (B) stimulation significantly increased the IL-6 secretion by PBMCs from HS. (C) ELISA assay showing that imoxin (C16) significantly decrease the IL-6 secretion by PBMCs from HS. (D) ELISA assay showing that imoxin (C16) significantly decrease the IL-6 secretion by PBMCs from IgAN patients.

Figure 6. PKR Inhibitor Imoxin decrease the IL-6 secretion even following viral RNA triggering

ELISA assay showing that imoxin (C16) significantly decrease the IL-6 secretion in PBMCS from HS, even when used 48h after stimulation with poly(I:C).