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Abstract 

Although relatively costly and non-scalable, non-invasive neuromodulation interventions are treatment 

alternatives for neuropsychiatric disorders. The recent developments of highly-deployable transcranial 

electric stimulation (tES) systems, combined with mobile-Health technologies, could be incorporated in 

digital trials to overcome methodological barriers and increase equity of access. We convened 61 highly-

productive specialists and contacted 8 tES companies to assess 71 issues related to tES digitalization 

readiness, and processes, barriers, advantages, and opportunities for implementing tES digital trials. 

Delphi-based recommendations (>60% agreement) were provided. Device appraisal showed moderate 

digitalization readiness, with high safety and the possibility of trial implementation, but low connectivity. 

Panelists recognized the potential of tES for scalability, generalizability, and leverage of digital trials 

processes; although they reached no consensus about aspects regarding methodological biases. We 

further propose and discuss a conceptual framework for exploiting shared aspects between mobile-Health 

tES technologies with digital trials methodology to drive future efforts for digitizing tES trials. 

 

Keywords: Mobile Health; non-invasive neuromodulation; digital health, systematic review; Delphi panel 

 

 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 13, 2022. ; https://doi.org/10.1101/2022.03.03.22271837doi: medRxiv preprint 

https://doi.org/10.1101/2022.03.03.22271837
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

6 

Graphical Abstract. Consensus Roadmap. 

 
(A) Recruitment process. The study procedure started with defining the components of the research problem by the core research 

team. After defining the problems, two different sets of participants (the steering committee (SC) including key leaders of the 

field identified by the core team and the expert panel (EP) as a more diverse group of experts identified based on the number of 

publications based on a systematic review) were identified and were invited to participate in a Delphi study. The study facilitators 

(first and last authors) led the communications with the SC to design the initial questionnaire through an iterative approach. (B) 

Evidence synthesis: To collect the available evidence, companies producing portable tES (ptES) devices were contacted, based on 

the companies suggested by the SC and EP to provide details about the available devices. For mapping methodological processes 

of digitizing tES trials, two distinct strategies were performed and embedded into the questionnaire, namely SIPOC (Suppliers, 

Inputs, Process, Outputs, and Customer) and SWOT (Strengths, Weaknesses, Opportunities, and Threats) assessment were 

performed and embedded into the questionnaire. (C) Consensus development: In the next phase, the questionnaire was validated 

and finalized via collecting and summarizing opinions. Afterward, the SC and EP responded to the final questionnaire, and results 

were analyzed providing a list of recommendations for running tES digital trials based on a pre-registered consensus threshold.  
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1. Introduction 

Transcranial electric stimulation (tES) is a non-invasive neuromodulation intervention that uses electric 

currents applied over the scalp to modify cortical activity and treat neuropsychiatric disorders and has 

high safety and tolerability (Fregni et al., 2021). Notwithstanding, due to its low-to-moderate efficacy for 

several conditions, the consensus of its readiness for clinical use across indications varies (Ekhtiari et al., 

2019; Fregni et al., 2021), and regulatory approvals across regions are mixed (Bikson et al., 2018b; Fregni 

et al., 2015), warranting larger-scale clinical trials (Brunoni et al., 2012). However, these trials are 

hampered by the need for daily visits to the research center to deliver the necessary number of tES 

sessions, limiting recruitment, harming adherence, increasing costs (5), and restricting diversity (Bikson et 

al., 2018a; Charvet et al., 2020). 

Unlike other non-invasive neuromodulation modalities, tES devices, by virtue of being affordable and 

battery-powered (Woods et al., 2016), are portable, intervening an appealing brain stimulation modality 

for patients who do not tolerate pharmacotherapy (Brunoni et al., 2019) or have difficulty attending 

treatment at a clinical center several companies have been designing highly-deployable tES devices that 

could be used to address issues of scale, access, and patients’ burden in the context of digital trials - i.e., 

trials that leverage aspects such as recruitment, assessment, and data analyses through the 

implementation of digital technologies (Inan et al., 2020). These approaches could be further integrated 

with mobile Health devices, apps, and wearables, allowing for several new implementations, such as 

simultaneous combination with cognitive and psychological interventions, ecological momentary 

assessment of behaviors, passive data collection, and digital phenotyping (Insel, 2018; Torous et al., 2017).  

However, since protocols and standards for digital trials using mobile tES are still emerging, the challenges 

and opportunities of their implementation processes have not yet been systematically examined. 

Moreover, issues on rigor and reproducibility - for instance, best practices to perform randomization, 

allocation concealment, and sham stimulation - and generalizability - how to fully explore their potential 

for scalability while ensuring adherence and representativeness - have only been discussed in non-digital 

contexts (Bikson et al., 2018a; Charvet et al., 2020, 2015). Finally, implementation challenges are different 

in low-/middle- income countries, which present lower digital literacy, fluency in non-native languages, 

and wireless connectivity (Silva-Filho et al., 2022); conversely, scalable mobile Health interventions have 

even higher impact potential in such countries (Torous et al., 2021). 

Considering these challenges, we systematically identified non-invasive neuromodulation specialists to 

elaborate and discuss issues related to the extent, processes, and methodological characteristics of 

digitizing non-invasive neuromodulation trials. These findings, supplemented by a systematic scoping 

review of tES clinical research articles and an assessment of the digitalization degree of commercially 

available tES devices, provided a key summary of Delphi-based recommendations for enhancing the 

implementation of digital tES trials. 

 

2. Methods 

Our protocol was pre-registered at the Open Science Framework (OSF) (Razza et al., 2021) and is depicted 

in Fig. 1. Minor deviations occurred (Sup. Material - Appendix 1). 
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Fig. 1. Study workflow. First, the steering committee (SC) was formed, including prominent researchers in the field. Then, 

supplemented by the results of a systematic review conducted on tES trials, the SC developed the questionnaire, which was sent 

to all participants of the study (SC and expert panel (EP)) to answer it. Simultaneously, companies producing tES devices were 

contacted, based on the companies known by the SC and EP, to provide details about the available devices. Finally, the SC 

analyzed the data received from the questionnaire and all participants took part in reporting the results. 

 

2.1. Specialist panel 

We used a Delphi technique, in which comments and feedback are iteratively discussed (Hsu and 

Sandford, 2019), for addressing challenges and proposing recommendations for digitizing tES trials. 

Following recent papers (Ekhtiari et al., 2022a, 2022b), we initially convened a steering committee (SC) 

group, formed based on the collaborative network of the leading authors, to develop structured 

questionnaires with items using Five-point Likert scales or open questions (Supplementary Material - 

Appendix 2). The SC also provided qualitative feedback on several topics that were analyzed by the leading 

authors and qualitatively described here. Afterward, the SC interacted with a larger expert panel (EP) to 
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rate each item. The EP members were selected among the most productive authors in the field, identified 

through a systematic review of recent tES clinical trials in 10 years (Sup. Material - Appendix 3). Several 

interactions were performed between the EP and SC until a final manuscript version was assembled. The 

consensus was achieved by a >60% agreement of all panelists. Electronic questionnaires were used in all 

steps of this process. All members of the SC and the EP consented to have their names listed and identified 

in the manuscript. 

 

2.2. Systematic scoping review  

A systematic scoping review (Levac et al., 2010) was performed to identify tES reviews, consensus papers, 

and guidelines to select characteristics for composing the questionnaires used in the rating phase (Sup. 

Material - Appendix 4). 

 

2.3. tES digitalization readiness 

Companies producing tES devices were identified through specialist referrals and web search and 

surveyed using structured questionnaires to assess their digitalization readiness, according to 

connectivity, readiness for digital trials, parameter space flexibility, ecological footprint, front-end 

interface, and data security (Sup. Material - Appendix 5). 

 

2.4. Process mapping and methodological assessment 

We used SWOT (Strengths, Weaknesses, Opportunities, and Threats) and SIPOC (Suppliers, Inputs, 

Process, Outputs, Customers) approaches to respectively identify external and internal negative and 

positive aspects for digitizing tES trials and map and compare processes related to standard and digital 

tES trials. The methodological assessment was based on perceived challenges and advantages, identified 

through questionnaires, of conducting such trials (Sup. Material - Appendix 2). 

 

2.5. Role of the funding source 

This work received no specific funding from any source. 

 

3. Results 

3.1. Specialist panel 

For the SC, 34 authors were invited and all agreed to participate. For the EP, out of 43 authors who were 

identified, 14 did not reply to our contacts, and 2 declined to participate. Finally, 27 participants 

constituted the EP (Sup. Material - Appendix 6). Most panelists were men (70%), experienced (78% with 

> 10 years of experience in the field), and between 40 to 49 years old (44% and 33% of the SC and the EP). 

They resided in the US (SC n=11, EP n=3), Brazil (SC n=6, EP n=5), Germany (SC n=5, EP n=4), and 13 other 

countries (Sup. Material - Appendix 7). Only 15% and 18% of the SC and EP members, respectively, were 

not conducting at least one tES trial with digital features; most were principal investigators (83%) of such 

trials. 

 

3.2. Systematic scoping review 

Our initial search yielded 443 references, and 34 articles met the inclusion criteria of our scoping review, 

including 9 recommendation articles (Bikson et al., 2018a; Deer et al., 2014; Fregni et al., 2015; Fried et 
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al., 2021; Kim et al., 2020; Sandars et al., 2016; Sierawska et al., 2019; Thibaut et al., 2017; Zhang et al., 

2019), 10 guidelines (Antal et al., 2017; Bikson et al., 2020; Charvet et al., 2020, 2015; Cruccu et al., 2016; 

Fregni et al., 2021; Gillick et al., 2018; Lefaucheur et al., 2017; Legatt et al., 2016; Parikh et al., 2016), 10 

critical reviews (ALHarbi et al., 2017; Cappon et al., 2016; Godeiro et al., 2021; Lucchiari et al., 2018; 

Maatoug et al., 2021; McClintock et al., 2019; Sanches et al., 2021; Santos et al., 2021; Shiozawa et al., 

2017; Workman et al., 2020), and 5 expert consensus articles (Baptista et al., 2019; Buch et al., 2017; 

Ekhtiari et al., 2019; Grimaldi et al., 2014; Martelletti et al., 2013), which were used for elaborating the 

study questionnaires (Sup. Material - Appendix 8). 

 

3.3. tES digitalization readiness 

Eight of 13 companies contacted provided feedback. Digitization readiness varied according to their 

wireless connectivity, readiness for digital trials, the flexibility of parameter space, ecological footprint, 

front-end interface, and data security. Markedly, current systems have limited wireless connectivity, 

which is a barrier for device-to-device communication with wearables and third-party apps that could 

enhance portability potential (e.g., apps collecting biological data, and mobile mental health apps). 

Conversely, most systems currently present good data security protocols (reported HIPAA or GDPR 

compliance), the flexibility of tES parameter space, and readiness for digital trials (Fig. 2). 

 

Fig. 2. Digitalization readiness of tES devices. Based on the feedback of 8 out of 13 major transcranial electric current stimulation 

(tES) companies, we evaluated the readiness of these systems for digital trials, considering their connectivity (capability of 

communicating with other devices and the Web, due to the presence of Bluetooth, Wi-Fi, 3G/4G/5G, and communication with 

third-party apps), methodological aspects (randomization, sham, blinding, built-in data collection, optional data collection, and 

optional research dashboard), parameter space flexibility (current intensity, session duration, number of sessions, electrode 

positioning), ecological footprint (rechargeability and replaceability of batteries, recyclability and reusability of sponges, and 

recyclability of devices), front-end interface (smartphone app, touch screen, device itself, no interaction), and data security 

(compliance to laws such as GDPR, mention of encryption and anonymization procedures, and option for not collecting sensitive 

data). The questionnaires and rating systems are described in the Sup. Material-Appendix 5. 

 

3.4. SWOT assessment  
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The identified characteristics and quantitative agreement rating composing the SWOT assessment are 

displayed in Fig. 3. Qualitative aspects are briefly discussed here and detailed in the Sup. Material - 

Appendix 9. 

 

 
Fig. 3. SWOT (Strengths, Weaknesses, Opportunities, and Threats) assessment for digital tES trials. This figure depicts the ratings 

of 55 participants (24 from the steering committee and 31 from the expert panel) for the ptES clinical trials strengths and 

opportunities (A) and threats and weaknesses (B). Each item was rated from strongly disagree to strongly agree. In ratings for the 

potential strengths and opportunities of tES clinical trials (A), all of the items have reached the 50% threshold of agreement (rated 

as either agree or strongly agree by more than 50% of the respondents). These items have also reached a more stringent threshold 

of 60%. However, in ratings for the potential threats and weaknesses of ptES clinical trials (B), two of the items (2.4. Skin burns 

as a relevant side effect, and 2.6. Higher rates of serious adverse events) did not reach the 50% threshold. Items are represented 

by their summary in the figure. Full text of the items is provided in Supplementary Tables 1 and 2. tDCS=transcranial direct current 

stimulation. ptES=portable transcranial electrical stimulation. DIY=do-it-yourself. 

 

Regarding strengths, the panelists agreed on four features: (a) high safety, considering previous evidence 

from non-digital trials and studies in humans (Antal et al., 2017; Aparício et al., 2016; Bikson et al., 2016; 

Moffa et al., 2017); (b) feasibility of self-application, owing to recent developments of devices in which 

electrode placement is fixed, methods for easy strap positioning, and friendly end-user interface of mobile 

tES device (Charvet et al., 2020); (c) being a non-pharmacological intervention; and (d) affordability, as 

tES devices are simple to be built in terms of electric engineering (Woods et al., 2016), costs of high-end 

features (e.g., microprocessors, Bluetooth and wireless connectivity, miniaturization) are decreasing over 

time, and self-application saves human resources. 

Regarding weaknesses, panelists agreed on two aspects: (a) difficulties in remote supervision, raising 

concerns regarding patients themselves manipulating tES devices, which could lead to misuse, diversion 

of the device, or its use outside of medical contexts, further impacting on the reproducibility of findings; 

(b) and difficulties in obtaining accurate placement of electrodes, as deviations in electrode positioning 

and orientation might affect outcomes (Woods et al., 2016). Therefore, companies should develop and 

test new methods for assuring the correct placement of electrodes (Fried et al., 2021). Other potential 

weaknesses did not reach consensus, such as concerns related to bioethics, particularly regarding equity 
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to access; increased (compared to on-site tES trials) risks of common and serious adverse events 

(Lefaucheur et al., 2017); and relatively low evidence of clinical efficacy for most conditions (Fregni et al., 

2021). 

Regarding opportunities, six aspects reached agreement: (a) scalability, as, compared to on-site tES trials 

that need physical space, staff to apply sessions and commute of participants, digital trials using mobile 

tES devices do not have such constraints, allowing research assistants to monitor several participants at 

once, at any distance from the study centers; (b) telemedicine, which has been widely adopted during the 

COVID-19 pandemic, facilitating its adoption in digital trials; (c) employment of combined mobile Health 

technologies, permitting digital phenotyping (Torous et al., 2017) and combination with digital 

interventions when using paired wearables and smartphone applications; (d) automatization of 

procedures (see SIPOC below); (e) 5G / Internet of Things, which can boost connectivity and data 

processing, leveraging data collection (Torous et al., 2017) and eventually allowing the development of 

mobile closed-loop tES systems (Sanches et al., 2021); and (f) use of design thinking approaches, i.e., 

customizing mobile tES devices around the patients´ perspectives (Polhemus et al., 2020), for instance, to 

accommodate those with physical or cognitive impairments. 

Finally, two threats reached a consensus: (a) recreation and do-it-yourself misuse, which could lead to 

unexpected adverse events and safety issues (Sierawska et al., 2019); and (b) regulatory status, as medical 

devices require formal regulatory approval in the US (Darrow et al., 2021) and Europe (Antich-Isern et al., 

2021), although some tES devices are marketed as wellness devices, have regulatory device exemptions 

(Bikson et al., 2018b), or can be approved by similarity (Bikson et al., 2018b). Further, mobile tES devices 

could have additional regulations, if framed as mobile Health systems (Onodera and Sengoku, 2018). 

Additionally, two potential threats were identified by most of the panel, but did not reach the 60% 

consensus threshold: (a) risks related to hacking and cyber-security, as observed in mobile Health devices 

(Aljedaani and Babar, 2021), and (b) risks related to confidentiality and anonymity. 

 

3.5. SIPOC  

We identified 4 main processes (recruitment, pre-screening, screening, and participation) in which 

digitization and automatization procedures can leverage mobile tES trials (Table 1). The panelists noted 

that trials might not be purely digital or analog, and different degrees of digital features can occur at each 

process. For instance, participants can be recruited through social media but screened onsite. Moreover, 

digital processes can provide enhanced metrics to adjust processes, recruit faster, and follow participants 

for longer periods. Finally, digitization processes provide scalability due to the use of digital assessments 

and telemedicine.  (Table 1).  

 

Table 1. Comparison of SIPOC processes of trials in which digital features are present and absent. 

Digital features Suppliers Inputs Outputs Clients 

Process: Recruitment 

Absent 
Traditional 

Media 
Telephone call or email 

Pool of volunteers 

constrained due to 

geographical barriers 

Pre-screening / 

screening onsite teams 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 13, 2022. ; https://doi.org/10.1101/2022.03.03.22271837doi: medRxiv preprint 

https://doi.org/10.1101/2022.03.03.22271837
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

13 

Present 

Targeted Social 

Media and 

Google Ads, 

public 

segmentation 

Electronic forms, ChatBots 
Larger pool of 

volunteers 

Online pre-screening / 

screening teams 

Process: Pre-screening 

Absent Volunteers 
Onsite checklist of eligibility 

criteria 
Potential Participants Onsite screening team 

Present Volunteers 

Online assessments, AI 

techniques can increase the 

likelihood of inclusion 

Potential Participants Online screening team 

Process: Screening 

Absent 
Potential 

participants 

Onsite clinical interview; written 

consent 
Participants Onsite clinical team 

Present 
Potential 

participants 

Clinical interviews aided by 

digital assessments; digital 

consent 

Participants Online clinical team 

Process: Participation in the trial 

Absent Participants 
Staff delivers tES sessions and 

assessments 

Completers and 

patients who dropped 

out 

Trial complete; 

possibly follow-up 

studies 

Present Participants 

tES devices shipped to 

participants; online videos and 

telesupport to guide self-applied 

tES; digital assessments via 

online interviews and mHealth 

technologies 

Completers and 

patients who dropped 

out 

Trial complete; 

possibly follow-up 

studies 

The table illustrates how processes of clinical trials can be leveraged using digital approaches. In (a) recruitment, volunteers, 

unconstrained by geographical barriers, can fill out electronic forms and be automatically excluded according to eligibility criteria; (b) 

pre-screening, potential participants can be scheduled and contacted automatically for online screening (a step that can be enriched by 

using machine learning algorithms); (c) screening, enrolled participants can provide digital consent, have transcranial electric stimulation 

(tES) devices shipped to their homes, and being instructed how to use them via videos and/or augmented reality techniques; and (d) 

participation in the trial, interaction with the staff can be mediated by psychiatric chatbots for filtering between simple questions, 

reporting of adverse events and need of medical care. 
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3.6. Methodological aspects 

The panelists examined 24 methodological aspects of digital trials using mobile tES devices, reaching 

consensus in 12 of them (Fig. 4). They are briefly discussed here and detailed in the Sup. Material - 

Appendix 10. 

 

 

Fig. 4. Ratings for advantages and challenges of conducting tES digital trials. This figure depicts the ratings of 55 raters (24 from 

the steering committee and 31 from the expert panel) for methodological aspects of tES. Each item was rated from strongly 

disagree to strongly agree. In ratings for the advantages of transcranial electric stimulation (tES) digital trials from a 

methodological perspective, only one item (1.8. Greater internal validity) did not reach the agreement threshold of 50% (rated 

as either agree or strongly agree by more than 50% of the respondents). All of the other items in this category also reached a 

more stringent threshold of 60%. However, in ratings for challenges of tES digital trials from a methodological perspective, 9 

items (2.3. Increased risk for suicidality, 2.4. Increased risk for the manic switch, 2.5. Increased risk for cognitive effects, 2.6. 

Increased risk for SAEs, 2.7. ptES will substitute on-site, 2.8. More dropouts, 2.9. More selection biases, 2.10. More randomization 

biases, and 2.13. More assessment biases) did not reach the 50% threshold of agreement. With a more stringent threshold of 

60%, two additional items (2.11. More blinding biases and 2.12. More sham biases) dropped out from the agreement. Items are 

represented by their summary in the figure. Full texts of the items are provided in Supplementary Table 3. ptES=portable 

transcranial electrical stimulation. SAE=serious adverse event. 

 

Of the 12 aspects that reached consensus, 10 were perceived as advantages of digital trials, which 

included (a) the adoption of different study designs, including (b) adaptive designs, as adaptation rules 

can be performed automatically and remotely whether data are collected and analyzed by mobile tES 

systems. Panelists also considered that (c) tES devices are already sufficiently developed to be used 
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remotely, which allows for (d) longer follow-up periods and (e) higher recruitment rates, being (f) faster 

and more efficient than on-site trials. Also, (g) greater external validity compared to on-site trials were 

perceived. Finally, other advantages were the potential for (h) collecting more data than on-site trials, (i) 

combination with other therapies and (j) scalability. The 2 disadvantages/challenges that reached 

consensus were: (a) the necessity of validating new tES parameters, methodologies, and indications first 

in on-site studies, and (b) the need of developing better remote assessment methods, such as behavioral 

clinical scales properly designed and validated to be employed remotely.   

The items that did not reach consensus mostly pertain to internal validity issues. Interestingly, a significant 

portion of panelists was undecided on these issues (Fig. 5). Of note, interesting remarks (detailed in Sup. 

Material - Appendix 10) were made for: (a) randomization-allocation procedures that are done using 

either specific devices or apps/software, but can be vulnerable to contamination biases due to hacking 

and exposure of the randomization list; (b) study blinding, as blinding breaking can occur if devices are 

manipulated; (c) sham stimulation, which can also be revealed due to device manipulation. 

 

3.7. Recommendations 

The panelists recommended that teams performing tES digital trials should have members specialized in 

(a) digital marketing strategies, to enhance online recruitment; (b) data science and visualization, for data 

collection and analysis; (c) front-end interfaces, to enhance user experience; (d) back-end programming; 

(e) issues related to data security, integrity, anonymity, and replicability. Also, they suggested that (f) a 

team member should be always (“24/7”) available (Fig. 5). 

 

Fig. 5. Ratings of the tES clinical trials team features and general recommendations on digitizing tES trials. This figure depicts 

the ratings of 55 participants (24 from the steering committee and 31 from the expert panel) for the ptES clinical trials team 

features (A) and general recommendations for digitizing ptES clinical trials (B). Each item was rated from strongly disagree to 

strongly agree. In ratings for the ptES clinical trials team features (A), all of the items have reached the 50% threshold of 

agreement (rated as either agree or strongly agree by more than 50% of the respondents). These items have also reached a more 

stringent threshold of 60%. Similarly, in ratings for the general recommendations for digitizing ptES clinical trials (B), all of the 

items have reached the 50% threshold of agreement. However, with a more stringent threshold of 60%, one item (8. Develop 

methods to assess AEs) dropped out from the agreement. Items are represented by their summary in the figure. Full text of the 

items is provided in Supplementary Tables 4 and 5. ptES=portable transcranial electrical stimulation. AE=adverse event. 

SAE=serious adverse event. 
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Regarding further research, most panelists recommended that better methods for (a) 

randomization/allocation, and (b) sham should be explored. Also, further research was recommended to 

develop or refine methods to enhance (c) adherence and (d) external validity of the trials. Also, more 

research should be devoted to aspects such as (e) combination of interventions, (f) biobehavioral data 

collection, (g) enhanced data security, and methods to assess (h) serious and (i) unexpected adverse 

events (details in Sup. Material - Appendix 11). 

 

4. Discussion 

By convening a diverse group of 61 worldwide specialists in the field of non-invasive neuromodulation, 

we performed the first systematic assessment and Delphi-based validation of perceived challenges, 

opportunities, methodological issues, and recommendations on digitizing non-invasive neuromodulation 

trials. We used several strategies to organize and describe these assessments, such as processing mapping 

strategies, a systematic scoping review of the literature, iterative rating and validation of structured 

questionnaires by specialists, and assessment of the digital readiness of commercial tES devices. Taken 

together, our findings show that performing digital trials using mobile tES devices has complementary 

advantages and can overcome major on-site tES trial challenges, namely the intensive treatment 

schedules (Thibaut et al., 2017), transportation costs, accessibility, and scalability (Charvet et al., 2020). 

By performing trials remotely, dislocation burdens are decreased, as well as the need for space at the 

research center, and of trained staff for delivering tES sessions, aspects that increase the trial duration 

(Brunoni et al., 2012; Parikh et al., 2016, p. 4). Additionally, tES devices are highly scalable, as a single 

team member can monitor several people at once, provided that tES devices are easy to manipulate, 

handle, and can be self-delivered. Such scalability gains could be leveraged in faster trials with larger 

sample sizes, longer follow-up periods, and employing digital recruitment strategies. Considering our 

results, we propose and further discuss a conceptual framework for digitizing neuromodulation, 

combining concepts of digital clinical trials with mobile tES (Fig. 6). 

 

Fig. 6. A conceptual framework for digitizing neuromodulation. As depicted on the left side of the figure, transcranial electric 

stimulation devices had been relatively simple, essentially using batteries connected to electrodes to deliver constant currents, 
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and contain few (micro) electronic components. Although portable and safe, they had not been specifically designed for use 

outside hospital or academic center settings. New and future generations of tES will be mobile Health tES systems using digital 

technologies for improving health outcomes. They are and will be smaller and lighter than previous generations, possessing 

wireless connectivity. Such devices are already used at home and are self-delivered, usually with some degree of remote 

supervision. Their use will be supported by proprietary or third-party apps and wearables. Resulting together with the 

aforementioned concept as digitizing neuromodulation, the right side of the figure shows digital trials as clinical trials that use 

digital features to enhance recruitment, assessment, and data analysis and could unleash the full potential of tES regarding 

scalability and equity of access. There are many similarities between the assumptions of digital trials and the capabilities of mtES, 

which are discussed in this work. EMA=Ecological momentary assessment. mtES=mobile transcranial electrical stimulation. 

 

4.1. Mobile tES devices 

To the best of our knowledge, the term “mobile tES” has not been used yet to describe the combination 

of highly-deployable neuromodulation devices paired with other wearables or apps. This terminology 

frames tES in the context of mobile Health devices (Onodera and Sengoku, 2018), encouraging the 

exploitation of contact points between these two growing fields. However, even though several issues for 

deployable and remote use have already been addressed (e.g., decreasing prices, rechargeable batteries, 

tailored sponges, sham stimulation, easiness of electrode positioning, and programming session 

stimulation parameters), our findings showed that no commercial tES devices have been fully digitized 

yet, presenting different degrees of online, wired, or wireless connectivity. Also, especially for offline 

devices, methods for restricting the number of sessions allowed per day were not identified. Additionally, 

most systems neither collect active or passive data, nor present friendly-user interfaces.  

The panelists agreed on several opportunities; however, most are distant from immediate 

implementation. For instance, device-to-device communication ("Internet of Things") would need pairing 

with third-party apps or wearables, which is not yet available. This limits other perceived opportunities 

such as digital phenotyping, combination with psychological or cognitive app interventions, and seamless 

automatization with other platforms and digital processes. 

 

4.2. Methodological challenges, advantages, and processes of digital trials 

The impact of digitizing neuromodulation trials on external validity seems mostly positive, considering 

that subjects who would not be enrolled in on-site trials are reached. On-site trial samples are likely to be 

composed of those with free time and/or living near the clinical center to receive the sessions. 

Notwithstanding, it is still possible that those younger, richer, more educated, with higher digital literacy, 

and living in urban areas are preferentially enrolled in digital trials. Also, if recruitment strategies are 

performed solely using social media, the trial results would have restricted generalizability for people that 

do not use such media. This could be overcome by using segmented digital marketing campaigns. 

Likewise, attrition rates might not necessarily be lower in digital trials - although not needing to return 

daily to the clinical center could decrease the burden and minimize dropouts, samples from digital trials 

might face less engagement and more difficulties in self-delivering the sessions. The lack of daily contact 

with the clinical staff could also decrease motivation and increase dropouts. In addition, direct social 

contact, social support, and social connectedness outside the digital environment can influence attrition 

rates of clinical trials. Therefore, telemonitoring and proper interaction with participants, managing their 

expectations and credibility of the team, and reinforcing the need to abide by the study protocol, could 

avoid dropouts. 
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Panelists also emphasized that methodological issues that have not been completely addressed in on-site 

trials can be magnified in digital trials (Charvet et al., 2015; Fried et al., 2021). For instance, if the process 

of randomization - allocation concealment - is hacked from the server and publicly exposed, the entire 

trial can be lost (or, at least, suspended until a new list is generated). Moreover, blinding and sham 

stimulation issues are not completely resolved issues in on-site trials (Fonteneau et al., 2019), and biases 

arising from these steps are more likely to occur (e.g., sham stimulation can be unconcealed by measuring 

the voltage between electrodes (Woods et al., 2016)) and harm the entire study (for example, by exposing 

methodological vulnerabilities on the Web). Additionally, issues that would be minor in on-site trials might 

be more relevant in online trials. For instance, stimulation sessions can be performed in on-site trials 

appropriately and guarantee adherence (Woods et al., 2016), but, in digital trials, some degree of remote 

monitoring would be necessary for ensuring these aspects. 

Finally, there are unique new challenges for digitizing neuromodulation. Even though cyber-hacking is not 

usually discussed in the environment of clinical trials, government and big company systems are being 

increasingly hacked. Data anonymity and confidentiality are additional aspects of vulnerability more 

relevant than in on-site trials, if, for instance, information is also recorded in the devices, smartphones, or 

is transmitted remotely. Data collection using standard behavioral scales (for instance, scales for 

depression) and adverse events need to be further validated to be used online and remotely to avoid 

instrumental biases. Finally, even open pre-publication of study protocols, which enhances transparency 

and reproducibility, cannot be fully detailed in digital trials, as a complete description of the groups, 

blinding methods, and sham stimulation of the protocols could be harmful to the internal validity of digital 

trials (Charvet et al., 2020, 2015).   

 

4.3. Limitations  

Although we systematically reviewed the literature for selecting the most productive authors in 

neuromodulation, experts publishing in non-English databases might not have been selected. In addition, 

most of the panelists are from high-income countries, limiting the experience, feedback, and the number 

of votes of panelists from low-/middle- income countries, where 85% of the world population lives, and 

with probably additional issues on digitalization, including availability. Moreover, our search might not 

have identified emerging young experts as we have established a threshold based on the number of 

publications. Although we considered different methods for composing the EP, such as “snowball 

sampling” based on recommendations from the SC members, and search of other databases such as 

clinicaltrials.gov, preprints, and conference publications, these processes would be non-systematic or 

involve gray areas in the literature. We also did not assess other stakeholders besides people from 

industry and academia that could have been relevant for our work, such as patients, governmental and 

non-governmental organizations. Moreover, only 8 of 13 companies replied to our contacts, despite 

several emails that were sent to reach them, and even offering the possibility of online meetings to discuss 

this work. Although we could have extracted company information based on public information, we opted 

not to do that as some information could have been inaccurate. Finally, no large tES digital trials have 

been finished and published yet; therefore, the processes and challenges described here are mostly 

theoretical and should be iteratively updated as the field develops. Interestingly, the lack of consensus on 

issues related to its disadvantages, risks, and biases, with many specialists remaining undecided, indicates 

that the field is still in its infancy.  
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4.4. Future directions   

The recommendations for teams conducting digital neuromodulation trials markedly diverge from on-site 

trials that are centered on clinical specialists and staff trained in performing biomedical procedures. The 

feasibility of these recommendations should be further debated, as they would require more resources. 

Most recommendations fit with companies and for pivotal studies, and not necessarily for teams running 

pilot studies that would not have all the capabilities recommended above. For instance, third-party 

services could be contracted to do specific tasks related to software and hardware development, or such 

aspects could be developed together by researchers and companies. Moreover, recommendations such 

as a support team being always available for medical urgencies, although optimal, might be unrealistic 

even with large resources. Such issues would need to be carefully discussed with internal review boards 

and ethics committees to guarantee patient safety without harming trial feasibility.  

The recommendations for further research in some aspects specifically related to internal validity, and 

also external validity, were largely convergent, reaching 70-80% agreement rates. Taken together, these 

recommendations call for new standards and best practices of fundamental pillars of tES clinical research, 

such as methods for sham stimulation, randomization, allocation, and assessment of adverse events. 

These methodologies have been steadily built over the last decade (Bikson et al., 2018a; Brunoni et al., 

2019, 2012) and, although challenged in certain aspects such as sham and blinding (Fonteneau et al., 2019; 

Turner et al., 2021), they have been largely used in clinical trials (Fried et al., 2021). Although several 

approaches could be used, in a first step relatively simple randomized studies involving healthy 

participants could use parameters such as blinding efficacy and rate of adverse events as outcome 

measures, comparing whether they are different in those receiving on-site vs. online tES. Pilot studies 

using mobile tES in clinical samples are also encouraged to report their methodological approaches and 

challenges (Alonzo et al., 2019; Eilam-Stock et al., 2021).      

 

5. Conclusion 

In this first Delphi Panel evaluating opportunities, risks, and methodological issues regarding digitizing tES 

trials, we provided a landscape of this new approach and reached a consensus on several 

recommendations that should be evaluated in further studies. The panel of specialists agreed on the 

advantages associated with the implementation of tES trials; however, considering the fast-growing 

digitalization in Medicine and Biotechnology, there is a pressing need to better understand how to adapt 

tES trials to be performed remotely, with a clearer knowledge regarding its positive and negative aspects.     
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