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Abstract

There is increasing expectation that advanced, computationally expensive machine learning techniques, when applied to

large population-wide neuroimaging datasets, will help to uncover key differences in the human brain in health and disease.

We take a comprehensive approach to explore how multiple aspects of brain structural connectivity can predict sex, age,

general cognitive function and general psychopathology, testing different machine learning algorithms from deep learning

model (BrainNetCNN) to classical machine learning methods. We modelled N = 8, 183 structural connectomes from UK

Biobank using six different structural network weightings obtained from diffusion MRI. Streamline count generally provided

highest prediction accuracies in all prediction tasks. Deep learning did not improve on prediction accuracies from simpler

linear models. Further, high correlations between gradient attribution coefficients from deep learning and model coefficients

from linear models suggested the models ranked the importance of features in similar ways, which indirectly suggested the

similarity in models’ strategies for making predictive decision to some extent. This highlights that model complexity is

unlikely to improve detection of associations between structural connectomes and complex phenotypes with the current

sample size.
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Introduction

Recent advances in neuroimaging have made it possible to acquire high quality structural brain scans in large samples, which provides

opportunities for the development and application of novel machine learning (ML) techniques geared specifically for analysing brain

structural architecture. Machine learning methods have the ability to uncover latent features from high-dimensional imaging data

which are not apparent when using more conventional statistical methods. This is thought to be particularly promising for better

understanding important biological and complex behavioural information.

The structural connectome is a comprehensive description of the connectivity between different brain regions, defined by the

structure of white-matter fibre tracts (Bullmore and Sporns, 2009). The connectome is a relatively recent development which holds
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promise for discovery. One might expect deep learning methods to be well suited for the analysis of connnectomes, given their complexity

and high-dimensionality. The structural connectome is based on information from diffusion magnetic resonance imaging (dMRI), which

measures the directional diffusion of water molecules in the brain to identify connections between distal brain regions and enables

estimation microstructural properties in brain white matter. The measures acquired through dMRI can be used to reconstruct individual

participant connectomes in the form of adjacency matrices, where row and column indices specify to each brain region and the matrix

entries are the connectivity strengths (which can be measured using various diffusion parameters) between any two regions of interest

(ROI). The weighted networks constructed from different connectivity modalities then represent different interpretations of connection

strength (Agosta et al., 2014; Buchanan et al., 2020; Collin et al., 2014; Hagmann et al., 2008; Jiang et al., 2020b; Robinson et al., 2010;

Rutland et al., 2019).

The most commonly used connectivity weightings are based on streamline count (SC), fractional anisotropy (FA) and mean diffusivity

(MD). SC provides both intra-regional as well as inter-regional streamline densities (Hagmann et al., 2008), FA measures the degree of

directional dependence of the water molecular diffusion (Basser and Pierpaoli, 2011; Robinson et al., 2010), and MD measures the

average magnitude of diffusion of water molecules in all directions (Agosta et al., 2014; Alexander et al., 2007; Collin et al., 2014).

In addition, three newer network weightings are available thanks to the development of Neurite Orientation Dispersion and Density

Imaging (NODDI) (Zhang et al., 2012). NODDI estimates include neurite density (intra-cellular volume fraction; ICVF), extra-cellular

water diffusion (isotropic volume fraction; ISOVF) and tract fanning/complexity (orientation dispersion; OD).

There is accruing evidence that differences in connectomic properties between people, particularly for global network measures, are

associated with basic demographic variables namely age and sex, both of which are important predictors of brain health (Buchanan

et al., 2020; Madole et al., 2021; Ritchie et al., 2018). Connectomic differences are also associated with psychiatric and neurological

brain disorders, and that some connectome alterations are shared across multiple brain disorders (de Lange et al., 2019; Korgaonkar

et al., 2014; Ma et al., 2020). While univariate statistical methods allow assessing relationships between measures of interest and brain

disorders, machine learning (ML) approaches allow combining information from different features for diagnostic classification, prediction

of symptom severity levels and prediction of treatment response. More recently, researchers have been exploring ways of applying ML to

connectome data. Some examples include the development of the Connectome-based Predictive Modelling approach and application of

the Support Vector Machines for predicting cognitive ability, behavioral measures and clinical outcomes (Finn et al., 2015; Gong and

He, 2015; Griffa et al., 2013; Jiang et al., 2020a; Payabvash et al., 2019).

Although an individual connectome provides a lower-dimensional representation of the brain when compared to a voxel-wise MRI

image, there are still thousands of features - connections between brain regions - which may lead to over-fitting. To reduce dimensionality,

global graph-theoretic metrics are commonly derived from connectomes and analysed as coarse representations of the participants’ brain

networks (de Lange et al., 2019; Sun et al., 2017; Suo et al., 2018). A popular alternative technique is subnetwork analysis, where brain

regions in the connectome are limited to those previously shown as relevant to the clinical traits or conditions of interest (Chen et al.,

2016; Zheng et al., 2019). It is also common to employ feature selection to reduce dimensionality (Shen et al., 2017). Some of the

common prediction models used with high-dimensional connectomic data are LASSO regression (Madole et al., 2021; Sripada et al.,

2019; Wager et al., 2013), ridge regression (Gao et al., 2019; Siegel et al., 2016), elastic-net (Rahim et al., 2017), multiple kernel learning

Support Vector Machine (MKL-SVM) (Xu et al., 2020), as well as relevance vector regression (Gong et al., 2014). Most of these models

only consider linear interactions between ROIs and treat each connection independently. More recent studies, however, have shown that

brain regions interact nonlinearly, and thus these approaches may not be optimal (Breakspear, 2017; Ocker et al., 2017; Wang et al.,

2019).

Measures of cognitive ability and psychiatric symptoms, like imaging data, can be high dimensional and have often been analysed as

general factors to reduce dimensionality (Cronbach and Meehl, 1955). A general intelligence factor (g-factor) can be derived from a
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sufficiently broad domain of cognitive tasks, and g-factors from different sets of cognitive tasks have been shown to be highly correlated

(Johnson et al., 2004, 2008). Likewise, researchers have explored the possibility of a single dimension (p-factor) to measure one’s mental

health (Caspi et al., 2014; Caspi and Moffitt, 2018; Lahey et al., 2012). Empirical evidence indicates a continuum of symptoms across

multiple mental illnesses and an overlap of symptoms across mental disorders (Kotov et al., 2017), with some disorders sharing the

same set of risk factors and biomarkers (Goodkind et al., 2015; Pinto et al., 2017). While molecular levels of analysis support the

g-factor as a unitary construct, less molecular evidence provides support for the unitary nature of the p-factor (de la Fuente et al., 2021;

Grotzinger et al., 2021, 2020). Rather, the p-factor may represent an emergent phenomenon, arising from the aggregation of varied

mechanisms present across subsets of psychiatric conditions. Studies have found that both the g-factor and the p-factor are highly

heritable in adulthood (Allegrini et al., 2020; Grotzinger et al., 2019; Harden et al., 2020), and associated with variation in the human

brain connectome (Lund et al., 2020; Madole et al., 2021). The measure of general intelligence and psychopathology has been found to

be strongly associated with long term outcomes (Calvin et al., 2011; Caspi et al., 2020; Deary, 2008; Plana-Ripoll et al., 2019; Strenze,

2007). The discovery of ML models that can accurately predict cognitive functioning and mental health will be beneficial to advances in

the application of ML to predict different types of neurological disorders.

Rapid growth in availability of parallel computing in the recent years has enabled application of deep learning (DL). DL is very

effective in extracting latent features and non-linear patterns from complex data (Vieira et al., 2017). A 3D convolutional neural network

(CNN) approach has been used to investigate automated brain disease classification based on or voxel-based morphometric (VBM)

features derived from structural MRI scans (Cole et al., 2017; Hu et al., 2020; Zou et al., 2017). Additionally, different graph-based

neural network (GNN) models have been developed for predictive modelling based on connectivity matrices from diffusion MRI (dMRI)

and resting state functional MRI (rs-fMRI) (Kawahara et al., 2017; Li and Duncan, 2020). In a previous study (Yeung et al., 2020),

we have shown that the BrainNetCNN neural network architecture proposed by Kawahara et al. (2017) was more appropriate for

sex classification based on brain connectome adjacency matrices compared with a naive image-based CNN architecture. With the

customised CNN layers, the BrainNetCNN could potentially capture non-linearities in connectomic data that could be related to

complex phenotypes.

Although there are several theoretical merits in the application of DL methods for understanding the neurobiological correlates

of important between-person differences, the use of promising cutting-edge DL methods and its quantitative benefits beyond more

conventional statistical methods remain moot. He et al. (2020) reported that Kernel Ridge Regression achieved comparable results

with DL models (He et al., 2020). Schulz et al. (2020) also showed that non-linear models did not outperform simple linear models in

predicting common phenotypes from brain scans (Schulz et al., 2020). In contrast, Abrol et al. (2021) found in their study that DL

models substantially outperformed standard ML methods (Abrol et al., 2021). Large sample sizes and appropriate image processing

methods constitute a highly valuable test-bed in which to directly address the challenge of assessing the performance of DL methods in

comparison to other methods.

In this study, we directly compare the BrainNetCNN model against four classical ML methods when applied to structural connectomes

in the UK Biobank (UKB), one of the largest structural connectome samples to date, based on 6 different structural connectivity

modalities. Namely, the investigated modalities were the three common network weights – SC, FA and MD - discussed in many previous

studies, and three newer and less-well studied network weights – OD, ICVF and ISOVF – derived with NODDI. Our main aims were i)

to compare the performances and feature robustness on prediction of sex and age as benchmark tasks, as well as general cognition

(g-factor) and mental health (MHQ-factor) among the 6 different connectivity modalities with the DL models, ii) to test the effect of

adding external predictors to DL model, iii) to investigate how the DL model used the brain features for prediction, through the use of

Gradient Attribution Map, iv) to compare the DL model’s performance, feature robustness and feature importance ranking with those

of classical ML methods, using prediction of sex and age as benchmark and then extending to prediction of more complex phenotypes
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(cognition and psychopathology).

Results

Prediction performances for different tasks

We first applied the BrainNetCNN classification models to predict sex. Table 1a shows the prediction accuracies and Figure 1 shows

the Receiver Operator Characteristic (ROC) curve for sex for the different structural connectivity weightings. We found that SC

attained the best performance (Accuracy = 86.91%) of all modalities, on average 4.1% clear of the next best, OD. We then applied

the BrainNetCNN regression models to predict age. Table 1b shows the mean absolute error (MAE) and correlation between the raw

predicted age and the true values for different connectivity weightings. Here the best performance was again obtained with SC (MAE =

4.245 years).

We also assessed prediction of the g-factor and the MHQ-factor. Table 1c shows the results for g-factor. Cognition and psychopathology

being complex phenotypes are more subtly reflected in brain phenotypes compared to age, and hence we expected much larger prediction

errors for these variables. This was indeed the case with correlation between the raw predicted g-factor and the true values being 60

– 75% lower compared to those observed for age prediction. Again, SC was the modality with best performance (g-factor: MAE =

0.780, Correlation = 0.201, MHQ-factor: MAE = 0.790, Correlation = 0.143). Table 1d shows the results for MHQ-factor, where the

correlations were 80 – 85% lower compared to those observed for age prediction.

We then investigated whether addition of age and sex covariates to the DL model improved predictive performance. Age and sex

were both significantly associated with the g-factor and MHQ-factor, and we considered that if these covariates were combined with

the brain connectivity matrix, this would improve predictive performance of the DL model. Indeed, the DL model with additional

covariates was able to achieve better performance for g-factor where all modalities achieved correlations around 0.238 - 0.251 (Table

2a). The additional covariates also improved prediction of the MHQ-factor, with all modalities achieving correlations around 0.202 -

0.245 (please see Table 2b). Moreover, when trained with additional covariates, models based on all modalities achieved comparable

performances on predicting g-factor and MHQ-factor.

The training progress plots for the BrainNetCNN models are presented in section B.4.4 of the Supplementary Materials.

Mapping predictive streamline count and fractional anisotropy features

Since SC and FA are the most common weights used in previous studies, the remainder of the analysis focuses on the results obtained

from prediction models based on the SC and FA inputs. We computed the gradient attribution maps, averaged across folds, for the DL

models to investigate how the deep neural networks made their predictive decisions, and to estimate ROI predictive powers, see Methods.

Figure 2 and 3 show the circos plots of gradient maps for all the prediction tasks based respectively on the SC and FA connectomes.

Sex classification gradient maps

According to the SC gradient attribution map for sex classification (SexGradient), many connections from right medial orbital-frontal,

right inferior temporal regions and right hippocampus are predictive of being female (Figure 2a). Conversely, we saw that many

connections from left superior temporal, right accumbens areas and left ventral diencephalon regions were chosen as being predictive of

being male. In general, the precuneus, right superior temporal region , right insula, right putamen and right thalamus were considered

by the model as being hubs of important connections for sex classification.
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According to SexGradient based on FA, many connections from the frontal pole, right inferior temporal and left occipital regions were

highlighted as being predictive of being female (Figure 3a). On the other hand, we saw that many connections from right accumbens,

right putamen and left entorhinal were predictive of being male. In general, right thalamus, right caudate, right putamen, left isthmus

cingulate and left superior frontal regions were considered by the model as being hubs of important connections for sex classification.

Age prediction gradient maps

According to the gradient attribution map for age prediction (AgeGradient) based on SC, many connections from pallidum, temporal

pole and medial orbital frontal regions are predictive of being older, while connections from hippocampus, right ventral diencephalon

and right transverse temporal regions are predictive of being younger (Figure 2b). In general, the right thalamus, right accumbens areas,

right ventral diencephalon, right medial orbital frontal and right precuneus were considered by the model as being hubs of important

connections for age prediction.

According to AgeGradient based on FA, many connections from accumbens, isthmus cingulate and right insula regions are predictive

of being older, while connections from pars opercularis, pars traingularis, superior frontal and left lateral orbital frontal were predictive

of being younger (Figure 3b). In general, the thalamus, putamen, right caudate, left ventral diencephalon and left isthmus cingulate

regions were considered by the model as being hubs of important connections for age prediction.

g-factor prediction gradient maps

It was found that adding covariates to the DL model helped to reduce confounding effects as seen in classical methods. The correlation

between gradient attribution map for g-factor prediction without covariates (GGradient) and AgeGradient was -0.2722, while correlation

between gradient attribution map for g-factor prediction with covariates (GCovGradient) and AgeGradient was -0.0996, averaged across

cross-validation folds. We hypothesised that the addition of age and sex covariates to the model would have accounted for the effects of

these covariates on the g-factor and we here therefore report the g-factor gradients for the DL model which includes these covariates. We

note that according to GCovGradient based on SC, many connections from thalamus, left superior temporal and right parahippocampal

regions were chosen as being predictive of higher g-factor, while most connections from medial orbital frontal, right amygdala and left

lateral orbital frontal regions were predictive of lower g-factor (Figure 2c). In general, right thalamus, left putamen, left hippocampus,

right superior parietal and right precuneus regions were considered by the model as being hubs of important connections for predicting

cognitive g-factor (Figure 2c).

Adding covariates had similar effects for the models with FA as what we saw for SC. The correlation between GGradient and

AgeGradient was -0.2581 while correlation between GCovGradient and AgeGradient was -0.0852, averaged across folds. According to

GCovGradient based on FA, many connections from the left lingual, left rostral anterior cingulate and right entorhinal regions are

predictive of higher cognitive g-factor, while most connections from left temporal pole, right caudal anterior cingulate and left pallidum

regions are predictive of lower cognitive g-factor (Figure 3c). In general, ventral diencephalon, right insula, right inferior temporal,

right caudate and right isthumus cingulate regions were considered by the model as being hubs of important connections for predicting

cognitive g-factor.

MHQ-factor prediction gradient maps

According to gradient attribution map for MHQ-factor prediction with covariates (MHQCovGradient) based on SC, many connections

from right middle temporal, left entorhinal and left superior frontal regions were chosen as being predictive of higher MHQ-factor score

(higher MHQ-factor score representing higher psychopathology, while most connections from left pericalcarine, left superior temporal

and right caudate regions were predictive of lower MHQ-factor score (Figure 2d). In general, superior temporal, left precuneus, left
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putamen, right superior parietal and left lingual regions were considered by the model as being hubs of important connections for

predicting MHQ-factor score.

According to PCovGradient based on FA, many connections from left amygdala, left lateral orbital frontal and left pars triangularis

regions were chosen as being predictive of higher MHQ-factor score, while most connections from left insula, right pallidum and right

amygdala regions were predictive of lower MHQ-factor score (Figure 3d). In general, insula, left ventral diencephalon, left posterior

cingulate, left middle temporal and right inferior temporal regions were considered by the model as being hubs of important connections

for predicting MHQ-factor score.

Interpretation of edge importance for each prediction task

In order to verify if small subsets of edges were predominantly responsible for performance at each prediction task, kurtosis measures of

the edge-gradient distributions were examined to evaluate whether the probability mass was concentrated around the mean. This way

we assessed the gradients for age, g-factor and MHQ-factor prediction. It was found that the kurtoses of gradients for age, g-factor

and MHQ-factor predictions based on SC were respectively 43.67, 10.93, and 11.50 (Figure 4a), and were respectively 19.24, 4.36 and

5.16 based on FA (Figure 4b). This implies that there were more edges having gradients close to the mean (zero) for age prediction

compared to the other two prediction tasks. This indicates that the model mainly relied on a smaller but more robust subset of edges

for age prediction, but on wider ranges but less robust subset of edges for g-factor and MHQ-factor predictions. Figure 4 shows the

histograms of gradients for each prediction task based on SC and FA modalities.

Comparing prediction performance with classical machine learning approaches

In addition to BainNetCNN, we also applied Ridge Regression, LASSO Regression, linear SVM and Kernel Ridge Regression (KRR) to

predict sex, age, g-factor and MHQ-factor. Without covariates, all four alternative prediction algorithms (Ridge Regression, LASSO

Regression, linear SVM and KRR) performed the best with SC data on most prediction tasks with some exceptions (Ridge Regression

and KRR performed best on ISOVF weights for age prediction). When predicting g-factor and MHQ-factor with additional covariates,

linear methods (Ridge Regression, LASSO Regression, linear SVM) performed better with FA and OD rather than SC data, while KRR

performed the best with SC data. The full results and the AUC ROC curves for sex classification are included in section B.3 of the

Supplementary Materials. Overall, we found performance of the classical ML methods to be comparable to that of the BrainNetCNN.

Tables 3a - 3d show the predictive performance of the five models respectively on sex classification, age prediction, as well as g-factor

and MHQ-factor predictions (both with age and sex covariates added), based on streamline counts.

For Ridge Regression, LASSO Regression and linear SVM models we additionally extracted feature beta weights in order to compare

them with the BrainNetCNN gradient attribution maps. This was not possible for the KRR model due to non-linear transformation of

the feature space.

Consistency of the Gradients/Betas across folds as well as across different models

Beta weights in classical ML models were generally more stable across folds compared to gradients from the DL models, likely due to the

linear nature of the classical approaches. The betas for the ML models from the three classical methods achieved correlations of > 0.68

across folds, for all prediction tasks and for each of the network weightings. The betas were generally more stable for sex classification

and age prediction compared to prediction of g-factor or MHQ-factor. For DL gradients, we saw that the gradients for age and sex

prediction were consistent across folds (correlations > 0.74). The gradients were however not as consistent for g-factor prediction

(correlations of 0.48 − 0.6). A higher correlation between gradient maps implies a higher consistency in feature ranking between the
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models across folds, which is why we claimed that the features were more robust age prediction than in g-factor and MHQ-factor

prediction. Details of across-fold gradient and beta weight correlations are presented in section B.4.1 of the Supplementary Materials.

Regarding the consistency of the DL gradients with classical ML betas, the betas from linear ridge regression were the most

consistent with the gradient attribution maps from BrainNetCNN across different prediction tasks. Spearman correlations between the

betas and the gradient attribution maps based on SC and FA were 0.66 − 0.77 and 0.49 − 0.85 respectively for different prediction tasks,

see section B.4.2 of the Supplementary Materials.

The top brain regions predictive of g-factor and MHQ-factor within BrainNetCNN and within linear Ridge Regression had a high

percentage (≥ 60%) of overlap, within both SC and FA modalities (see section B.4.3 in the Supplementary Materials). This implies that

the deep learning models and the linear ridge regression models rated features in highly similar ways.

We additionally found that inclusion of covariates in linear models had similar effects on the betas as on the gradients in BrainNetCNN,

when both models were based on SC matrices. Without the included covariates, the betas for g-factor prediction (GBetas) and the betas

for age prediction (AgeBetas) had average correlation of -0.2592. With covariates, the betas for g-factor (GCovBetas) and AgeBetas

had average correlation of -0.0527.

Discussion

In the current study, we applied the BrainNetCNN DL model to connectivity matrices derived from six different structural connectivity

modalities, MD, FA, SC and three other novel measures OD, ISOVF and ICVF, to predict sex, age, as well as two other clinically relevant

behavioural measures, the cognitive g-factor and the mental health MHQ-factor using structural connectome data. All connectome

processing and network construction steps were performed locally on diffusion and structural MRI data from the UKB. This is one of

the largest structural connectome datasets to-date and offers unprecedented statistical power. The BrainNetCNN, which has a more

customized design for connectome-based predictive modelling than classical ML models, has novel E2E and E2N layers specifically

designed to capture non-linear combinations of brain connections that could be related to complex phenotypes. Taken together,

application of BrainNetCNN on a large sample of locally-derived connectomes represents a substantial advantage of our study.

It was found that the best predictions were generally achieved with SC matrices across all models, though these are likely more

susceptible to the confounding effects of age and sex, probably via head size. Adding age and sex as external regressors to the

BrainNetCNN model helped improve the prediction of both g-factor and MHQ-factor, which demonstrates utility of adding external

predictors to the BrainNetCNN model. This is consistent with the previous studies, which have shown that adding relevant covariates

to CNN models may lead to better predictive performance (Yamamoto et al., 2020). In our study we found that addition of external

regressors (i.e. the covariates) had similar effects on the performance of the DL model, as it had on the performance of the classical

linear regression models. A recommendation which follows from our results is that researchers should consider adding clinical and

demographic covariates to DL models to improve prediction results.

When comparing BrainNetCNN to the classical ML methods, we found similar performance across all prediction tasks. The KRR

model did not outperform the other three linear predictive models. This implies that models which simply consider ROI-to-ROI

connections individually and linearly can match state-of-the-art machine learning models when applied to structural connectomes.

We further found high correlations between gradient maps from DL models and beta maps from linear models, which indicates that

BrainNetCNN estimated the connectivity graph node and edge importance weights in similar ways as linear prediction models. Moreover,

inclusion of age and sex covariates had similar effects in both BrainNetCNN and linear models. This potentially implies that there is a

lack of exploitable non-linearity in brain scans for phenotype prediction, as previously suggested in Schulz et al. (2020). Taken together,

these results indicate that most of the variation between phenotypes in weighted structural connectomes is linear rather than non-linear

7

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 22, 2022. ; https://doi.org/10.1101/2022.03.03.22271801doi: medRxiv preprint 

https://doi.org/10.1101/2022.03.03.22271801
http://creativecommons.org/licenses/by-nc-nd/4.0/


in nature.

In the current study, we found that the models based on SC measures had the best predictive performance compared to other

network weightings. This is in line with the results of the previous studies which showed that use of SC measures led to better

performance when predicting Autism Spectrum Disorders and paediatric Traumatic Brain Injury (Payabvash et al., 2019; Raji et al.,

2020). SC measures might overall be more sensitive to phenotype and psychopathology-related differences in brain connectivity (e.g.

(Oestreich et al., 2019)). We note that the entries in SC matrices followed log normal distributions, while entries in other types of

connectivity matrices followed normal distributions, which might have been one reason for superior predictive performance with SC

matrices. Another possibility, as suggested in Buchanan et al. (2020), could be that the confounding effect of age and sex via head size

on SC weightings was larger than on other types of network weightings, which gave a possible explanation to the disappearance of SC’s

superiority in predicting g-factor and MHQ-factor after adding sex and age to the prediction models.

As expected, we found prediction of g-factor (r = 0.249) and the MHQ-factor (r = 0.234) to be less accurate than prediction of

age and sex. We also found that the feature rankings were more robust in sex and age prediction than in g-factor and MHQ-factor

prediction. Predicting complex cognitive phenotypes from structural neuroimaging is a difficult task. Existing studies conducted on

large community samples found that structural neuroimaging measures tend to account for only modest proportions of variance in

intelligence (Cox et al., 2019b; Deary et al., 2021). Prediction of case-control status for specific mental illnesses or modelling of mental

health continuum has been a similarly difficult task. While some recent studies have had some success in predicting anxiety (Greening

and Mitchell, 2015; Wang et al., 2021) and depression symptom severity (Yu et al., 2021) with functional and structural connectomes

(achieving correlations > 0.24 between the predicted score and the actual score), they generally had relatively small sample sizes with

replication yet to be achieved in larger cohorts. Our study extends these results and suggests that brain regions and connections are

differentially important for prediction of behavioural and mental health phenotypes such as the g-factor and MHQ-factor (Cox et al.,

2019b; Dubois et al., 2018).

Our analysis of SC gradient maps revealed the putamen, right precuneus, right thalamus and left superior temporal regions as

hubs of important connections for all prediction tasks. For FA gradient maps, we found that the right isthmus cingulate, right ventral

diencephalon and right insula were selected as hubs of important connections for all prediction tasks. The relative importance of

the regions shown here in the context of prediction modelling should not be interpreted from a functional perspective. In other

words, the estimated relative region importance for g-factor prediction must not be taken to indicate importance of that region for

e.g. the cognitive processes underpinning the g-factor. This is because the collinearity among regional brain properties results in the

selection of some predictors that carry global information, with other predictors being used for fine tuning of the prediction model. The

low-to-medium correlations between the beta coefficients (from ML models) and gradient maps (from DL models) lends some credence

to such hypothesis. In-depth interpretations on drawing linkage between structural network weights and behavioural measures will

require a different type of analysis technique.

Some limitations of the current study should be mentioned. First, the UKB consists of healthier, highly educated and older

individuals (Fry et al., 2017), which may induce bias in model training and the derivation of g-factor and MHQ-factor. Second, it is

possible that the representation of structural connectivity in the form of adjacency matrices might have limited the deep learning

model’s potential to utilise the latent non-linear properties of the brain networks, thus leading to suboptimal performance on prediction

of the g-factor and MHQ-factor. Another possibility, as described in both He et al. (2020) and Schulz et al. (2020), is that a much

larger sample size may be needed for DL models to show superiority over classical ML methods. We note that greater sample sizes will

soon be feasible and it will be advantageous for uncovering the relationship between prediction performance and sample size as well as

unlocking the potential of DL models. Fourth, BrainNetCNN has novel layers designed for preserving the topology of adjacency matrices.

However, the setup of the E2E and E2N layers only allowed aggregating values in the 1-hop neighbourhood (primary neighbours) and
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this might have limited its ability to explore long-range connections. This could have limited the DL model ability to learn complex

non-linear relationships. A simple adjustment could be to alter the network architecture by stacking a number (e.g. k) of E2E layers,

which would enable the model to explore brain region connections to k-hop rather than 1-hop neighbours. In this case, however, the

simpler and shorter-range connections (i.e. 1-hop to (k − 1)-hop neighbourhood) may be ignored and not used for prediction in the top

layers. To overcome these limitations, future studies could modify the BrainNetCNN architecture according to the idea of residual

connections in deep neural networks (He et al., 2016) – which would enable the model to take into account both direct and indirect

longer-range connections between brain regions.

The MHQ-factor in this study was derived from online MHQ items collected by the UKB and they were not clinical diagnoses.

While it might not be adequate to represent the general dimension of psychiatric disorders, it can be interpreted as a measurement of

general mental health that is potentially more informative than binary case control distinctions (Coleman, 2021). We acknowledge

that p-factor derived from factor modelling is less well validated as in other measures, for example the g-factor, and results should

be considered accordingly (Cervin et al., 2020; van Bork et al., 2017; Watts et al., 2020). Nonetheless, other studies do support the

existence of general dimensions to capture psychopathology (Caspi et al., 2020; Lund et al., 2020; Plana-Ripoll et al., 2019; Sprooten

et al., 2022), and further investigate the polygenic p-factor derived from polygenic scores for different psychiatric disorders (Allegrini

et al., 2020; Selzam et al., 2018). Most current derivations of p-factor rely on binary or ordinal data which reduces variance and thus

statistical power. Future studies may explore p-factor derivations based on continuous variables.

A further, more general limitation of our study is that there is not yet an agreed methodology for constructing structural brain

networks from dMRI data (Qi et al., 2015). Connectomic measures are known to be sensitive to the network construction methodology,

and different predictive modelling results might be achieved with network construction approaches other than those applied here. dMRI

itself only enables noisy and indirect measurement of water molecule diffusion, and thus faithful reconstruction of brain connectivity

remains challenging (Buchanan et al., 2020; Jones et al., 2013). These limitations will be addressed in the future with further advances

in both structural imaging and tractography methods.

To summarize, we verified that adding relevant external predictors to the BrainNetCNN could potentially aid the prediction. The

BrainNetCNN DL model did not perform substantially better compared to classical ML approaches when applied to predict age, sex,

g-factor or MHQ-factor from connectomic data. Comparison of gradient maps from DL models and beta maps from linear ML models

suggested that these methods ranked the features in similar ways. Results also showed that the BrainNetCNN model treated the

additional covariates (age and sex) in a similar way as did the classical linear regression models. Overall, results of our study imply that

additional model complexity may not improve prediction of complex phenotypes from structural connectomic data.

Materials and Methods

Materials

Participants were recruited and brain imaging was completed as part of the UKB study. The UKB field IDs for the cognitive tasks and

mental health questionnaire (MHQ) items used in this study are presented in section A.1 of the Supplementary Material. Details of the

UKB data can be found at https://biobank.ndph.ox.ac.uk/showcase/label.cgi?id=100000. As a brief summary, four cognitive

tasks were chosen for deriving the g-factor and 14 MHQ items were chosen for derivation of the MHQ-factor.
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Participants

A subset of the UKB participants underwent brain MRI at the UKB imaging centre in Cheadle, Manchester, UK. N = 9, 858 participants

with compatible T1-weighted and dMRI data were collected from the UKB for which we derived connectomes locally, as described

below.

MRI Acquisition

All imaging data were acquired using a single Siemens Skyra 3T scanner. 3D T1-weighted volumes were acquired using a MP RAGE

sequence at 1 × 1 × 1 mm resolution with 208 × 256 × 256 field of view (FOV). The dMRI data were acquired using a spin-echo EPI

sequence (50 b = 1000s/mm2, 50 b = 2000s/mm2 and 10 b = 0s/mm2) resulting in 100 distinct diffusion-encoding directions, FOV

= 104 × 104 mm, imaging matrix = 52 × 52, 72 slices, slice thickness = 2 mm. N = 831 (∼ 8.4% of total N) participants with missing

dMRI data or processing failure were excluded from the analysis. Details of the MRI protocol and imaging data processing can be

found in (Alfaro-Almagro et al., 2018; Miller et al., 2016).

Network Construction

The network data and methods of network construction used in this study have been published previously (Buchanan et al., 2020; Madole

et al., 2021) and are outlined below. All network construction steps were performed locally on MRI data. Each T1-weighted image

was segmented into 85 distinct neuroanatomical Regions-Of-Interest (ROI) using volumetric segmentation and cortical reconstruction

(FreeSurfer v5.3.0), 34 cortical structures per hemisphere were identified using the Desikan-Killany atlas (Desikan et al., 2006). Brain

stem, accumbens area, amygdala, caudate nucleus, hippocampus, pallidum, putamen, thalamus and ventral diencephalon were also

extracted with FreeSurfer. Outputs were visually inspected and those which failed to meet quality control (QC) standards were removed

(Cox et al., 2019a). N = 842 (∼ 8.5% of total N) participants with incomplete FreeSurfer output or processing failure were excluded

from the analysis. A cross-modal nonlinear registration method was used to align ROIs from T1-weighted volume to diffusion space

(skull stripping (Smith, 2002), initial alignment by affine transformation with 12 degrees of freedom (FLIRT; (Jenkinson and Smith,

2001)) followed by a nonlinear deformation method (FNIRT; (Andersson et al., 2007))).

Networks were constructed by identifying connections between all ROI pairs. The endpoint of a streamline was recorded as the

first ROI encountered when tracking from the seed location. Successful connections were recorded in an 85 × 85 adjacency matrix. In

total, six network weightings, FA, MD, SC, OD, ISOVF and ICVF, were computed. For each weighting, an adjacency matrix was

computed with each element, aij , recording the mean value of the diffusion parameter in voxels identified along all interconnecting

streamlines between nodes i and j. All matrices were made symmetric since afferent and efferent connections are indistinguishable

for tractography. Self-connections were removed, setting diagonal entries to zero (Buchanan et al., 2020). N = 2 participants with

disconnected connectivity matrices were excluded.

In total, 8, 183 participants (45.1–78.5 years of age, 3,869 male) remained after participants were excluded at QC stage or due to

failure in processing. Although it was reported in Madole et al. (2021) that N = 157 participants (< 2%) might have dementias and

neurological syndromes, for example stroke and brain injuries, they found that excluding these participants from the sample did not

result in significant differences in their primary outcome measures (Madole et al., 2021). We therefore kept the full sample for the

following analysis. On average, 6.01 million streamlines were seeded per subject of which 1.49 million (24.9%) were found to successfully

connect between nodes following the tracking procedure and removal of self-connections. For each participant, networks were produced

from the same set of streamlines, where the range of values for MD is 0 - 0.003 ×10−3mm2/s, for FA is 0 - 0.9, for SC is 0 - 4.03 ×104,

for OD is 0 - 0.9, for ISOVF is 0 - 1 and for ICVF is 0 - 1. Before any thresholding was introduced, the mean value of network density
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(percentage of non-zero entries in an adjacency matrix) across subjects was 68.1% (SD = 3.1). Proportional-thresholding was used to

keep only connections present in at least 2/3 of subjects, which resulted in connection density of ∼60% after thresholding.

Cognitive Tasks and g-factor

The cognitive tasks included the Verbal Numerical Reasoning (VNR), Reaction Time (RT, log-transformed), Pairs Matching (Pairs

Match, log (x+1) transformed) and Prospective Memory (Fawns-Ritchie and Deary, 2020; Lyall et al., 2016) tests. Table 4 shows

participants characteristics, demographic information and cognitive task scores. Missing values were imputed in R with the missMDA

package (Josse et al., 2016). Description of the cognitive tasks’ scores is presented in section A.1.1 of the Supplementary Materials.

Principal component analysis (PCA) implemented in pcacov function in MATLAB 2020a was applied to the 4 cognitive tasks as an

intermediate step to derive the cognitive g-factor value for each participant. The principal component score, g-factor, was computed as

the sum of z-normalised cognitive task scores multiplied by the respective first unrotated component coefficients from pcacov. The

g-factor explained 34.55% of the variance. To avoid data leakage, the principal component coefficients were computed with exclusion of

the test data (see below). Excluding the missing values and test data in the cognitive tasks, 6558 samples were available for computing

the principal component coefficient. The g-factor was z-normalised based on the training data. The resulting g-factor had a range

[-4.3661, 2.7664]. The standardised loadings of scores for each task on the g-factor are shown in Table 5.

MHQ-factor

The derivation of the general mental health score, the MHQ-factor, followed the same principles as described in (Lund et al., 2020).

Lund et al. (2020) applied principal component analysis (PCA) to the 14 mental health questionnaire (MHQ) items from the UKB

which measured common forms of depression, anxiety, psychotic experiences and substance abuse, and took the first unrotated principal

component score as the MHQ-factor. In this study, the same set of MHQ items was used to derive the MHQ-factor. Out of 8,183

participants, 6,247 participants had fewer than 3 missing values on these 14 MHQ items. The missing values were imputed in R with

the missMDA package (Josse et al., 2016).

Since all MHQ items were categorical variables, the polychoric correlation was more appropriate than Pearson’s correlation for

application of PCA. We applied PCA on polychoric correlation of the 14 items and took the first unrotated principal component score

as the MHQ-factor. A comparison of the two PCA methods (using polychoric and Pearson correlation) is presented in section A.2.1 of

the Supplementary Materials. We checked the variance explained, factor congruence between the two methods, and assessed correlations

between the principal component scores derived using the two methods. This motivated selection of polychoric correlation for the PCA.

The derived MHQ-factor explained 49.60% for the variance. Figure 5 shows the loadings of the individual MHQ items on the principal

components. We saw strong positive loadings of depressive/anxiety items on the first PC and positive loadings of psychotic experiences

items on the second PC, which is similar to the results reported in (Lund et al., 2020). It was also found that the MHQ-factor was not

significantly associated with the g-factor (Pearson’s Correlation = 0.0025, p-value = 0.8483).

Methods

BrainNetCNN Components

We chose the BrainNetCNN model as it is specifically designed for connectomic data. While additional transformation to the graph

data is often needed for other methods (e.g. mapping connectomic data to participant-wise similarity matrix using graph kernels

or to n-dimensional Euclidean space using graph embedding), the information aggregation process within the custom layers within
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the BrainNetCNN model preserves the topological locality of connectivity adjacency matrices. Kawahara et al. (2017) provide clear

formulations of the special layers for the BrainNetCNN (Kawahara et al., 2017). Briefly, the layers user in the network are following:

1. Edge-to-Edge (E2E) layer: This is a convolution layer with a cross-shaped filter where the (i, j) entry output is given by the

weighted sum of the i-th row and weighted sum of the j-th column. This can be written as:

(Ak,n)ij =
Fk−1∑
f=1

Ak−1
i,: · wk−1,f,n

r + Ak−1
:,j · wk−1,f,n

c (0.1)

where Ak,n is the filtered adjacency matrix, Ai,: is the i-th row of A and A:,j is the j-th column of A, and wk−1,f,n
r and wk−1,f,n

c

are the learnt row and column weights for the n-th filter at the k − 1-th layer, respectively. Fk−1 is the number of feature maps

at the k − 1-th layer.

2. Edge-to-Node (E2N) layer: An E2N layer is equivalent to adding a spatial 1D convolutional row filter of the adjacency matrix to

a transposed spatial 1D convolutional column filter of the adjacency matrix. Kawahara et al. (2017), showed that combining the

row and column filters does not result in improvement of model performance when compared to using only the row filter, and

hence only the row filter was applied in the current study.

Network Architecture

Architecture without covariates The architecture of the deep neural network is presented in Figure 6a. This is a simpler version

of the original architecture described in Kawahara et al. (2017). We were able to significantly reduce the number of layers and filters

while maintaining prediction performance. Moreover, either increasing the number of filters per layer or the number of hidden layers

made the overfitting more severe. We have also experimented with hyperparameter tuning for the E2E, E2N and N2G layers, aiming to

optimise scales for Leaky Rectified Linear Unit and the dropout rate using Bayesian Optimisation. The hyperparameter optimisation

in BrainNetCNN was performed on a fixed predefined validation set (rather than through cross-validation) to enable reasonable

optimization times. The accuracies were similar to those without tuning and we therefore proceeded with fixed hyperparameters (Figure

6) in our further investigations. Full results with hyperparameter tuning are shown in the Supplementary Materials section B.2.

Architecture with covariates The g-factor and MHQ-factor are known to be significantly associated with age and sex, and hence

consideration of these factors in the predictive model can improve its performance. To take into account age and sex covariates, the

model was update with additional layers. Specifically, a concatenation layer was connected to the N2G layer to include the covariates.

Figure 6b shows the architecture of the updated model.

The loss function for sex classification was cross entropy and the loss function for the other three prediction tasks was mean

square error.

Network Input

The SC matrices were first made symmetric by addition of the transpose and division by 2. We then performed maximum value

normalisation on the symmetric SC matrices. The maximum value normalisation was performed on all modalities as we previously

found this to be the most effective normalisation (Yeung et al., 2020). Maximum value normalisation is formulated as follows:

Amax = A

max
1≤i,j≤85

Aij
(0.2)
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Since it is known that the head size has great influence on the streamline counts , we computed the correlation between the

intracranial volume (ICV) and the total sum of entries in the SC matrices before and after normalisation. We found that the correlation

was 0.7405 (β = 0.7988, p < 1 × 10−324) before normalisation and -0.0701 (β = −1.023 × 10−5, p = 3.784 × 10−11) after normalisation.

Therefore, we saw that the maximum value normalisation was able to largely remove the effect of ICV. Figure 7 shows the mean

connectivity matrices computed across all participants for different weightings and histograms of edge weights pooled across participants.

The SC weights were shown in log-scale. The five network weightings except for SC had similar distribution shapes. MD, FA, OD and

ICVF had skewness in the range [-0.3, 0.3]. ISOVF had a skewness of 1.36 and SC has a skewness of 8.01.

Gradient Attribution Map

Gradient Attribution Map were computed to check which connectivity matrix entries influenced prediction the most (Simonyan et al.,

2013). This is similar to computing the partial derivative of the class score with respect to each entry of the An matrix, where the

magnitudes of the derivatives represent the degrees of influence on the final class score, yn, for some participant n. This means that the

magnitudes of gradients approximately tell us how the model ranks the structural connectome feature importance with respect to the

evaluated prediction task. The sign of the gradient indicates whether the connectome feature is positively or negatively predictive of the

target variable. Gradients thus partly inform us of the model’s strategy in making its predictive decisions. By computing correlations

between gradient maps for different models (i.e. trained for different prediction tasks), it is thus possible to assess similarity in the

model strategies for completing these tasks.

Due to the stochastic nature of the neural network training process, the gradient maps may be different across different training

runs and across different parameter initialisations. In our study the BrainNetCNN models were therefore trained 20 times for each

cross-validation (CV) partition with randomised parameter initialisations. Since we used 5-fold cross validation, there were 100

BrainNetCNN models trained in total. We then took the average of the gradient maps from the 100 models for each modality and each

prediction task.

Since An is symmetric, we expected that ∂yn

∂An
ij

= ∂yn

∂An
ji

. However, in reality, since the column weights and row weights within the

filters were trained independently, it was found that not only An
ij and An

ji had different magnitudes, but some of the pairs even had

opposing signs. To solve this issue, we summed each gradient map with its transpose, thus getting a single gradient estimate for each

ROI-to-ROI connection.

Predictive power of each node (ROI) was defined as the sum of the gradients of the node’s edges. This enabled determining whether

the node was generally predictive of higher or lower outcome values. Importance of each node was defined as the sum of the absolute

values of the node edges’ gradients This was used to determine whether a node was a hub of important connections for prediction. We

report the top regions relevant for each prediction task based on these two measures (predictive power and importance) in section B.4.3

of the Supplementary Materials. We should note that our assessment of node importance was purely based on the magnitudes and

directions of the gradient map entries. We thus do not claim that the regions defined as important for prediction in this study were the

only ones related to (or responsible for) the evaluated phenotypes.

Model Hyperparameters

For both models we used Adam optimiser (Kingma and Ba, 2014) for weight updates, with the same set of hyperparameters used in

training: learning rate = 0.001, gradient decay factor = 0.9, squared gradient decay factor = 0.9, mini batch size = 128, validation

frequency = 50, training epoch = 200. The training stopping points corresponded to the best validation accuracy.

13

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 22, 2022. ; https://doi.org/10.1101/2022.03.03.22271801doi: medRxiv preprint 

https://doi.org/10.1101/2022.03.03.22271801
http://creativecommons.org/licenses/by-nc-nd/4.0/


BrainNetCNN Validation and Testing

The participants were first sorted according to their participant ID in ascending order. The test set consisted of the first 15% of the

total sample (∼ 1230 participants for prediction of sex, age and cognitive functioning, ∼ 940 participants for MHQ-factor – a slightly

smaller number because only 6,247 participants had both structural connectomes data and responses to MHQ items available). 5-fold

CV was performed on the rest of the data. The same set of CV fold splits was used across the imaging modalities to enable direct

comparisons. In each iteration of the 5-fold CV, a BrainNetCNN model was trained on the corresponding training fold for 200 epochs

and the deep learning weights at each epoch were recorded. This resulted in 200 sets of weights representing different phase of learning

within the training process. Each set of weights (or epoch weights) gave a corresponding validation accuracy/correlation, and the set of

weights that yielded the best validation accuracy were taken as the optimal weights for the iteration and were used for performance

evaluation on the test data. Test accuracies were averaged across the folds to get performance estimates.

Classical Machine Learning Approaches

We compared the DL models with linear versions of three common classical methods: Ridge Regression, LASSO Regression, and

linear SVM. The beta weights can be efficiently extracted from these three types of models and therefore enabled comparison with

the BrainNetCNN gradient attribution maps. We also applied Kernel Ridge Regression (KRR). Multiple studies suggest that KRR

may have comparable performances with DL methods (He et al., 2020; Mihalik et al., 2019; Schulz et al., 2020). Input features to

these models were the individual ROI-to-ROI connections specified in the normalised adjacency matrices (i.e. the non-zero upper/lower

triangular entries of the matrices).

In addition to the predictive analyses based on the connectomic data we also tested using only age and sex to predict the g-factor

and MHQ-factor. The models were underfit and we therefore did not examine them further.

Ridge Regression Ridge regression is very similar to ordinary least squares regression except for the fact that it has an extra

regularisation term:

Y = Xβ + e (0.3)

where Y is the response variable, X is the input feature vectors, β are the learnt feature weights, subjected to the following cost function,

min
β

square loss + λβT β

where square loss = (Y − Xβ)T (Y − Xβ). The L2 regularisation term (λβT β) is added to prevent overfitting. For logistic regression,

the equation is the following,

ln p

1 − p
= Xβ + e

where p = P (Y = 1), and square loss is replaced by logistic loss:

logistic loss = −
N∑

i=1

[
− ln (1 + eXi,:β) + Yi(Xi,:β)

]
where N is the number of observation, Xi,: is the feature vector for observation i, Yi is the response for observation i.
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LASSO Regression LASSO regression is similar to Ridge regression except that the L2 regularisation term is replaced by L1

regularisation term, with the same regression equation, but subject to a different constraint:

min
β

square loss + λ ∥β∥1

Similarly to logistic Ridge regression, square loss is replaced by logistic loss in logistic LASSO regression.

Support Vector Machine SVM is one of the most popular ML techniques applied in the neuroimaging literature. For classification,

SVM constructs hyperplanes between two classes such that the distance between them is as large as possible. The larger the hyperplane

margin between classes, the lower the out-of-sample error. SVM regression (SVM-R) is similar to the “soft margin” concept in SVM

classification. More details can be found in (Boser et al., 1992) for support vector classification and (Drucker et al., 1997; Ho and Lin,

2012; Vapnik et al., 1997) for support vector regression. Linear kernel was used in this study. The epsilon parameter for linear SVM-R

was estimated using the interquartile range of response variable Y.

Kernel Ridge Regression Kernel regression is a non-parametric ML algorithm (Murphy, 2012). Instead of taking the original

features as predictors, it takes the subject pairwise-similarities as the predictors for the ML model. Let Xtrain = {x1, x2, · · · , xn} be

the set of feature vectors and Ytrain = {y1, y2, · · · , yn} be the set of responses in the training set. For a test subject x′, y′ is estimated

through the following equation:

y′ =
n∑

i=1

βiK(xi, x′)yi

where the K(xi, x′) is the similarity between x′ and each feature vector xi in the training set. βi are the learnt feature weights, subjected

to the cost function similar to the one stated in the section of Ridge Regression. With this setup, the dimension is basically equal to the

number of observations in the training set in each fold. Similar to He et al. (2020), the similarity K(·, ·) was chosen to be the Pearson’s

correlation between the upper triangular entries of matrices (He et al., 2020).

Classical ML Methods Validation and Testing LASSO regression, Ridge regression and linear SVM methods have single

regularisation hyperparameter λ. Search range for optimal λ consisted of 300 different values ranging from 1e-6 to 1e-1 equally spaced

on the logarithmic scale. The validation process for the classical machine learning models was similar to that used with BrainNetCNN.

After separating the test set from the rest of the data, a 5-fold CV was performed on the rest of the data. In each iteration of the 5-fold

CV, a model was trained on the training fold data with each of the 300 λ values, resulting in 300 models. The λi that optimized the

validation accuracy/correlation was chosen for that iteration, so the λs are different for each fold, each model and each connectivity

weight.”
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Figures

Figure 1: Area Under the curve (AUC) and ROC curve for sex classification with BrainNetCNN model. MD = mean
diffusivity; FA = fraction anisotropy; SC = streamline count; OD = orientation dispersion; ISOVF = isotropic volume fraction;
ICVF = intracellular volume fraction.
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(a) Sex (b) Age

(c) g-factor (d) MHQ-factor

Figure 2: The saliency maps based on SC connectomes for all prediction tasks. SC = streamline count. Blue represents
negative gradients and red represents positive gradients. The colour bar has interval of 0.1 to 99.9 percentile of the gradients
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(a) Sex (b) Age

(c) g-factor (d) MHQ-factor

Figure 3: The saliency maps based on FA connectomes for all prediction tasks. FA = fractional anisotropy. Blue represents
negative gradients and red represents positive gradients. The colour bar has interval of 0.1 to 99.9 percentile of the gradients
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(a) SC

(b) FA

Figure 4: The histograms of gradients based on SC and FA for each prediction task. FA = fraction anisotropy; SC =
streamline count. The kurtosis measures of gradient distributions for age, g-factor and MHQ-factor predictions based on SC
were 43.67, 10.93, and 11.50 respectively, and were 19.24, 4.36 and 5.16 based on FA. This implies that there were more edges
having gradients close to the mean (zero) for age predictions than in the other 2 prediction tasks. This indicates that the
model relied on a smaller subset of edges for age prediction, but relied on a wide range of edges for g-factor and MHQ-factor
predictions.
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Figure 5: Loadings of the 14 MHQ items in UKB on the principal components derived with PCA. We saw strong positive
loadings of depression/anxiety items on the first PC and positive loadings of psychotic experience items on the second PC.
Please see Supplementary Table 1 in section A.2.2 for exact values of standardised item loadings on principal components.
Q1: Ever addicted to any substance or behaviour ; Q2: Ever felt worried, tense, or anxious for most of a month or longer
; Q3: Ever worried more than most people would in similar situation ; Q4: Ever had prolonged loss of interest in normal
activities ; Q5: Ever had prolonged feelings of sadness or depression ; Q6: Ever heard an un-real voice ; Q7: Ever believed in
an un-real conspiracy against self ; Q8: Ever seen an un-real vision ; Q9: Ever believed in un-real communications or signs
; Q10: Ever self-harmed ; Q11: Ever sought or received professional help for mental distress ; Q12: Ever suffered mental
distress preventing usual activities ; Q13: Ever had period of mania / excitability ; Q14: Ever had period extreme irritability
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(a) The BrainNetCNN Architecture (b) The BrainNetCNN Architecture with Covariates

Figure 6: Two BrainNetCNN Architectures. E2E: Edge-to-Edge, E2N: Edge-to-Node, N2G: Node-to-Graph, FC: Fully
connected, Leaky ReLU: Leaky Rectified Linear Unit, prob: probability
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Figure 7: Top: 85 times 85 mean connectivity matrices of inter-region connection weights averaged across all participants
(N = 8,183) for six network weightings after performing maximum value normalisation. The two blocks along the diagonal
in each case correspond to the left and right hemispheres. Bottom: the corresponding histograms of nonzero edge weights
pooled across all participants for each weighting (SC is log-scaled). MD = mean diffusivity; FA = fraction anisotropy; SC =
streamline count; OD = orientation dispersion; ISOVF = Isotropic volume fraction; ICVF = Intracellular volume fraction.
The SC weights were shown in log-scale. Apart from the SC weights, the other five network weightings had similar distribution
shape. MD, FA, OD and ICVF had skewness in the range [-0.3, 0.3]. ISOVF had a skewness of 1.36 and SC has a skewness of
8.01.
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Tables

Weights MD FA SC OD ISOVF ICVF
Validation 78.07 (0.54) 80.76 (0.70) 89.18 (0.60) 83.53 (0.51) 82.07 (0.75) 80.45 (0.89)
Training 87.17 (2.35) 89.44 (2.40) 94.10 (1.28) 91.60 (1.76) 91.49 (2.70) 91.58 (3.27)
Test 78.15 (0.86) 79.74 (0.82) 86.91 (0.72) 82.88 (0.95) 81.82 (0.22) 78.34 (1.03)

(a) Sex prediction accuracies (mean percentage with standard deviation in brackets) with BrainNetCNN for different connectivity
weightings.

Weights MD FA SC OD ISOVF ICVF
Validation 4.696 (0.640) 4.636 (0.645) 4.153 (0.727) 4.374 (0.691) 4.256 (0.703) 4.731 (0.625)
Training 3.797 (0.785) 3.669 (0.796) 3.634 (0.795) 3.550 (0.804) 3.538 (0.806) 3.941 (0.765)
Test 4.640 (0.644) 4.674 (0.636) 4.245 (0.706) 4.571 (0.655) 4.363 (0.678) 4.692 (0.626)

(b) Age prediction performance (mean absolute errors with correlations in brackets) with BrainNetCNN for different connectivity
weightings

Weights MD FA SC OD ISOVF ICVF
Validation 0.151 (0.770) 0.168 (0.770) 0.227 (0.764) 0.185 (0.768) 0.168 (0.780) 0.169 (0.769)
Training 0.232 (0.764) 0.275 (0.761) 0.314 (0.745) 0.315 (0.753) 0.286 (0.758) 0.264 (0.763)
Test 0.138 (0.782) 0.168 (0.780) 0.201 (0.780) 0.132 (0.787) 0.155 (0.786) 0.160 (0.782)

(c) g-factor prediction performance (correlations with mean absolute error in brackets) with BrainNetCNN for different connectivity
weightings

Weights MD FA SC OD ISOVF ICVF
Validation 0.100 (0.803) 0.089 (0.780) 0.117 (0.785) 0.118 (0.794) 0.095 (0.795) 0.073 (0.794)
Training 0.238 (0.797) 0.252 (0.768) 0.323 (0.751) 0.218 (0.785) 0.403 (0.785) 0.199 (0.787)
Test 0.116 (0.817) 0.112 (0.792) 0.143 (0.790) 0.130 (0.804) 0.112 (0.804) 0.103 (0.805)

(d) MHQ-factor prediction performance (correlations with mean absolute error in brackets) with BrainNetCNN for different connectivity
weightings

Table 1: Prediction performances with BrainNetCNN of four different prediction tasks based on different connectivity
weightings. MD = mean diffusivity; FA = fraction anisotropy; SC = streamline count; OD = orientation dispersion; ISOVF
= isotropic volume fraction; ICVF = intracellular volume fraction. Use of connectomes based on streamline counts generally
led to the best predictive performance results.
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Weights MD FA SC OD ISOVF ICVF
Validation 0.247 (0.758) 0.251 (0.760) 0.264 (0.756) 0.255 (0.752) 0.242 (0.766) 0.247 (0.751)
Training 0.311 (0.746) 0.314 (0.744) 0.354 (0.731) 0.325 (0.737) 0.303 (0.748) 0.307 (0.738)
Test 0.247 (0.762) 0.251 (0.764) 0.244 (0.769) 0.242 (0.760) 0.238 (0.768) 0.249 (0.759)

(a) g-factor prediction performance (correlations with mean absolute error in brackets) using BrainNetCNN model with age and sex
covariates for different connectivity weightings

Weights MD FA SC OD ISOVF ICVF
Validation 0.228 (0.773) 0.223 (0.757) 0.204 (0.758) 0.228 (0.758) 0.183 (0.768) 0.215 (0.768)
Training 0.254 (0.767) 0.269 (0.749) 0.335 (0.738) 0.274 (0.751) 0.376 (0.739) 0.262 (0.759)
Test 0.243 (0.778) 0.239 (0.763) 0.231 (0.763) 0.245 (0.764) 0.202 (0.772) 0.238 (0.771)

(b) MHQ-factor prediction performance (correlations with mean absolute error in brackets) using BrainNetCNN model with age and sex
covariates for different connectivity weightings

Table 2: g-factor and MHQ-factor prediction performance using BrainNetCNN model with age and sex covariates for different
connectivity weightings. MD = mean diffusivity; FA = fraction anisotropy; SC = streamline count; OD = orientation
dispersion; ISOVF = Isotropic volume fraction; ICVF = Intracellular volume fraction. After adding covariates as external
regressors to the BrainNetCNN model, all network weightings had comparable performances on both g-factor and MHQ-factor
prediction.
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Model BrainNetCNN Ridge Logistic Regression LASSO Logistic Regression SVM KRR
Validation 89.18 (0.70) 89.67 (1.01) 88.22 (1.42) 89.77 (0.91) 86.44 (1.30)
Training 94.10 (1.28) 93.75 (1.40) 90,41 (0.29) 93.90 (0.89) 88.09 (0.36)
Test 86.91 (0.72) 87.54 (0.48) 85.90 (0.68) 87.27 (0.56) 84.28 (0.36)

(a) Performance of the five tested algorithms on sex classification (mean percentage with standard deviation in brackets) with connectivity
measures based on streamline counts.

Model BrainNetCNN Ridge Regression LASSO Regression SVM-R KRR
Validation 4.153 (0.727) 4.221 (0.713) 4.238 (0.71) 4.318 (0.698) 4.402 (0.685)
Training 3.634 (0.795) 3.773 (0.779) 3.897 (0.763) 3.975 (0.738) 4.271 (0.707)
Test 4.245 (0.706) 4.258 (0.698) 4.282 (0.695) 4.357 (0.684) 4.434 (0.669)

(b) Performance of the five tested algorithms on age prediction (mean absolute error with correlations in brackets) with connectivity
measures based on streamline counts.

Model BrainNetCNN Ridge Regression LASSO Regression SVM-R KRR
Validation 0.264 (0.756) 0.270 (0.748) 0.268 (0.749) 0.270 (0.745) 0.245 (0.759)
Training 0.354 (0.731) 0.330 (0.735) 0.335 (0.733) 0.316 (0.730) 0.354 (0.728)
Test 0.244 (0.769) 0.248 (0.764) 0.248 (0.765) 0.246 (0.763) 0.257 (0.768)

(c) Performance of the five tested algorithms on cognitive g-factor prediction (correlation with mean absolute error in brackets) with
connectivity measures and common covariates based on streamline counts

Model BrainNetCNN Ridge Regression LASSO Regression SVM-R KRR
Validation 0.204 (0.758) 0.223 (0.767) 0.226 (0.768) 0.224 (0.794) 0.207 (0.774)
Training 0.335 (0.738) 0.281 (0.753) 0.279 (0.755) 0.286 (0.750) 0.269 (0.758)
Test 0.231 (0.763) 0.244 (0.772) 0.237 (0.776) 0.230 (0.794) 0.229 (0.780)

(d) Performance of the five tested algorithms on mental health MHQ-factor prediction (correlation with mean absolute error in brackets)
with connectivity measures and common covariates based on streamline counts

Table 3: Performances of the five tested algorithms on four different prediction tasks with connectivity measures based on
streamline counts. The linear ML models have comparable performance with the non-linear model (KRR) and the deep
learning model (BrainNetCNN) on all four evaluated prediction tasks.
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Sample characteristics Training set summary Test set summary Total Data Available (N)
Sex [F:M] 3647:3306 667:563 8183
Age (in years) [Mean (SD)] 62.10 (7.39) 62.49 (7.45) 8183

(a) Demographic information for the training and test sets of the UK Biobank participants

Cognitive measure Sample mean score Data Available (N)
VNR [Mean (SD)] 6.87(2.1) 7806
RT (in log x) [Mean (SD)] 6.36(0.17) 8090
Pairs Match (in log(x + 1)) [Mean (SD)] 1.29(0.65) 8127
Prospective Memory [1:0] 7257:855 8112

(b) Sample mean scores of the cognitive tasks completed by the UK Biobank participants included in the study

Table 4: Summary characteristics of the UK Biobank participants included in the study. VNR: Verbal Numerical Reasoning.
RT: Reaction Time. Pairs Match: Pairs Matching. For the prospective memory test, 1 means recall at the first attempt and
0 otherwise.
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Cognitive Tasks Loadings
VNR 0.6914
RT -0.5514
Pairs Match -0.5186
Prospective Memory 0.5752
PropVar 0.3455

Table 5: Standardised loadings of individual cognitive test scores on the cognitive g-factor. VNR: Verbal Numerical Reasoning.
RT: Reaction Time. Pairs Match: Pairs Matching. PropVar: Proportion of variance explained by the g-factor.
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