- 1 Development and validation of a modified Cambridge
- 2 Multimorbidity Score for use with internationally recognized
- 3 electronic health record clinical terms (SNOMED CT)

- 5 Authors:
 6 Ruby S. M. Tsang¹
- 7 0000-0002-2520-526X
- 8 ruby.tsang@phc.ox.ac.uk
- 9
- 10 Mark Joy¹
- 11 0000-0002-4974-3724
- 12 mark.joy@phc.ox.ac.uk
- 13
- 14 Heather Whitaker²
- 15 0000-0001-5833-1863
- 16 <u>heather.whitaker@phe.gov.uk</u>
- 17
- 18 James P. Sheppard¹
- 19 0000-0002-4461-8756
- 20 james.sheppard@phc.ox.ac.uk
- 21
- 22 John Williams¹
- 23 0000-0002-6118-0434
- 24 john.williams@phc.ox.ac.uk
- 25
- 26 Julian Sherlock¹
- 27 0000-0001-7427-1936
- 28 julian.sherlock@phc.ox.ac.uk
- 29 30 Nikhil Mayor³
- 31 0000-0003-2681-2501
- 32 nikhil.mayor@nhs.net
- 33
- 34 Bernardo Meza-Torres¹
- 35 0000-0001-6551-5484
- 36 <u>bernardo.meza-torres@phc.ox.ac.uk</u>
- 37
- 38 Elizabeth Button¹
- 39 0000-0003-0777-2508
- 40 <u>elizabeth.button@phc.ox.ac.uk</u>

41	
42	Alice J. Williams ¹
43	0000-0003-4612-1468
44	alice.williams@phc.ox.ac.uk
45	
46	Debasish Kar ¹
47	0000-0002-1524-1312
48	<u>debasish.kar@phc.ox.ac.uk</u>
49	
50	Gayathri Delanerolle ¹
51	0000-0002-9628-9245
52	gayathri.delanerolle@phc.ox.ac.uk
53	
54	Richard McManus ¹
55	0000-0003-3638-028X
56	richard.mcmanus@phc.ox.ac.uk
57	
58	F. D. Richard Hobbs ¹
59	0000-0001-7976-7172
60	richard.hobbs@phc.ox.ac.uk
61	14
62	Simon de Lusignan ^{1,4}
63	0000-0002-8553-2641
64	<u>simon.delusignan@phc.ox.ac.uk</u>
65	
66	Affiliations
67 67	¹ Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford OX2
68 60	6GG, UK
69 70	² Public Health England, UK
70 71	³ Royal Surrey NHS Foundation Trust, UK ⁴ Royal College of General Practitioners, 30 Euston Square, London NW1 2FB, UK
71 72	Royal College of General Practitioners, 30 Euston Square, London NW1 2FB, OK
72 73	
73 74	Corresponding author:
75	Simon de Lusignan
76	Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford OX2 6GG,
77	UK
78	simon.delusignan@phc.ox.ac.uk

79 Abstract

80 Background

81	People with	multiple he	ealth condi	itions are	more lik	kely to l	have	poorer l	nealth	outcomes	and
----	-------------	-------------	-------------	------------	----------	-----------	------	----------	--------	----------	-----

- 82 greater care and service needs; a reliable measure of multimorbidity would inform
- 83 management strategies and resource allocation. This study aims to develop and validate a
- 84 modified version of the Cambridge Multimorbidity Score in an extended age range, using
- 85 clinical terms which are routinely used in electronic health records across the world
- 86 (SNOMED CT).
- 87

88 Methods and Findings

89	We curated new variables describing 37 health conditions and modelled the associations
90	between these and 1-year mortality risk using the Cox proportional hazard model in a
91	development dataset (n=300,000). We then developed two simplified models – a 20-
92	condition model as per the original Cambridge Multimorbidity Score, and a variable
93	reduction model using backward elimination with Akaike information criterion as the
94	stopping criterion. The results were compared and validated for 1-year mortality in a
95	synchronous validation dataset (n=150,000), and for 1-year and 5-year mortality in an
96	asynchronous validation dataset (n=150,000).
97	
98	Our final variable reduction model retained 21 conditions, and the conditions mostly
99	overlapped with those in the 20-condition model. The model performed similarly to the 37-

and 20-condition models, showing high discrimination and good calibration following

101 recalibration.

102

103 Conclusions

- 104 This modified version of the Cambridge Multimorbidity Score allows reliable estimation
- using clinical terms which can be applied internationally across multiple healthcare settings.

106 Introduction

107	Many epidemiological analyses, including measuring the impact of disease or the
108	effectiveness of therapies, require a single measure of comorbidity. People with multiple
109	health conditions are likely to have poorer health outcomes and require more intensive
110	treatment and monitoring, placing significant and increasing demand across the spectrum of
111	health services [1]. Evaluating multimorbidity is important in allocating resources,
112	optimising management strategies, and facilitating research. This can be achieved through
113	composite scores that quantify the effect of specific comorbid conditions on health service
114	utilisation, unplanned hospital admission, and mortality [2, 3].
115	
116	There have been a number of approaches to measuring comorbidity. The Charlson
117	Comorbidity Index (CCI) is a commonly used composite morbidity score with condition
118	weightings based on mortality [2]. However, the management of multimorbidity has seen a
119	paradigm shift towards a greater focus on primary care and non-hospital management of
120	disease [4-7]; the CCI, having been designed for use in secondary care and is based on
121	secondary care coding systems, is not ideal for use in primary care. Moreover, the
122	contribution of its twelve selected comorbidities since its validation in 1987 has changed,
123	requiring the index to be re-evaluated and re-validated. Other approaches have included
124	the number of comorbidities, though the weakness of this is the lack of weighting or to
125	count the number of disease areas or risk groups.
126	
127	To improve on these limitations, the Cambridge Multimorbidity Score (CMMS) was
128	developed in 2020 for use in primary care practices, using data from the Clinical Practice
129	Research Datalink (CPRD) [8]. The CMMS used 37 conditions (and 20 in its simplified form)

130	to predict primary care consultations, unplanned hospital admissions, and death as primary
131	outcomes. The weighting-based outcome-specific scores of the CMMS is reported to
132	outperform the CCI across all three primary outcomes. However, the original analysis
133	excluded patients under 21 years, which may limit its validity and utility in studies that
134	include individuals outside of this age range.
135	
136	The CMMS was originally developed and validated using comorbidities defined with Read
137	clinical terminology, a thesaurus of clinical terms used to record patient findings and
138	procedures in computerised medical records (CMR) [9]. Since April 2016 the Read
139	terminology has not been updated. It was then retired from clinical use in English General
140	Practice in 2018 and was replaced by the systematised nomenclature for medicine
141	(SNOMED) clinical terms CT [10] which is used in electronic health records across the world.
142	Potential benefits of SNOMED CT include its comprehensive nature, its capability to be
143	machine processed, its precise collection of clinical terminology as well as its international
144	implementation.
145	
146	We conducted this study to develop and validate a modified version of the CMMS with an
147	extended age range, which is solely based on SNOMED CT, and using routinely collected
148	primary care data from the Oxford-Royal College of General Practitioners (RCGP) Research
149	and Surveillance Centre (RSC).

151 Methods

152 Data source and variables

153 We use pseudonymised CMR data from the RSC sentinel network database, which is

- 154 recruited to be representative of the general population. The UK has registration-based
- 155 primary care in which each patient registers with a single general practice.

156

- 157 We included all patients who were registered for at least 12 months before the study start
- date, and aged 16 years and older at the study index date for each model. We split the
- 159 cohort into three separate datasets (development set, validation set 1 with synchronous
- 160 outcome, validation set 2 with asynchronous outcomes) (Figure 1) using block
- 161 randomisation in the ratio of 2:1:1. To minimise the effect of random variation between
- 162 practices on mortality, the cohort was separated into four subsets using the best linear
- 163 unbiased estimator from a mixed effects logistic regression with age (standardised) and sex
- 164 fixed effects and a practice random effect, prior to block randomisation (S1 Figure). We

165 further applied similar inclusion/exclusion criteria for selecting individuals to those

described in the original analysis [8] (S2 Figure). We then randomly sampled 300,000,

167 150,000 and 150,000 individuals from the three datasets respectively.

168

169 We carefully curated the starting variables underlying the conditions used in the original

170 development and validation, which was based on prior work on the epidemiology of

171 multimorbidity in the UK [1, 11], with the same definitions and/or prescribing before the

- index date applied to SNOMED CT rather than to Read v2 (S1 Table). The exact same set of
- 173 46 starting variables was built using 66 variables within our Themes, Access, Dynamic Data
- 174 Services (TADDS) library, and we retained the names from the original Cambridge

175	Multimorbidity Score. We then applied the same logic and combined the anxiety and
176	depression variables as described in Payne et al. [8] to yield 37 variables. Age and sex were
177	included as covariates, with age censored at 95 years. For this study, we focused only on
178	mortality as the outcome measure.
179	
180	We extracted the following variables: pseudonymised practice and patient identifier (ID),
181	sex, date of birth, date of death, dates of registration and deregistration with a general
182	practice, and the 37 conditions.
183	
184	Statistical analyses
185	We constructed two time-to-mortality models using Cox proportional hazards in the
186	development dataset. First, we performed a model with all 37 conditions as binary
187	indicators, with sex, age (in 10 years) and a quadratic age term included as covariates. Then
188	we ran a model using the 20 conditions that were considered the most important in Payne
189	et al. [8] based on effect size, prevalence, and a combination of effect size and prevalence.
190	Lastly, we conducted variable reduction by entering all predictors into a model, and then
191	using backward elimination with the Akaike information criterion (AIC) [12] as the stopping
192	criterion with the 'fastbw' function in the rms package.
193	
194	We evaluated model discrimination using pseudo R-squared, Somers' D, and Harrell's C [13].
195	R-squared in a measure of explained variation in the model. Somers' D quantifies the
196	prognostic separation between observations with high and low predicted risk. Harrell's C is
197	the ratio of concordant pairs of observations to the number of comparable pairs; it
198	estimates the concordance probability that larger predicted risks are associated with lower

199	survival probabilities, when comparing the rankings of a pair of independent observations.
200	Model calibration was assessed using a calibration curve, and recalibration was performed
201	using resampling cross-validation to correct for overfitting with the 'calibrate' function in
202	the rms package. Using model results from the development dataset, we then evaluated
203	performance of the models in two validation datasets with synchronous and asynchronous
204	outcomes (i.e. 1-year follow-up in the 2019 dataset, 1-year and 5-year follow-ups in the
205	2015 dataset).
206	
207	All data preparation and analyses were conducted in R version 4.1.0 [14], using the
208	following packages: ggplot2 (version 0.9.1) [15], Ime4 (version 1.1-27) [16], lubridate
209	(version 1.7.10) [17], randomizr (version 0.20.0) [18], rms (version 6.2-0) [19], survival
210	(version 3.2-11) [20, 21], tableone (version 0.12.0) [22], and tidyverse (version 1.3.1) [23].
211	
212	Ethical considerations
213	A single comorbidity measure was required for our surveillance activity for Public Health
214	England (PHE), its surveillance activities are now subsumed into the new UK Health Security
215	Agency (UKHSA). Pseudonymised data for surveillance are extracted from volunteer general
216	practices under Regulation 3 of the Health Service (Control of Patient Information)
217	Regulations 2002 for health protection.
218	
219	All potentially identifiable data were pseudonymised as close to source as possible and not
220	made available to researchers; data were not extracted for patients who opted out of data
221	sharing. All data are stored and processed at the Oxford-Royal College of General
222	Practitioners Clinical Informatics Digital Hub (ORCHID), University of Oxford. This is listed by

223	Health Data Research UK		as a trusted	research	environment :	hne	moots the
223	Health Data Research OK	(Πυκυκ)	as a trusteu	research	environmenta	anu	meets the

- standards of NHS Digital's Data Security and Protection (DSP) toolkit (Organisation code:
- 225 EE133863-MSD-NDPCHS).
- 226

```
227 Results
```

- 228 The three datasets were generally comparable in distribution of age, sex, number of
- 229 conditions and follow-up time (Table 1). Individuals in Validation Set 2 were slightly younger
- and healthier due to the earlier study index date.
- 231
- 232 The prevalence of the included 37 conditions in the development dataset is presented in

233 **Table 2**. Both the rates and the rankings show similar patterns to those observed in CPRD

[8]. The top 20 conditions by prevalence and by effect size are listed in **S2 Table**.

- 235
- 236 Discrimination of 1-year mortality using the 37-condition model were high in both validation

sets 1 and 2 (Harrell's C = 0.92 for both models), and discrimination of 5-year mortality was

only marginally worse in the validation dataset (c-index = 0.91) (Table 3). Prediction of 1-

239 year and 5-year mortality using the original simplified 20-condition model showed a similar

240 pattern.

241

Our reduced model retained 21 conditions, which partly overlapped with those in the 20condition model (**Table 4**), and showed similar performance. The model had reasonable calibration, although it was found to under-predict survival at lower risks (<60%). Much of this under prediction was removed in predictions adjusted for overfitting (**Figure 2**).

246

247 Discussion

248 Key findings

- 249 In this study, we developed and validated a modified version of the CMMS to be used in a
- 250 wider age range and using SNOMED CT. Our reduced 21-condition model performed
- similarly to both the full model and the original 20-condition model in predicting mortality
- with excellent discrimination and reasonable calibration. We have opted to use the
- unadjusted 21-condition model as this would maximise its use in studies of different designs,
- where researchers can apply their own adjustments for age and sex. We plan to use this
- 255 multimorbidity score in our epidemiological studies (including COVID-19 studies), and to
- 256 make this available to the wider international SNOMED CT community.

257

258 Comparison with the literature

259 A number of comorbidity indices and adaptations have been developed in administrative

260 data studies, which are either solely diagnosis-based or solely medication-based [24]. Our

261 score uses a different approach that combines information from clinical terms as well as

prescriptions, and additionally includes a 12-month timeframe in the definition of certain

263 conditions. This allows the severity and/or recency of some conditions (e.g. constipation,

264 cancer) to be taken into account in the calculation of the score.

265

Our study retained a slightly different set of conditions in our reduced model to Payne et al. [8]. Since variable reduction in our model was based on AIC rather than the combination of effect size and prevalence, our modified score included some less prevalent conditions that are strongly associated with mortality such as multiple sclerosis and learning disability. The differences in included conditions and weightings between our model and Payne et al.'s [8]

271	may also be partly explained by age group differences in multimorbidity patterns as we used
272	a lower age cut-off of 16 years. Earlier research has shown while multimorbidity in later life
273	tends to involve multiple 'concordant' conditions (typically vascular and metabolic
274	conditions), multimorbidity in earlier adulthood generally involves a mix of physical and
275	mental conditions [25].
276	
277	Strengths and limitations
278	Our study used a large, up-to-date, nationally representative cohort, which included all
279	patients aged 16 years and over, and our results were validated using both synchronous and
280	asynchronous datasets. Our analysis was based on SNOMED CT, now used across English
281	General Practice as well as internationally. We believe the results are generalisable to other
282	cohorts and potentially other countries that use similarly coded primary care data.
283	
284	We derived CMMS weights only for mortality but not unplanned hospital admissions or
285	primary care consultations. Mortality tends to be the most commonly used outcome in the
286	development of comorbidity indices in the literature [24], and we felt that having only one
287	set of weights would allow it to be easier to apply and to interpret in different datasets.
288	
289	The list of conditions used in this study were exactly as included in the original development
290	and validation of the CMMS by Payne et al. [8], which was based on earlier literature on
291	multimorbidity in primary care [1, 11]. These studies did not include other common
292	conditions that might be expected to be included in other multimorbidity indices or that are
293	highly clinically relevant (e.g. obesity).

295 Conclusion

296	In this study we described the development and validation of a modified version of the
297	CMMS for predicting mortality. The inclusion of a wider age range may improve the
298	generalisability of the score over the original. Because it is based on SNOMED CT rather than
299	Read codes it is applicable to today's English General Practice data and should also increase
300	its applicability in other contexts.
301	
302	Acknowledgements
303	JPS is funded by the Wellcome Trust/Royal Society via a Sir Henry Dale Fellowship (ref:
304	211182/Z/18/Z). JPS also receives funding via an NIHR Oxford Biomedical Research Centre
305	(BRC) Senior Fellowship. For the purpose of Open Access, the author has applied a CC BY
306	public copyright licence to any Author Accepted Manuscript version arising from this
307	submission. This publication presents independent research supported by the National
308	Institute for Health Research (NIHR). The views expressed are those of the author(s) and not
309	necessarily those of the NHS, the NIHR or the Department of Health and Social Care.
310	
311	Data availability
312	The Oxford-RCGP RSC dataset can be accessed by researchers; approval is on a project-by-
313	project basis (orchid.phc.ox.ac.uk/index.php/rcgp-rsc/). Ethical approval by an NHS

Research Ethics Committee/other appropriate approval is needed before any data release.

315 Researchers wishing to directly analyse patient-level pseudonymised data will be required

to complete information governance training and work on the data from the secure servers

317 at the University of Oxford. Patient-level data cannot be taken out of the secure network.

319 References

320	1. Cassell A, Edwards D, Harshfield A, Rhodes K, Brimicombe J, Payne R, et al. The
321	epidemiology of multimorbidity in primary care: a retrospective cohort study. British Journal
322	of General Practice. 2018;68(669):e245. doi: <u>https://doi.org/10.3399/bjgp18X695465</u> .
323	2. Charlson ME, Pompei P, Ales KL, MacKenzie CR. A new method of classifying
324	prognostic comorbidity in longitudinal studies: Development and validation. Journal of
325	Chronic Diseases. 1987;40(5):373-83. doi: <u>https://doi.org/10.1016/0021-9681(87)90171-8</u> .
326	3. Elixhauser A, Steiner C, Harris DR, Coffey RM. Comorbidity Measures for Use with
327	Administrative Data. Medical Care. 1998;36(1). doi: https://doi.org/10.1097/00005650-
328	199801000-00004.
329	4. Deyo RA, Cherkin DC, Ciol MA. Adapting a clinical comorbidity index for use with ICD-
330	9-CM administrative databases. Journal of Clinical Epidemiology. 1992;45(6):613-9. doi:
331	https://doi.org/10.1016/0895-4356(92)90133-8
332	5. Sundararajan V, Henderson T, Perry C, Muggivan A, Quan H, Ghali WA. New ICD-10
333	version of the Charlson comorbidity index predicted in-hospital mortality. Journal of Clinical
334	Epidemiology. 2004;57(12):1288-94. doi: <u>https://doi.org/10.1016/j.jclinepi.2004.03.012</u> .
335	6. Palella FJ, Jr, Delaney KM, Moorman AC, Loveless MO, Fuhrer J, Satten GA, et al.
336	Declining Morbidity and Mortality among Patients with Advanced Human Immunodeficiency
337	Virus Infection. New England Journal of Medicine. 1998;338(13):853-60. doi:
338	https://doi.org/10.1056/NEJM199803263381301.
339	7. Zavascki AP, Fuchs SC. The need for reappraisal of AIDS score weight of Charlson
340	comorbidity index. Journal of Clinical Epidemiology. 2007;60(9):867-8. doi:
341	https://doi.org/10.1016/j.jclinepi.2006.11.004.
342	8. Payne RA, Mendonca SC, Elliott MN, Saunders CL, Edwards DA, Marshall M, et al.
343	Development and validation of the Cambridge Multimorbidity Score. Canadian Medical
344	Association Journal. 2020;192(5):E107. doi: <u>https://doi.org/10.1503/cmaj.190757</u> .
345	9. NHS Digital. Read Codes 2020 [26/07/2021]. Available from:
346	https://digital.nhs.uk/services/terminology-and-classifications/read-codes.
347	10. NHS Digital. SNOMED CT 2021 [26/07/2021]. Available from:
348	https://digital.nhs.uk/services/terminology-and-classifications/snomed-ct.
349	11. Barnett K, Mercer SW, Norbury M, Watt G, Wyke S, Guthrie B. Epidemiology of
350	multimorbidity and implications for health care, research, and medical education: a cross-
351	sectional study. The Lancet. 2012;380(9836):37-43. doi: 10.1016/S0140-6736(12)60240-2.
352	12. Akaike H. A new look at the statistical model identification. IEEE Transactions on
353	Automatic Control. 1974;19(6):716-23. doi: <u>https://doi.org/10.1109/TAC.1974.1100705</u> .
354	13. Harrell FE, Jr., Califf RM, Pryor DB, Lee KL, Rosati RA. Evaluating the Yield of Medical
355	Tests. JAMA. 1982;247(18):2543-6. doi:
356	https://doi.org/10.1001/jama.1982.03320430047030.
357	14. R Core Team. R: A language and environment for statistical computing. Vienna,
358	Austria: R Foundation for Statistical Computing; 2021.
359	15. Wickham H. ggplot2: Elegant Graphics for Data Analysis. New York: Springer-Verlag;
360	2016.
361	16. Bates D, Mächler M, Bolker B, Walker S. Fitting linear mixed-effects models using
362	lme4. Journal of Statistical Software. 2015;67(1):1-48. doi:

363 <u>https://doi.org/10.18637/jss.v067.i01</u>.

364 17. Grolemund G, Wickham H. Dates and times made easy with lubridate. Journal of 365 Statistical Software. 2011;40(3):1-25.

366 Coppock A. randomizr: Easy-to-Use Tools for Common Forms of Random Assignment 18. and Sampling. R package version 0.20.0. 2019. Available from: https://CRAN.R-

367

368 project.org/package=randomizr.

369 Harrell FE, Jr. rms: Regression Modeling Strategies. R package version 6.2-0 2021. 19.

370 Available from: https://CRAN.R-project.org/package=rms.

Therneau T. A Package for Survival Analysis in R. R package version 3.2-11. 2021. 371 20. 372 Available from: https://CRAN.R-project.org/package=survival.

373 Therneau TM, Grambsch PM. Modeling Survival Data: Extending the Cox Model. New 21. 374 York: Springer; 2000.

375 22. Yoshida K, Bartel A. tableone: Create 'Table 1' to Describe Baseline Characteristics

376 with or without Propensity Score Weights. R package version 0.12.0. 2020. Available from: 377 https://CRAN.R-project.org/package=tableone.

378 Wickham H, Averick M, Bryan J, Chang W, D'Agostino McGowan L, François R, et al. 23. 379 Welcome to the tidyverse. Journal of Open Source Software. 2019;4(43):1686. doi:

380 https://doi.org/10.21105/joss.01686.

381 Yurkovich M, Avina-Zubieta JA, Thomas J, Gorenchtein M, Lacaille D. A systematic 24. 382 review identifies valid comorbidity indices derived from administrative health data. Journal

383 of Clinical Epidemiology. 2015;68(1):3-14. doi: 10.1016/j.jclinepi.2014.09.010.

384 25. McLean G, Gunn J, Wyke S, Guthrie B, Watt GCM, Blane DN, et al. The influence of

385 socioeconomic deprivation on multimorbidity at different ages: a cross-sectional study.

386 British Journal of General Practice. 2014;64(624):e440. doi: 10.3399/bjgp14X680545.

soo have a beschpare statisties of the three datasets sumpled nom the oxiona real rise	388	Table 1. Descriptive statistics of the three datasets sampled from the Oxford-RCGP RSC
--	-----	--

389

cohort.			
	Development	Validation 1	Validation 2
	(2019)	(2019)	(2015)
Male	148,672	74,463	74,527
	(49.56%)	(49.64%)	(49.68%)
Age at index date, year			
Mean ± sd	48.44 ± 19.22	48.56 ± 19.39	47.84 ± 19.14
Range	16-95	16-95	16-95
65-84 years	59,897	30,372	28,668
	(19.97%)	(20.25%)	(19.11%)
≥85 years	9,390 (3.13%)	4,844 (3.23%)	4,558 (3.04%)
No. of conditions			
Mean ± sd	1.35 ± 1.85	1.37 ± 1.87	1.28 ± 1.78
Range	0-15	0-15	0-14
0 conditions	138,076	68,928	71,635
	(46.03%)	(45.95%)	(47.76%)
1 condition	66,053	32,377	32,400
	(22.02%)	(21.58%)	(21.60%)
≥ 2 conditions	95,871	48,695	45,965
	(31.96%)	(32.46%)	(30.64%)
No. of deaths in follow-up	3,019	1,433	1,370 / 6,973
Mean follow-up time (days)	351.5	352.3	353.2 / 1564
No. of people with complete follow-up	278,494	139,670	140,513
	(92.83%)	(93.11%)	(93.68%) /
			109,612
			(73.07%)
Total person-years*	288,722.4	144,679.6	145,041.6 /
			642,341.4
Mortality rate (per 1,000 person-years)	10.46	9.90	9.45 / 10.86

390 * Calculated person-days then divided by 365.25

392	Table 2. Prevalence of the 37 conditions in the development dataset, and the weights for
393	the conditions included in the final model.

the conditions included in the f		
Condition	Prevalence	Weight
Hypertension	62,854 (20.95%)	
Anxiety or depression	41,744 (13.91%)	0.3242
Painful condition	41,461 (13.82%)	0.4455
Hearing loss	27,083 (9.03%)	
Asthma	22,348 (7.45%)	
Irritable bowel syndrome	20,671 (6.89%)	-0.2037
Diabetes	20,232 (6.74%)	0.2947
Thyroid disorders	18,732 (6.24%)	
Coronary heart disease	15,887 (5.30%)	
Chronic kidney disease	13,226 (4.41%)	0.2137
Diverticular disease of	10,502 (3.50%)	
intestine		
Disorder of prostate	10,397 (3.47%)	-0.1878
Atrial fibrillation	9,105 (3.04%)	0.3349
Alcohol problems	9,064 (3.02%)	0.7922
COPD	7,542 (2.51%)	0.7022
Stroke & TIA	7,415 (2.47%)	
Rheumatoid arthritis	7,352 (2.45%)	
Constipation	6,311 (2.10%)	0.3830
Cancer	5,924 (1.97%)	1.2026
Peptic ulcer disease	5,071 (1.69%)	
Chronic sinusitis	4,995 (1.67%)	
Heart failure	4,686 (1.56%)	0.5052
Psychoactive substance misuse	4,139 (1.38%)	0.4493
Blindness & low vision	3,823 (1.27%)	
Dementia	3,709 (1.24%)	0.9380
Psoriasis or eczema	2,794 (0.93%)	
Epilepsy	2,580 (0.86%)	0.4775
Schizophrenia or bipolar	2,402 (0.80%)	0.4825
disorder		
Inflammatory bowel disease	2,371 (0.79%)	
Chronic liver disease & viral	2,345 (0.78%)	0.6862
hepatitis		
Anorexia or bulimia	2,222 (0.74%)	
Migraine	1,594 (0.53%)	
Bronchiectasis	1,530 (0.51%)	
Learning disability	1,290 (0.43%)	0.6373
Parkinsonism	920 (0.31%)	0.5462
Multiple sclerosis	853 (0.28%)	0.7616
Peripheral vascular disease	650 (0.22%)	0.3346

394

	37-condition	20-condition	Reduced model
Pseudo R-squared	0.153	0.152	0.153
Somers' D	0.851	0.847	0.851
Harrell's C			
Development	0.9253	0.9236	0.9255
	(se = 0.0022)	(se = 0.0022)	(se = 0.0021)
Validation 1	0.9200	0.9184	0.9206
	(se = 0.0035)	(se = 0.0035)	(se = 0.0035)
Validation 2, 1-year	0.9204	0.9182	0.9203
follow-up	(se = 0.0033)	(se = 0.0033)	(se = 0.0033)
Validation 2, 5-year	0.9071	0.9055	0.9072
follow-up	(se = 0.0016)	(se = 0.0016)	(se = 0.0016)

Table 3. Model discrimination, a	as assessed using pseudo R-squared, Somers'	D and
Harrell's C.		

	37-condition	20-condition	Reduced model
Age (10 years)	1.22 (1.02-1.47)	1.24 (1.03-1.49)	
[Age (10 years)] ²	1.05 (1.03-1.06)	1.05 (1.03-1.06)	1.06 (1.06-1.06)
[Age (10 years)] Sex: M	· · ·		
	1.33 (1.23-1.45)	1.29 (1.19-1.39)	1.34 (1.24-1.46)
Cancer in the Last 5	3.31 (2.99-3.67)	3.23 (2.92-3.58)	3.33 (3.00-3.69)
years	2 57 (2 22 2 0 4)	2 (0 (2 25 2 07)	
Dementia	2.57 (2.33-2.84)	2.60 (2.35-2.87)	2.55 (2.32-2.82)
Alcohol problems	2.17 (1.84-2.55)	2.52 (2.18-2.92)	2.21 (1.88-2.60)
Multiple sclerosis	2.13 (1.32-3.44)		2.14 (1.33-3.46)
Chronic liver disease and viral hepatitis	1.98 (1.57-2.49)		1.99 (1.58-2.50)
COPD	1.96 (1.76-2.18)	1.97 (1.77-2.18)	2.02 (1.83-2.23)
Learning disability	1.88 (1.14-3.10)		1.89 (1.15-3.11)
Parkinsonism	1.71 (1.39-2.11)		1.73 (1.40-2.13)
Heart failure	1.66 (1.49-1.85)	1.67 (1.50-1.86)	1.66 (1.49-1.84)
Epilepsy	1.59 (1.25-2.02)	1.61 (1.27-2.04)	1.61 (1.27-2.04)
Schizophrenia or	1.59 (1.22-2.06)	1.65 (1.27-2.13)	1.62 (1.25-2.10)
bipolar disorder			
Psychoactive	1.57 (1.20-2.04)		1.57 (1.20-2.04)
substance misuse			
Painful condition	1.55 (1.42-1.68)	1.56 (1.43-1.69)	1.56 (1.44-1.69)
Constipation	1.47 (1.33-1.62)	1.51 (1.37-1.67)	1.47 (1.33-1.62)
Peripheral vascular	1.39 (1.07-1.81)		1.40 (1.08-1.82)
disease			
Atrial fibrillation	1.39 (1.27-1.53)	1.39 (1.26-1.52)	1.40 (1.27-1.53)
Anxiety or	1.38 (1.27-1.50)	1.41 (1.29-1.53)	1.38 (1.27-1.50)
depression			
Diabetes	1.31 (1.20-1.43)	1.33 (1.22-1.45)	1.34 (1.23-1.46)
Psoriasis or eczema	1.27 (1.03-1.57)		
Chronic kidney	1.24 (1.14-1.35)	1.24 (1.14-1.36)	1.24 (1.14-1.35)
disease			
Anorexia or bulimia	1.22 (0.66-2.28)		
Peptic ulcer	1.13 (0.98-1.30)		
Stroke and TIA	1.11 (1.00-1.24)	1.11 (1.00-1.23)	
Bronchiectasis	1.11 (0.87-1.41)		
Asthma currently	1.05 (0.93-1.18)	1.04 (0.93-1.17)	
treated			
Hypertension	1.04 (0.96-1.13)	1.04 (0.96-1.13)	
Thyroid disorders	1.03 (0.92-1.14)		
Coronary heart	1.00 (0.91-1.09)	0.99 (0.91-1.08)	
disease			
Rheumatoid arthritis	0.98 (0.85-1.12)	0.98 (0.86-1.13)	
Chronic sinusitis	0.98 (1.57-2.49)		
Blindness and low	0.96 (0.84-1.11)		
vision			

Hearing loss	0.92 (0.95-1.00)	0.92 (0.85-1.00)	
Diverticular disease	0.92 (0.82-1.02)		
of intestine			
Disorder of prostate	0.83 (0.74-0.93)		0.83 (0.74-0.93)
Irritable bowel	0.83 (0.71-0.95)	0.81 (0.70-0.94)	0.82 (0.71-0.94)
syndrome			
Inflammatory bowel	0.65 (0.43-0.97)		
disease			
Migraine	0.59 (0.25-1.42)		

Black: observed Gray: ideal Blue : optimism corrected Predicted survival probability at 1 year B=200 based on observed-predicted Mean |error|=0.008 0.9 Quantile=0.01

S1 Figure. Flow diagram for selection of practices.

A measure of mortality not explained by age (standardised) or sex was computed for each practice (i.e. best linear unbiased predictor from a mixed effects logistic regression with a practice random effect), which was sorted into four bins using mean – sd, mean, mean + sd and then block randomised into three datasets.

S2 Figure. Flow diagram for selection of individuals.

Number of individuals from included practices

Development Set: n=4,851,788

Validation Set 1: n=2,205707

Validation Set 2: n=2,295,203

Exclude those deceased before index date Development Set: n=4,739,150 Validation Set 1: n=2,155,034

Validation Set 2: n=2,295,203

Registered on index date Development Set: n=3,189,883 Validation Set 1: n=1,470,746 Validation Set 2: n=1,458,350

At least one year follow-up on index date Development Set: n=2,933,128 Validation Set 1: n=1,349,642 Validation Set 2: n=1,331,846

> ≥16 years old on index date Development Set: n=2,422,378 Validation Set 1: n=1,117,023 Validation Set 2: n=1,098,802

Random sampling Development Set: n=300,000 Validation Set 1: 150,000 Validation Set 2: 150,000

al. (2020)).		
Morbidities based on SNOMED CT ever reco	rded	
Alcohol problems	Heart failure	
Anorexia or bulimia Hypertension		
Atrial fibrillation	Inflammatory bowel disease	
Blindness and low vision Learning disability		
Bronchiectasis	Multiple sclerosis	
Chronic liver disease and viral hepatitis	Parkinsonism	
Chronic sinusitis	Peptic ulcer disease	
COPD	Peripheral vascular disease	
Coronary heart disease	Disorder of prostate	
Dementia	Psychoactive substance misuse (not alcohol)	
Diabetes	Rheumatoid arthritis	
Diverticular disease of intestine	Stroke & transient ischaemic attack	
Hearing loss	Thyroid disorders	
Morbidities based on prescription in last 12	months	
Constipation (currently treated)	≥4 laxative prescriptions	
Migraine	≥4 prescription-only medicine anti-migraine	
	prescriptions	
Morbidities based on combination of SNOM	ED CT ever recorded and/or prescription in	
last 12 months		
Epilepsy (currently treated)	SNOMED CT AND ≥1 antiepileptic	
	prescription	
Asthma (currently treated)	SNOMED CT AND ≥1 asthma prescription	
Irritable bowel syndrome	SNOMED CT OR ≥4 antispasmodic	
	prescriptions	
Psoriasis or eczema	SNOMED CT AND ≥4 related prescriptions	
	(excluding simple emollients)	
Other morbidities		
Anxiety or depression	SNOMED CT (anxiety or depression) in last 12 months OR ≥4 anxiolytic/hypnotic	
	prescriptions in last 12 months OR ≥4 anti-	
	depressant prescriptions (excluding low	
	dose tricyclics) in last 12 months	
(New) cancer in last 5 years	SNOMED CT (first) recorded in last 5 years	
(excluding non-melanoma skin cancer)		
Chronic kidney disease	Highest value of last 2 eGFR readings is <60 ml/min	
Painful condition	≥4 prescription-only medicine analgesics in	
	last 12 months OR (≥4 specified anti-	
	epileptics in last 12 months AND no	
	epilepsy SNOMED CT ever recorded)	
Schizophrenia or bipolar disorder	SNOMED CT ever recorded OR lithium ever	
	prescribed	

S1 Table. List of the 37 morbidities included in the baseline model (adapted from Payne et al. (2020)).

By prevalence	By absolute effect size
Hypertension	Dementia
Anxiety or depression	Cancer in the last 5 years
Painful condition	Migraine
Hearing loss	Painful condition
Asthma	Chronic kidney disease
Irritable bowel syndrome	COPD
Diabetes	Parkinsonism
Thyroid disorders	Constipation
Coronary heart disease	Atrial fibrillation
Chronic kidney disease	Hypertension
Diverticular disease of intestine	Heart failure
Disorder of prostate	Chronic liver disease and viral hepatitis
Atrial fibrillation	Alcohol problems
Alcohol problems	Inflammatory bowel disease
COPD	Epilepsy
Stroke and transient ischaemic attack	Irritable bowel syndrome
Rheumatoid arthritis	Peripheral vascular disease
Constipation	Hearing loss
Cancer in the last 5 years	Schizophrenia or bipolar disorder
Peptic ulcer disease	Bronchiectasis

S2 Table. Top 20 conditions by prevalence and by effect size in the development dataset.