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18 Abstract

19 Common statistical modeling methods do not necessarily produce the most relevant or 

20 interpretable effect estimates to communicate risk. Overreliance on the odds ratio and relative 

21 effect measures limit the potential impact of epidemiologic and public health research. We 

22 created a straightforward R package, called riskCommunicator, to facilitate the presentation 

23 of a variety of effect measures, including risk differences and ratios, number needed to treat, 

24 incidence rate differences and ratios, and mean differences. The riskCommunicator package 

25 uses g-computation with parametric regression models and bootstrapping for confidence 

26 intervals to estimate effect measures in time-fixed data. We demonstrate the utility of the 

27 package using data from the Framingham Heart Study to estimate the effect of prevalent 

28 diabetes on the 24-year risk of cardiovascular disease or death.

29 The absolute 24-year risk of cardiovascular disease or death was 30% (95% confidence 

30 interval (CI): 22, 38) higher among subjects with diabetes compared to subjects without 

31 diabetes at baseline. The relative 24-year risk was 55% (95% CI: 40, 70) higher. Because the 

32 outcome was common (41.8%), the odds ratio (4.55) is highly inflated compared to the risk ratio 

33 (1.55). An expected 4 additional persons would need to have diabetes at baseline to observe an 

34 increase in the number of cases of cardiovascular disease or death by 1 over 24 years of follow-

35 up.

36 The package promotes the communication of public-health relevant effects and is 

37 accessible to a broad range of epidemiologists and health researchers with little to no expertise 

38 in causal inference methods or advanced coding.

39
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40 Background

41 The communication of disease risk and the effects of exposures and interventions on 

42 that risk are core components of public health research and practice. Unfortunately, reporting of 

43 results from epidemiologic studies both in the published scientific literature and to the public is 

44 often confused by imprecise language, jargon, and incomplete reporting [1,2]. While it may be 

45 easiest to rely on the default output from standard functions in statistical programs, common 

46 statistical methods estimate parameters that are often not the most informative. Epidemiologists 

47 and the larger community of public health practitioners could benefit from easy-to-use tools to 

48 facilitate the presentation of relevant effects.

49 Overreliance on the odds ratio [3–6] and more broadly on relative effect measures [7,8]  

50 are two examples of opportunities to improve the reporting and interpretability of epidemiologic 

51 results. Efforts to increase the reporting of difference effect measures and risk ratios over odds 

52 ratios are not new, and several solutions have been previously proposed, including log-binomial 

53 and log-linear regression models, Poisson regression to approximate log-binomial regression 

54 when the latter does not converge [9], standardization-based approaches [10], linear-expit 

55 regression [11], and ordinary least-squares regression with transformed variables [12]. 

56 However, these models are not as efficient as logistic regression, can have convergence 

57 problems, and may require robust variance estimators [9,13].

58 Parametric g-computation is an attractive alternative because of the flexibility to estimate 

59 a variety of effect measures while relying on the preferable statistical properties of logistic 

60 regression for the parametric modeling. G-computation is conceptually equivalent to 

61 standardization, and the use of parametric models allows for highly-dimensional data and 

62 continuous covariates. G-computation has been applied to estimate risk differences and risk 

63 ratios from logistic regression models previously [14–16].
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64 Despite the availability of g-computation-based methods, these methods are rarely used 

65 to estimate risk differences and risk ratios in standard time-fixed study designs. Recent 

66 applications of these methods have focused on complicated study designs, such as with 

67 longitudinal data with time-varying confounding affected by prior exposure [17]. In these 

68 applications, the methods are complex and difficult to understand and/or implement for the 

69 average data analyst. Coding requirements and computational limitations may also dissuade 

70 users from attempting these methods. Recently available R packages [18,19] and Statistical 

71 Analysis System (SAS) macros [20] are geared towards estimating these more complicated 

72 effects and may be overwhelming to new users.

73 We aimed to create a straightforward R package, called riskCommunicator, to 

74 facilitate the presentation of a variety of effect measures, including risk differences and ratios, 

75 number needed to treat, incidence rate differences and ratios, and mean differences, using g-

76 computation. To make the package accessible to a broad range of health researchers, our goal 

77 was to design functions that were as easy to use as the standard logistic regression functions in 

78 R (e.g. glm) and that would require little to no expertise in causal inference methods or 

79 advanced coding. 

80

81 Implementation

82 The riskCommunicator package uses g-computation [21,22,16,17] with standard 

83 parametric regression models and bootstrapping for confidence intervals to estimate effect 

84 measures in the context of time-fixed exposure and outcome data. Broadly, the effects 

85 estimated are average treatment effects (ATEs), estimated for difference measures with a 

86 binary exposure variable as: 

87 𝜑ATE =
𝑤

[E(Y│A = 1, W = 𝑤) – E(Y│A = 0, W = 𝑤)] ∗ Pr(W = 𝑤) ,
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88 where Y is the outcome of interest, A is the exposure of interest, and W are covariates. In this 

89 way, the effects are standardized to the joint distribution of covariates in the total study 

90 population.

91 The package contains two main functions available to end users: gComp (the primary 

92 function) and pointEstimate (used internally within the gComp function, but provided to users 

93 in case of complex dependencies among observations, e.g. nested clusters-within-clusters, 

94 where a single cluster-level bootstrap resampling might not be optimal). pointEstimate 

95 computes a point estimate by executing three steps of g-computation. First, a regression of the 

96 outcome on the exposure and relevant covariates is fit using the provided dataset with a 

97 generalized linear model. The underlying model distribution is based on the outcome type 

98 supplied by the user (see outcome.type in Table 1 for details). Next, using the estimated 

99 parameters from the model, counterfactuals are predicted for each observation in the data set 

100 under each level of the exposure. Finally, the mean predicted value for each exposure regime 

101 across all observations is calculated and used to estimate marginal difference and ratio effects. 

102 The gComp function first estimates effects in the original data (using the pointEstimate 

103 function). Then, bootstrap resampling of the original dataset is conducted, and the 

104 pointEstimate function is called on each resample in order to estimate accurate standard 

105 errors and provide a 95% confidence interval (CI). Confidence intervals are based on the 2.5th 

106 and 97.5th percentiles of the bootstrap resampling results [23]. 

107

108 Table 1. Arguments supplied to the gComp function in the riskCommunicator package.

Argument Description

data (Required) A data.frame or tibble containing variables for Y, X, and Z or with 
variables matching the model variables specified in a user-supplied formula. 
Data set should also contain variables for the optional subgroup and offset, if 
they are specified.
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outcome.type (Required) Character argument to describe the outcome type. Acceptable 
responses, and the corresponding error distribution and link function used in 
the glm, include:

binary
(Default) A binomial distribution with link = ‘logit’ is used.

count
A Poisson distribution with link = ‘log’ is used.

count_nb
A negative binomial distribution with link = ‘log’ is used, where the 
theta parameter is estimated internally; ideal for over-dispersed 
count data.

rate
A Poisson distribution with link = ‘log’ is used; ideal for 
events/person-time outcomes.

rate_nb
A negative binomial distribution with link = ‘log’ is used, where the 
theta parameter is estimated internally; ideal for over-dispersed 
events/person-time outcomes.

continuous
A gaussian distribution with link = ‘identity’ is used.

formula (Optional) Default NULL. An object of class “formula” (or one that can be 
coerced to that class) which provides the complete model formula, similar to 
the formula for the glm function in R (e.g. ‘Y ~ X + Z1 + Z2 + Z3’). Can be 
supplied as a character or formula object. If no formula is provided, Y and X 
must be provided.

Y (Optional) Default NULL. Character argument which specifies the outcome 
variable. Can optionally provide a formula instead of Y and X variables.

X (Optional) Default NULL. Character argument which specifies the exposure 
variable (or treatment group assignment), which can be binary, categorical, 
or continuous. This variable can be supplied as a factor variable (for binary 
or categorical exposures) or a continuous variable. For binary/categorical 
exposures, X should be supplied as a factor with the lowest level set to the 
desired referent. Numeric variables are accepted, but will be centered. 
Character variables are not accepted and will throw an error. Can optionally 
provide a formula instead of Y and X variables.

Z (Optional) Default NULL. List or single character vector which specifies the 
names of covariates or other variables to adjust for in the glm function. All 
variables should either be factors, continuous, or coded 0/1 (i.e. not 
character variables). Does not allow interaction terms.

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 4, 2022. ; https://doi.org/10.1101/2022.03.02.22271755doi: medRxiv preprint 

https://doi.org/10.1101/2022.03.02.22271755
http://creativecommons.org/licenses/by/4.0/


7

subgroup (Optional) Default NULL. Character argument that indicates subgroups for 
stratified analysis. Effects will be reported for each category of the subgroup 
variable. Variable will be automatically converted to a factor if not already.

offset (Optional, only applicable for rate/count outcomes) Default NULL. Character 
argument which specifies the person-time denominator for rate outcomes to 
be included as an offset in the Poisson regression model. Numeric variable 
should be on the linear scale; function will take natural log before including in 
the model.

rate.multiplier (Optional, only applicable for rate/count outcomes) Default 1. Numeric 
variable signifying the person-time value to use in predictions; the offset 
variable will be set to this when predicting under the counterfactual 
conditions. This value should be set to the person-time denominator desired 
for the rate difference measure and must be inputted in the units of the 
original offset variable (e.g. if the offset variable is in days and the desired 
rate difference is the rate per 100 person-years, rate.multiplier should 
be inputted as 365.25*100).

exposure.scalar (Optional, only applicable for continuous exposure) Default 1. Numeric value 
to scale effects with a continuous exposure. This option facilitates reporting 
effects for an interpretable contrast (i.e. magnitude of difference) within the 
continuous exposure. For example, if the continuous exposure is age in 
years, a multiplier of 10 would result in estimates per 10-year increase in 
age rather than per a 1-year increase in age.

exposure.center (Optional, only applicable for continuous exposure) Default TRUE. Logical or 
numeric value to center a continuous exposure. This option facilitates 
reporting effects at the mean value of the exposure variable, and allows for a 
mean value to be provided directly to the function in cases where bootstrap 
resampling is being conducted and a standardized centering value should be 
used across all bootstraps. See note below on continuous exposure 
variables for additional details.

R (Optional) Default 200. The number of data resamples to be conducted to 
produce the bootstrap confidence interval of the estimate.

clusterID (Optional) Default NULL. Character argument which specifies the variable 
name for the unique identifier for clusters. This option specifies that 
clustering should be accounted for in the calculation of confidence intervals. 
The clusterID will be used as the level for resampling in the bootstrap 
procedure.

parallel (Optional) Default “no.” The type of parallel operation to be used.  Available 
options (besides the default of no parallel processing) include “multicore” 
(not available for Windows) or “snow.” This argument is passed directly to 
boot. See note about setting seeds and parallel computing.

ncpus (Optional, only used if parallel is set to “multicore” or “snow”) Default 1. 
Integer argument for the number of CPUs available for parallel processing/ 
number of parallel operations to be used. This argument is passed directly to 
boot.

109
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110 Most users will only need to call the gComp function to estimate the effects of interest. 

111 Arguments to be supplied are listed in Table 1 (and examples of how to call the function are 

112 provided below in the Results section and S1 Appendix). Users can supply individual variable 

113 names for the exposure, outcome, and covariates, or can provide a model formula. The gComp 

114 function (and also pointEstimate) does not allow for interaction terms, however subgroup 

115 analysis is possible by specifying the variable name in the dataset corresponding to the 

116 subgroup classification, which automatically adds an interaction term between the subgroup 

117 variable and the exposure to the model formula. Both functions also allow for the specification of 

118 a categorical (in addition to binary) exposure. In cases of single-level clustered data, the gComp 

119 function can conduct bootstrap resampling at the cluster, instead of individual sample, level by 

120 specifying the variable identifying the cluster in the clusterID argument. 

121 Output of the gComp function is a list with several pieces of data, including parameter 

122 estimates and 95% confidence intervals for the effect measures (e.g. for a binary outcome, this 

123 would include risk difference, risk ratio, odds ratio, and number needed to treat). Confidence 

124 intervals are not reported for the number needed to treat given the primary utility of the number 

125 needed to treat for communication and the challenges in construction and interpretation of the 

126 number needed to treat confidence interval when the confidence interval for the risk difference 

127 crosses the null [24,25]. Additional output includes marginal mean predicted outcomes for each 

128 exposure level. Users can visualize the distribution of parameter estimates over all bootstrap 

129 resamples of the data by plotting the resulting data with the base R plot() call to the output of 

130 the gComp function, which provides a quantile-quantile plot [26] and histogram of all parameter 

131 estimates (see S1 Appendix).  

132 Bootstrap resampling is necessary to estimate accurate 95% confidence intervals for the 

133 population-standardized marginal effects obtained with g-computation, since the standard errors 

134 for the coefficients from the underlying parametric model (covariate-conditional effects) are no 
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135 longer applicable [16,22]. We recommend setting the number of bootstrap resamples (R) to 

136 1000 for the final analysis. However, this can result in potentially long runtimes, depending on 

137 the computing power of the user’s computer (>30min). Thus, exploratory analyses can be 

138 conducted with a lower number of bootstraps (default is R = 200, which should compute on 

139 datasets of 5000-10000 observations in <60s). 

140 Package code was written in R version 4.1.2 [27], and the package was built in RStudio 

141 [28] using devtools and roxygen2 to generate and populate the package documentation 

142 [29,30].  riskCommunicator is open-source and freely available on GitHub 

143 (https://github.com/jgrembi/riskCommunicator) and Comprehensive R Archive Network 

144 (https://CRAN.R-project.org/package=riskCommunicator).

145

146 Results

147 We demonstrate the utility of riskCommunicator using the teaching data set from the 

148 Framingham Heart Study [31], a prospective cohort study of cardiovascular disease conducted 

149 in Framingham, Massachusetts. The use of these data for the purposes of this package were 

150 approved on 11 March 2019 (request #7161) by National Institutes of Health/National Heart, 

151 Lung, and Blood Institute. These data were altered prior to receipt by the authors to ensure an 

152 anonymous dataset that protects patient confidentiality. This project was deemed by the 

153 Institutional Review Board at Emory University to not be research with human subjects and 

154 therefore did not require IRB review or consent from participants. The following analysis was 

155 conducted among 4,240 participants who conducted a baseline exam and were free of 

156 prevalent coronary heart disease when they entered the study in 1956. Participants were 

157 followed for 24 years for the combined outcome of cardiovascular disease or death due to any 

158 cause. A complete vignette highlighting the full range of analyses that are available with 

159 riskCommunicator is available on Comprehensive R Archive Network (CRAN).
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160 A relatively straightforward research aim for these data would be to estimate the effect of 

161 having prevalent diabetes at the beginning of the study on the 24-year risk of cardiovascular 

162 disease or death, adjusting for the potential confounders, including patient's age, sex, body 

163 mass index, smoking status (current smoker or not), and prevalence of hypertension. For a 

164 binary outcome, riskCommunicator estimates the risk difference, risk ratio, odds ratio, and 

165 number needed to treat. The output of the gComp function for this analysis as follows reports the 

166 strong effect of diabetes on cardiovascular disease and mortality (Table 2): 

167 binary.res <- gComp(data = cvdd, Y = "cvd_dth", X = 
168 "DIABETES", Z = c("AGE", "SEX", "BMI", "CURSMOKE", "PREVHYP"), 
169 outcome.type = "binary", R = 1000)  
170
171

172 Table 2. Effect of prevalent diabetes at the beginning of the study on the 24-year risk of 

173 cardiovascular disease or death among 4,240 participants in the Framingham Heart 

174 Study.

riskCommunicator Standard regression models*

Effect measure

Marginal effect 

estimate† (95% CI)

Covariate-conditional effect 

estimate† (95% CI)

Risk difference 0.29 (0.20, 0.39) N/A‡

Risk ratio 1.70 (1.48, 1.97) 1.49 (1.33, 1.66)

Odds ratio 4.55 (2.77, 9.09) 4.55 (2.66, 7.78)

Number needed to treat 3.48 N/A‡

175 *Log-linear regression for the risk difference, Poisson approximation of log-binomial regression with robust variance 

176 for the risk ratio, logistic regression for the odds ratio.

177 †Adjusted for patient's age, sex, body mass index (BMI), smoking status (current smoker or not), and prevalence of 

178 hypertension.

179 ‡Log-linear model did not converge

180
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181 The absolute 24-year risk of cardiovascular disease or death due to any cause was 29% 

182 (95% CI: 20, 40) higher among subjects with diabetes at baseline compared to subjects without 

183 diabetes at baseline. The relative 24-year risk was 70% (95% CI: 48, 97) higher. Because the 

184 outcome was common (41.8%), the odds ratio (4.55) is highly inflated compared to the risk ratio 

185 (1.70). This is a clear example where the odds ratio may be misleading since the odds ratio is 

186 commonly misinterpreted as a risk ratio. Furthermore, the relative effect may be interpreted as 

187 much larger than the absolute effect, even though the absolute risk difference more closely 

188 corresponds to the expected additional number of cases due to diabetes. For public health 

189 communication, the number needed to treat derived from the risk difference (1/risk difference) 

190 provides an easily interpreted estimate of the magnitude of effect. We would expect that only 4 

191 additional persons would need to have diabetes at baseline to observe an increase in the 

192 number of cases of cardiovascular disease or death by 1 over 24 years of follow-up.

193 We may also be interested in the effect of diabetes on the rate of cardiovascular disease 

194 or death, incorporating person-time at risk. If the Framingham Heart Study were an open cohort 

195 with variable follow-up time, rate-based effects would be more appropriate than risk-based 

196 measures, which assume a constant follow-up period. In addition, we may be interested in 

197 effects stratified by a potential effect measure modifier, such as participant sex. 

198 riskCommunicator can estimate the incidence rate difference and incidence rate ratio by sex 

199 for this analysis (Fig 1). As the person-time variable has units of days, rates are reported per 

200 100 person-years by using the rate.multiplier option.

201 rate.res.subgroup <- gComp(data = cvdd.t, Y = "cvd_dth", X = 
202 "DIABETES", Z = c("AGE", "SEX", "BMI", "CURSMOKE", "PREVHYP"), 
203 subgroup = "SEX", outcome.type = "rate", rate.multiplier = 
204 365.25*100, offset = "timeout", R = 1000)
205
206

207 Fig 1. Effect of having prevalent diabetes at the beginning of the study on the 24-year risk 

208 of cardiovascular disease or death overall and stratified by sex among 4,240 participants 
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209 in the Framingham Heart Study. A) Incidence rate ratio. B) Incidence rate difference. 

210 riskCommunicator was used to obtain marginal effect estimates (purple) and Poisson 

211 regression was used to obtain covariate-conditional estimates (green; not available for 

212 incidence rate difference). All models were adjusted for patient’s age, sex, body mass index, 

213 smoking status (current smoker or not), and prevalence of hypertension. Each point represents 

214 the point estimate and error bars show the 95% CI.

215

216 There is evidence for effect modification on the additive scale. The absolute rate of 

217 cardiovascular disease or death due to any cause is 2.49 cases/100 person-years (95% CI: 

218 1.34, 4.06) higher among males with diabetes compared to males without diabetes. In contrast, 

219 the effect among women is smaller: the absolute rate of cardiovascular disease or death is 1.92 

220 cases/100 person-years (95% CI: 1.00, 3.32) higher among females with diabetes compared to 

221 females without diabetes. The relative effects suggest effect modification in the opposite 

222 direction on the multiplicative scale, such that the effect of diabetes is stronger among females 

223 compared to males. This difference is observed because the baseline rate of cardiovascular 

224 disease and death without diabetes is higher among males (2.77 cases/100 person-years) than 

225 females (1.64 cases/100 person-years), such that with the relative effect, the greater absolute 

226 effect among males is diluted by their higher baseline risk. 

227 The overall incidence rate ratio in the total study population (1.91, 95% CI: 1.60, 2.29) 

228 can be estimated using the same code as above without the subgroup option. As expected, the 

229 incidence rate ratio is further from the null than the risk ratio, but closer to the null than the odds 

230 ratio (Table 1). This relationship among the magnitudes of these effect measures is expected 

231 due to their mathematical properties, and specifically the differences in the denominators of risk 

232 (total population), rates (person-time at risk), and odds (non-cases at the end of follow-up).

233 The estimation of these effects with standard regression models is not trivial. To estimate the 

234 risk difference and risk ratio, we used log-binomial and log-linear regression, respectively. 
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235 However, in these data, both models fail to converge, and the Poisson approximation with 

236 robust variance was necessary to estimate the risk ratio. The risk ratio estimate from g-

237 computation (confidence limit ratio: 1.33) had slightly lower precision compared to the estimate 

238 from Poisson regression with robust variance (confidence limit ratio: 1.25). Minor differences in 

239 the magnitude of the estimates can be attributed to the difference between the covariate-

240 conditional effects (as estimated by Poisson regression) and the marginal effects (as estimated 

241 by riskCommunicator; Table 2). Poisson regression could also be used to estimate the 

242 incidence rate ratios, resulting in equivalent magnitudes of estimates as those from 

243 riskCommunicator, but slightly less precision (Table 3). Adjusted incidence rate differences 

244 are not easy to estimate using standard regression models, but are readily available from 

245 riskCommunicator.

246 Finally, an additional useful output of the package is the estimation of marginal mean 

247 predicted outcomes for each exposure level. These predicted means are standardized over the 

248 observed values of covariates included in the model, and therefore are not specific to set values 

249 of the covariates. This difference is a major advantage over the usual predict function in R, 

250 and similar functions in other statistical programs such as the lsmeans statement in Statistical 

251 Analysis System (SAS), which can only predict outcomes at specific values of the other 

252 covariates.

253

254 Conclusions

255 riskCommunicator facilitates the presentation of a wide range of effect measures with 

256 a simple user experience, similar to running a linear regression model in R. For binary 

257 outcomes, effects are modeled using logistic regression, which preserves the preferable 

258 statistical qualities usually associated with odds ratios and applies them to the estimation of risk 

259 ratios and risk differences. The package also facilitates the presentation of incidence rate 
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260 differences, which are difficult to obtain with standard generalized linear models. Finally, the 

261 package supports assessment of additive effect measure modification by reporting difference 

262 effects, which is important since contradictory evidence for effect modification between the 

263 additive and multiplicative scales is common. While effect modification on the additive scale can 

264 be more relevant to public health [32,33], it is often harder to estimate with standard regression 

265 models [34,35].

266 It is important to highlight that the g-computation approach produces marginal rather 

267 than covariate-conditional effect estimates. In a multivariable model, the effect estimates 

268 derived directly from the covariate coefficients are covariate-conditional, interpreted as the 

269 associations given constant values of the other variables (or informally, “holding all other 

270 variables constant”) [32]. Covariate-conditional effects are difficult to interpret for non-collapsible 

271 effect measures like the odds ratio [36]. Therefore, the reporting of marginal effects, in which the 

272 effect is standardized over the covariate distribution of the total study population, may be 

273 preferable in many cases. The marginal effect is interpreted as the average treatment effect in 

274 the total population and is the primary effect of interest in randomized trials and in many 

275 observational settings where causal inference is the goal [37].

276 One potential limitation to the g-computation approach is the use of bootstrap for the 

277 confidence intervals. Bootstrapping is conservative compared to closed form solutions for the 

278 variance (e.g. those used to estimate Wald confidence intervals), such that the confidence 

279 intervals from bootstrapping can be slightly wider than alternatives. However, in the examples 

280 above, precision improved for the rate ratios. In addition, the precision loss is often not extreme 

281 when it occurs, and bootstrapped confidence intervals are more appropriate when the 

282 distributional assumptions or approximations of the parameter may not be valid [32]. By using 

283 percentiles of the simulated distribution of estimates from the bootstrap, one can avoid the need 

284 to calculate the standard deviation of estimates under the normal distribution assumption [38]. 
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285 The use of bootstrap allows for flexibility to estimate many effects with the same framework, 

286 including allowing for clustering with bootstrap at the cluster level.

287 The g-computation approach can also be limited in settings with a continuous exposure 

288 variable. For example, for a binary outcome, because the underlying parametric model is logistic 

289 regression, the risks will be estimated to be linear on the log-odds (logit) scale, such that the 

290 odds ratio for any one unit increase in the continuous variable is constant. However, the risks 

291 will not be linear on the linear (risk difference) or log (risk ratio) scales, such that these 

292 parameters will not be constant across the range of the continuous exposure. The g-

293 computation approach requires setting one specific exposure contrast within the range of the 

294 continuous exposure. Therefore, users should be aware that the risk difference, risk ratio, 

295 number needed to treat (for a binary outcome) and the incidence rate difference (for a 

296 rate/count outcome) reported do not necessarily apply across the entire range of the continuous 

297 exposure. We mitigate this issue by reporting the estimates for a relevant contrast within the 

298 exposure variable by first centering the variable at the mean and allowing users to specify a 

299 scaling factor for the contrast.

300 While other software packages are available to conduct more complex analyses with the 

301 g-computation approach, riskCommunicator has been designed to be more accessible to the 

302 average data analyst. For example, the GFORMULA macro for SAS [20] and the gfoRmula 

303 package in R [18] are targeted to longitudinal data with time-varying covariates. The qgcomp 

304 package combines g-computation with weighted quantile sum regression to estimate the effects 

305 of mixtures [39]. The tmle3 package in R includes g-computation but is designed to enable a 

306 more comprehensive set of analyses to estimate Targeted Minimum Loss-Based Estimation 

307 (TMLE) parameters [19], which requires advanced training even for doctoral-level 

308 epidemiologists. The focus of riskCommunicator alternatively is on facilitating the 

309 presentation of relevant and interpretable effect measures in relatively simple time-fixed 
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310 settings. The application of g-computation in these more traditional settings can help overcome 

311 the gap for less experienced users between traditional regression modeling-based methods and 

312 the g-methods, which are at the vanguard of epidemiologic methods development [40]. More 

313 importantly, riskCommunicator can facilitate the communication of effects of exposures and 

314 interventions and ultimately further the public health impact of epidemiologic and statistical 

315 research. 

316
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