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Abstract

In response to the outbreak of the coronavirus disease 2019 (Covid-19), governments
worldwide have introduced multiple restriction policies, known as non-pharmaceutical
interventions (NPIs). However, the relative impact of control measures and the
long-term causal contribution of each NPI are still a topic of debate. We present a
method to rigorously study the effectiveness of interventions on the rate of the
time-varying reproduction number Rt and on human mobility, considered here as a
proxy measure of policy adherence and social distancing. We frame our model using a
causal inference approach to quantify the impact of five governmental interventions
introduced until June 2020 to control the outbreak in 113 countries: confinement, school
closure, mask wearing, cultural closure, and work restrictions. Our results indicate that
mobility changes are more accurately predicted when compared to reproduction number.
All NPIs, except for mask wearing, significantly affected human mobility trends. From
these, schools and cultural closure mandates showed the largest effect on social
distancing. We also found that closing schools, issuing face mask usage, and
work-from-home mandates also caused a persistent reduction on Rt after their initiation,
which was not observed with the other social distancing measures. Our results are
robust and consistent across different model specifications and can shed more light on
the impact of individual NPIs.

Keywords— Non-pharmaceutical interventions, Covid-19, causal inference

Introduction 1

The coronavirus disease 2019 (Covid-19) pandemic has caused an enormous impact on 2

the economy and on global public health. As of January 1st 2022, the disease had over 3

290 million cases and more than 5 million deaths recorded in over 200 countries and 4

territories [1]. In response to the state of emergency declared by the World Health 5

Organization (WHO) in January 2020, governments worldwide have introduced multiple 6

restriction policies, known as non-pharmaceutical interventions (NPI), to mitigate the 7

spread of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Today, 8

two years from the first outbreak registered in Wuhan China, the relative impact of 9

control measures and the long-term causal contribution of each NPI are still a topic of 10

debate. 11
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In June 2020, Flaxman and colleagues [2] pioneered the challenge of estimating the 12

effectiveness of major interventions on the transmission of SARS-CoV-2. On the basis of 13

mortality data and a Bayesian hierarchical model, they concluded that lockdowns had 14

been effective in most European countries that were studied. Since then, due to the 15

increased widespread adoption of restrictions, several studies have attempted to 16

disentangle the effect of individual NPIs in several countries [3–10] or in the US 17

alone [11–17]. Overall, most previous mathematical modeling suggest that public health 18

interventions were associated with a reduction of Covid-19 incidence. Nonetheless, the 19

conclusions regarding the effect of each specific intervention are not unequivocal. For 20

example, [4, 5, 7, 8, 18] point out that school closures had a significant effect on the 21

transmission of new infections, while a review conducted by [19] suggested that closing 22

schools did not contribute to controlling the pandemic in countries like China, Hong 23

Kong, and Singapore. In fact, existing evidence for the impact of policies is not 24

consistent in the literature, as NPI effectiveness may vary across regions depending on 25

the local context [16]. 26

In this study, we provide a comprehensive analysis of the employment of five NPIs - 27

confinement, school closure, mask wearing, cultural closure, and work restrictions - in 28

113 countries during the first 5 months of 2020. We observed that during the first-wave 29

period there was a great deal of consistency in the set of restriction measures imposed 30

throughout the world, which was substantially reduced in the subsequent waves. Thus, 31

we focus on the initial outbreak period, when the long-term consequences of the virus 32

were still poorly understood, vaccines were still not available, and policy-makers were 33

not certain which control measures would be effective. With this approach, we hope to 34

suggest a method to infer the efficiency of restriction measures and to inform future 35

urgent preparedness response plans in the time-critical phase of a pandemic. 36

We estimate the impact of individual NPIs on social distancing and Covid-19 spread 37

using causal analysis methodology, taking into account confounding factors such as 38

concurrent NPIs, Covid-19 morbidity measures, and country-level socio-economic and 39

demographics factors. We tested two different variables as outcomes in the causal effect 40

estimation. First, we analysed how NPIs influence the mobility trends across different 41

categories of places such as residential and retail/recreation areas. In the second 42

approach, we evaluated the effect on the growth rate of the reproduction number Rt, 43

i.e., the rate by which the pandemic spreads. To the best of our knowledge, this is the 44

first study to quantify NPI effectiveness using a causal inference framework in such a 45

wide geography coverage, while accounting for confounding biases and performing 46

sensitivity analyses to assess the robustness of our findings. 47

Materials and methods 48

Data collection and pre-processing 49

Non-pharmaceutical interventions 50

We extracted the data on the restriction policies in 113 countries using the Worldwide 51

Non-pharmaceutical Interventions Tracker for Covid-19 (WNTRAC) [20], a 52

comprehensive database consisting of over 8, 000 Covid-19-related NPIs implemented 53

worldwide. WNTRAC was updated periodically until October 5th 2021, and we use the 54

latest release for the analyses described hereby, which covers the period until the day 55

before. For our experiments, we selected a subset of the five most well-defined and 56

frequently imposed NPIs in the data: confinement, entertainment/cultural sector 57

closure, work restrictions, mask-wearing, and school closure. Table 1 shows each NPI 58

with its respective description. 59
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Table 1. Description of the five NPIs used in this study.

NPI Description

School closure Closing of any school category: kinder-
gartens/daycares, primary/secondary schools or
universities.

Cultural closure Closing of any cultural establishment: bars, restau-
rants, night clubs, museums, theaters, cinema, li-
braries, festivities, parks and public gardens, gyms
and pools, or churches.

Confinement Physical distancing and universal lockdown mea-
sures. Considered as imposed when it is manda-
tory for the entire population.

Work-from-home order Work restrictions and mandatory work-from-home
orders for all nonessential workers.

Mask wearing Facial coverings or mask wearing. Considered as
imposed if it was mandatory or recommended in
public spaces.

Mobility trends 60

To infer people’s dynamic behavioral response to restriction policies, we obtained Google 61

mobility data [21]. These reports include the per-day change in movement across 62

different categories of places compared to a baseline day before the pandemic outbreak. 63

Similar to [17], we chose the change in duration of time spent in residential areas as a 64

primary metric to measure social distancing and policy adherence. We additionally 65

considered the effect of NPIs on the changes of movement in retail and recreation areas, 66

generally seen as nonessential visits. For each category, we smoothed weekly patterns by 67

using the seven-day rolling averaged mobility. When values were missing, we performed 68

a linear interpolation. We used country-level information for all countries in our analysis, 69

except for the US, which contained state-level data for both NPI and mobility data. 70

Socio-economical and health indicators 71

We used development indicators compiled from officially recognized international 72

sources to account for heterogeneity in terms of socio-economic and health factors 73

within individual countries. From the World Bank’s World Development Indicators 74

(WDI) [22], we selected a subset of variables, including access to electricity, outdoor air 75

pollution, and forest area. We also included country-level health information, ranging 76

from life expectancy at birth, smoking rate, and prevalence of undernourishment. As we 77

have indicators per year, we take the most recent metrics available per country. Similar 78

covariates were used in previous works [3, 4]. 79

We also included variables describing population distribution, age-structure, and 80

human development index from Our World in Data (OWID) [23]. To avoid producing 81

highly biased estimates with missing values imputation, we only analysed countries with 82

data available for at least 70% of the WDI and OWID variables and imputed the 83

remaining missing features with the mean. We characterize each country with a cluster 84

ID obtained through DBSCAN clustering [24] (scikit-learn, version 1.0.1) performed on 85

the vector of socio-economical and health features (see Table 1S with the final set of 86

features, and 1S Fig in Appendix E1 for a detailed explanation on the clustering 87

method). 88
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Covid-19-related variables 89

Our model used daily cumulative confirmed cases and deaths from the WHO 90

reports [25]. Before estimating Rt, we smoothed the number of new cases over time with 91

a local polynomial regression using a window size of 14 days and a polynomial degree of 92

1 to minimize the impact on the edges. The 14 day span (7 days forward and backward) 93

was used to ensure that an equal number of weekdays was used for smoothing and to 94

account for a time lag between exposure, testing, and documenting case reports. We 95

used the R package EpiEstim developed by Cori and colleagues [26] and extended by 96

Thompson et al. [27]. We chose a gamma distributed serial interval (mean, 3.96 days 97

[SD, 4.75 days]; this interval was constant across periods and derived from previous 98

epidemiological surveys on Covid-19 [28]), to estimate Rt and its 95% credible interval 99

on each day via a 7-day moving average. EpiEstim was chosen due to its statistically 100

robust analytical estimates and extensive use in the disease epidemiology literature. 101

Because estimating the serial interval distribution may not be possible in the early 102

phase of an outbreak, or may be associated with significant uncertainty as countries still 103

had to establish their documentation practices, we exclude the period before 100 104

cumulative cases of each country from our dataset. Therefore, the window of analysis 105

for each country starts on the day the cumulative cases exceeded 100 and ends on June 106

1st 2020. When concatenating all data sources, we found an intersection of 113 countries 107

that were used in our final analysis. Countries like China, Iran and part of central 108

African countries were excluded due to missing mobility data (see geography selection in 109

Appendix E2). 110

Statistical analysis 111

Outcome prediction 112

To investigate whether the observed variables (Covid-19 morbidity measures, 113

socio-economical factors and status of NPIs) contained the predictive power for the 114

outcomes of interest, we built prediction models to estimate Rt and the change in 115

mobility. We split the dataset into two non-overlapping sets: 70% of samples used for 116

training and 30% for validation. We used the gradient boosted trees algorithm with the 117

XGBoost [29] package (version 1.2.0; https://xgboost.ai), with hyperparameters tuned 118

using 5-fold cross validation on the train dataset, via a randomized grid search. The 119

TreeExplainer from the SHapley Additive exPlanations (SHAP) [30] package was fit on 120

the validation set to estimate the association and contribution of each feature to the 121

XGBoost model. 122

We evaluated the accuracy of the predictions using the mean-squared error (MSE). 123

To compare between the performance of different models at different scales, we 124

normalized the estimates and the observed values in the test set before computing the 125

MSE. The 95% confidence intervals (CI) were obtained with 100 bootstrapping 126

iterations. 127

Potential outcome framework 128

We formulated causal effects in terms of the potential outcome framework [31]. Each 129

country i at each point in time t is characterized by a feature vector Xi,t, consisting of 130

dynamic variables - the cumulative and new number of cases/deaths per million - and a 131

static variable - a socioeconomic cluster ID, which is country-specific and constant over 132

time. In addition, we included information regarding the status of the restrictions. This 133

is a feature vector containing a set of binary features corresponding to whether other 134

NPIs are in place at that time point. We denote Y
(a)
i,t as the potential outcome in a 135

given country i on day t for binary treatment a. We were interested in two possible 136
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outcomes: (i) M
(a)
i,t , the difference in the country-level mobility defined as in [32] and 137

(ii) R
(a)
i,t , the change in SARS-CoV-2 transmission represented by a ratio of the 138

reproduction number Rt, defined as in [9]. We evaluated the outcomes with respect to a 139

time-lag w (in days), as follows: 140

M
(a)
i,t = Mi,t+w −Mi,t (1)

R
(a)
i,t =

Ri,t+w

Ri,t
(2)

In this study, we considered the effect on the outcomes 2 weeks after the NPIs were 141

enacted ± 1 week (i.e., w = 7, 14 and 21). Our goal was to estimate the Average 142

Treatment Effect on the Treated (ATT ), defined as 143

ATTM = Ex∼X|A=1 [Y |A = 1, X]− Ex∼X|A=1 [Y |A = 0, X]

and 144

ATTR =
Ex∼X|A=1 [Y |A = 1, X]

Ex∼X|A=1 [Y |A = 0, X]

where ATTM and ATTR denote the causal effects of human mobility trends and Rt, 145

respectively. Thus, a null effect of NPIs on mobility would be equivalent to ATTM = 0. 146

Similarly, a null effect on Rt corresponds to ATTR = 1. 147

To identify such a causal effect, we make several assumptions: (i) conditional 148

exchangeability (ii) Stable Unit Treatment Value Assumption (SUTVA) and (iii) 149

positivity. Identifying the ATT requires a weaker version of the assumptions above, as 150

we are only estimating potential outcomes for the treated part of the population. A 151

detailed discussion about the assumptions can be found in Appendix E3. 152

Study design 153

A crucial component for estimating causal effect from observational studies is the ability 154

to conceptualize and to emulate randomized experiments. To this end, we designed a 155

cohort study exclusively separating samples (in this case, days) from the treatment and 156

control groups. For each NPI k ∈ K, we defined an event as the day NPI k was enacted 157

in a certain country, given that this intervention was not in action the day before. We 158

denote this day t∗k. We defined the treatment group for NPI k as the set of t∗k in the 113 159

countries during their respective period of analysis (Fig 1). The control group includes 160

all days in the cohort except t∗k ± w ∀k where w is the number of days before and after 161

the event, and it is also the same time-lag period defined in Eq 1 and Eq 2. The control 162

cohort represents a period where none of the five NPIs were enacted (an event did not 163

occur), but they might still be in place during that period. Unlike the treatment groups, 164

which are NPI-specific, the control groups are the same for all NPIs used as treatment. 165

Fig 1. Schematic presentation of the study design. Vertical lines represent days.
We denote day t∗k (in red) as the day when NPI k was enacted, considering that this
NPI was not active the day before (i.e., event date). The treatment group for NPI k
consists of t∗k across all countries. The control group are the remaining days (in blue)
outside the time interval t∗k ± w, where w is a lag period.
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Covariate balancing 166

We used Adversarial Balancing (AdvBal) [33] to estimate the mean potential outcome 167

of the control group. In brief, AdvBal borrows principles from generative adversarial 168

networks to assign weight to each sample in some source data, such that the resulting 169

weighted data becomes similar to a given target data. Unlike the original paper, we 170

defined only the treated group as the target population, and not the entire population, 171

i.e., we fixed the weights of the treated samples and adjusted the weights of the control 172

in order to balance the groups. The implementation of AdvBal and the resulting 173

balancing evaluation of the models were done with the Python package causallib [34] 174

(version 0.7.1; https://github.com/IBM/causallib). The final effects and the associated 175

95% confidence intervals were computed with 1, 000 bootstrap samples. 176

Sensitivity analysis 177

We performed sensitivity analyses to test our conclusions under different scenarios. 178

First, we reran our framework with a different model to estimate treatment effect from 179

observational data. We used inverse probability weighting (IPW) [35], a longstanding 180

popular method that overcomes confounding by weighting samples by the inverse of 181

their probability of being assigned to their treatment, conditioned on their covariates. 182

These probability parameters were estimated with a logistic regression model. Once 183

confounding was adjusted and the weights were computed, we estimated the causal 184

effect on the treated sample as a weighted average of the outcome. 185

Second, we performed a complementary analysis to test whether the estimated 186

effects were consistent when using an alternative study design. In this approach, the 187

treatment groups are the same as in the original study (Fig 1). On the other hand, the 188

control group consists of events from the remaining NPIs (apart from the NPI used as 189

treatment). For example, if we were to estimate the effects of NPI k ∈ K, the treated 190

group would contain only the events for this specific NPI, t∗k, whereas the control group 191

would be the events of all other NPIs K-k, as long as these events do not overlap with t∗k. 192

Results 193

NPI employment statistics 194

As a preliminary step, we examined the frequency at which each NPI was imposed in 195

the 113 countries (Fig 2). Since governments introduced and lifted lockdowns and social 196

distancing measures consistently throughout time, we observed a continuous growth in 197

the number of confinement events (Fig 2A). This behavior was the opposite for mask 198

wearing events, which had a swift and sustained increase until October 2020, and then 199

stayed constant for the rest of the period. By the end of March 2020, over 60% of all 200

documented NPI events until October 2021 had already happened. We then analysed 201

the distribution of NPIs across different countries before and after June 1st 2020 (5S Fig 202

in Appendix E7). We discovered that in the first wave, most countries imposed a large 203

and diverse set of NPIs, which was greatly reduced in the following waves. For example, 204

European countries like Spain and Italy introduced very similar government policies 205

during their first waves, but adopted different strategies in the subsequent period: while 206

Italy imposed similar preventive measures with less frequency, Spain placed more 207

emphasis on lockdowns. Overall, throughout 2021, countries had to choose the 208

appropriate NPIs that best fit their socio-economic circumstances and gradually lifted 209

restrictions to avoid negative impacts in the economy [36]. 210

Because a large number of restriction measures were initiated simultaneously in 211

multiple countries within a short period of time, we analysed the events’ coincidence per 212
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country until end of May 2020. The co-occurrence matrix in Fig 2B shows that the 213

NPIs are co-linear in this period, i.e., they frequently co-occurred. For example, out of 214

57 confinement events, 12 of them occurred within a period of two weeks (seven days 215

earlier or later) of a work restriction event in the same country. When high co-linearity 216

exists, individual effect estimates are more challenging, as it is harder to identify what 217

in fact drives the change in SARS-CoV-2 transmission. To overcome this problem and 218

to control for the influence of individual NPIs on the estimated effects, we opted to add 219

the status of NPIs as confounders to our causal model (recall section Potential outcome 220

framework). 221

Fig 2. Distribution of NPIs and frequency of their co-existence. (A)
Cumulative number of events over time. An event is defined as the day when an
intervention was enacted in a country, considering that this NPI was not active the day
before. Until June 1st 2020 (dashed vertical line), 60% of all events had already
happened. (B) Co-occurrence matrix of events in the limited period until June 1st 2020.
The diagonal values represent the number of events. Cell values indicate the sum of
times that NPI i (x-axis) and NPI j (y-axis) were enacted together within a period of 2
weeks in the same country or US state.

Predictors of mobility change and Covid-19 Rt 222

The prediction performance on the validation dataset of both outcomes and their 223

feature contribution plots are summarized in Fig 3. To evaluate the performance of the 224

XGBoost models, we compared their accuracy to the one of a model based on 225

permutation tests [37]. This model generates a null distribution by calculating the 226

normalized MSE under the null hypothesis, where in each bootstrap replicate the 227

features are kept the same but the outcomes undergo different permutations. We found 228

that for all scenarios considered in this study (different time lags and different outcome 229

variables), the features we utilized showed enough statistical power to allow a good 230

prediction (Fig 3C). Associations between the outcome variables and baseline features 231

can be visualized using SHAP “beeswarm” plots, that show the top-10 contributing 232

features for the outcomes prediction using a time-lag of 7 days (Fig 3A-B). The 233

strongest predictor of Rt was its own value 7 days before, implying a clear positive 234

association between Rt measures within a one-week period (Fig 3A). Such strong a 235

association was not observed with other important features, such as confirmed cases and 236

deaths. Changes in mobility within several categories also impacted the Rt prediction. 237

In particular, an increase in mobility in workplaces and retail contributed to a higher 238

SARS-CoV-2 transmission. The feature importance analysis of residential mobility 239

prediction revealed that mobility categories are highly correlated: as the time spent at 240

home increases, the movement outside residence decreases (Fig 3B). 241

Estimated effect of interventions on policy adherence and 242

SARS-CoV-2 transmission 243

We derived causal effect estimates using balancing weights that minimized the 244

confounding biases. The absolute standard mean difference (ASMD) was used as a 245

measure to compare the distribution of observed baseline covariates between treated 246

and untreated groups. The AdvBal algorithm could significantly decrease differences 247

between covariate distributions, bringing the ASMD to less than 0.25 for all covariates 248

(2S Fig in Appendix E4). This value is considered a reasonable cutoff for acceptable 249

standardized biases, indicating that the effect estimates are reliable and robust to 250

confounding [38]. 251
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Fig 3. Important predictors of outcome and accuracy of prediction for
different time-lags. (A) Identification of top-10 predictive variables affecting Rt

estimation. (B) Top-10 most contributing features for residential mobility estimation.
SHAP analysis in A and B is based on predictions using a time-lag of 7 days. Each dot
represents a single data sample in the validation set (i.e., country at a date). The dot
color represents the feature value (red=high, blue=low). The farther a dot is from 0 on
the x-axis, the more effect (positive or negative) this feature had on the prediction
model for this particular sample. (C) Model performance (log of normalized MSE) of Rt

(solid dark blue line) and residential mobility (solid green lines) in the validation set for
different time lags. The dashed lines of the same color correspond to random prediction
derived by permutation tests with their respective models. Both models significantly
outperformed random prediction.

We report the estimated causal effects ÂTTM and ÂTTR without balancing weights 252

(unadjusted) and with balancing weights generated by the AdvBal algorithm and IPW 253

(Fig 4). All estimates are presented with 95% confidence intervals and were obtained 254

after assessing whether the balancing weights approaches were able to reduce biases. 255

Our results suggest that the full extent of NPIs, except mask wearing, significantly 256

affected human mobility change as early as 7 days after their initiation. However, 257

changes in mobility varied between these 4 restrictions. School and cultural closures 258

caused a quick and sustained increase in the time spent inside the home, whereas 259

confinement and work-from-home orders had a slower and plateauing effect over time. 260

Estimates from the AdvBal algorithm suggest that, following the introduction of NPIs, 261

the time spent at home 14 days later was estimated to increase by 9.06% [95% CI: 262

6.86%, 11.10%], 9.22% [95% CI: 6.90%, 11.66%], 13.29% [95%CI: 10.57%, 15.95%] and 263

11.38% [95%CI: 8.83%, 13.80%], in response to confinement, work restrictions, school 264

and cultural closure, respectively. Since people already spent a lot of time in their 265

residence before the pandemic, movement changes in residential areas were likely to be 266

smaller compared to outside locations, such as recreation and retail areas (3S Fig in 267

Appendix E5). 268

Fig 4. Estimated causal effects of NPIs over time on residential mobility
(left) and reproduction number rate (right). In both plots, the opacity of the
markers represents the ability of the balancing weights method to balance the treatment
groups: the smaller the ASMD is, the more opaque the markers are. Fully opaque
markers indicate an ASMD < 0.1, half-transparent markers indicate 0.1 ≤ ASMD ≤
0.25 and most transparent ones represent ASMD > 0.25. Apart from mask wearing
mandates, all NPIs caused a significant increase in time spent at home. Of those, school
and cultural closures were the most effective. Closing schools, issuing face mask usage,
and work-from-home mandates also caused a persistent reduction in Rt after their
initiation, which was not observed with the other social distancing measures. Code used
for generating figure is available at https://github.com/barakm-ki/symptoms-dynamics-
of-COVID-19-infection/blob/master.

From the five interventions considered, all except cultural closure and confinement 269

caused a significant decline in the transmission of SARS-CoV-2, but within different 270

time lags. It took an estimated 7 days after initiation of school closures to bring ÂTTR 271

below 1, as opposed to 14 days for face mask mandates, and 21 days for work 272

restrictions. By the end of 3 weeks, school closures had continuously reduced Rt until 273

0.81 [95% CI: 0.63, 0.98], mask wearing caused a decrease until 0.81 [95% CI: 0.73, 0.88], 274

and work-from-home orders led to Rt reduction of 0.84 [95% CI: 0.75, 0.93]. Overall, 275

the confidence intervals for the individual effects of all restrictions overlapped, 276
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suggesting a comparable effect between each other. IPW and the AdvBal algorithm 277

showed similar trends in their resulting effects, but the balancing of covariates was 278

marginally better on the latter (2S Fig, Appendix E4). 279

Results of a complementary analysis based on an alternative study design are 280

described in Appendix E6. We found that under a stricter cohort design, where we 281

compare the effect of NPIs with respect to the other NPIs, school closure had the 282

greatest impact on increasing mobility in residences and in reducing Rt 14 days after its 283

initiation (4S Fig). 284

Discussion 285

We constructed a dataset that combines rich information about countries and their 286

reaction to the urgent need to control the pandemic spread. The data include 287

information on social-economics and health benefits, NPIs, and mobility data from more 288

than 100 countries. We showed that the data have predictive power, and that the 289

prediction of changes in mobility after imposing NPIs is more accurate than the 290

prediction of the reproduction number. We employed a causal inference approach to 291

quantify the effect of NPIs on the rate of Rt (i.e., transmission of SARS-CoV-2) and on 292

the change of human mobility, which is considered a proxy measure of population 293

adherence and social distancing. The purpose of this study was to help infer the 294

efficiency of interventions in the early months of a pandemic, when a number of control 295

measures had already been imposed by multiple countries in the absence of vaccines. 296

The most common use of causal inference seeks to estimate the average treatment 297

effect (ATE). Such an analysis would answer questions such as ”what would have 298

happened if every country applied the NPI?”. However, in this case an analysis of this 299

type proved to be unfeasible, since it was not possible to balance the confounding 300

differences between the treated and untreated countries. We therefore opted to 301

measuring the impact of NPIs in the countries that chose to impose the NPIs, which is 302

known as the average effect on treated (ATT). This answers the question of ”what was 303

the effect of applying the NPIs in the countries that applied it?”. This approach allowed 304

covariate balancing, which provided more reliable estimates of the effect of NPIs. 305

Our findings showed that mask wearing did not significantly impact mobility 306

patterns in the first wave. Although a number of countries favored face mask usage 307

early in their outbreaks [39], the main reason people changed their behavior was social 308

distancing policies. We found that issuing confinement, work-from-home orders, or 309

school/cultural closure mandates resulted in high levels of policy compliance even one 310

week after their initiation, as measured by changes in movement in residential areas. 311

This result was consistent with recent findings [32,40]. 312

The estimated effect on Rt showed that not all NPIs significantly contributed to a 313

decrease in SARS-CoV-2 transmission. In particular, school closure achieved a sustained 314

decline on the rate of Rt, similar to what was found in observational studies of the first 315

wave [4,5,7–9] and second European wave [41]. Because infected children can experience 316

mild or no symptoms more frequently than older individuals [42] and tend to have more 317

social contact than adults [43], it is expected that closing schools would considerably 318

contribute to reduce the transmission. In contrast, on its own, closing cultural 319

establishments does not seem to have an effect on the reproduction number, nor do 320

work restrictions in the first 14 days after imposing the NPIs. Notably, we did not find 321

substantial differences in the results when performing sensitivity analysis. 322

Our study extends previous first-wave estimate studies [2, 4, 5, 7–10] in a number of 323

ways. First, we used the potential outcome framework to infer NPI effects. In its 324

simplest form, our causal model made use of standard causal inference methods to 325

correct observed biases and obtain valid effects with more transparent confidence 326
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intervals. Second, we addressed the issue of concurring NPIs by using their status as 327

covariates in the causal model. By ensuring that all NPI-related covariates are well 328

balanced between treatment groups, we enhanced the power to detect independent NPI 329

effects. Third, we account for heterogeneity of countries by including a social 330

economical cluster indicator in the dataset. Fourth, we conducted complementary 331

analyses under alternative scenarios to test our conclusions not only with a different 332

cohort study design, but also with another balancing weights generation approach. 333

We acknowledge several limitations in our analyses. Even with data from multiple 334

countries that had diverse sets of interventions in place, inferring NPI effects still 335

remained a challenging task. First, the Rt estimation was based on epidemiological 336

parameters that are only known with uncertainty, due to many mild or asymptomatic 337

cases that make it difficult to model the timing for the onset of symptoms and serial 338

interval distributions. On top of that, Rt also relies on the data of confirmed cases, 339

which were generally unreliable in the early days of the pandemic due to lack of testing 340

availability and not-established documentation practices. To account for this, we began 341

our analysis at each country’s 100th case. Secondly, the data are retrospective and 342

observational, meaning that unobserved factors could confound the results. Third, we 343

were unable to assess the effect of lifting interventions. Since the NPI events in 344

WNTRAC are automatically extracted from Wikipedia articles, which report the 345

introduction of NPIs more frequently than their relaxation, the number of lifting events 346

documented in the database did not have enough statistical power for causal inference. 347

Yet, we believe we set the ground for a thorough analysis of NPIs and we were able to 348

draw conclusions regarding the effect different NPIs had on the pandemic spread. Future 349

work can assess the causal effect of the post-vaccine newly defined NPIs where health 350

certificate notions were introduced in somewhat similar ways across different countries. 351

Code availability 352

The source code for the causal inference evaluation of NPIs is available in a public 353

GitHub repository at https://github.com/IBM/causallib. Please refer to the README 354

file in the repository for further instructions on using the code. Requests for the code 355

used to generate the results and the plots should be directed to the corresponding 356

author. 357
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Supplemental material

Appendix E1

Clustering of countries based on socio-economic and health variables We
characterized each country by a cluster ID representing its socio-economic and health
status. We used DBSCAN (Density-Based Spatial Clustering of Applications with
Noise) [24] because the number of clusters generated was not limited to a pre-defined
constant. The parameters eps and Minpts were decided based on experimental trials.
First, we arbitrarily set five countries to be the minimum number of samples in a
neighborhood and used the Euclidian metric to calculate distances between instances.
The parameter eps, i.e., the maximum distance two countries can be from one another
while still belonging to the same cluster, was selected according to a k-dist graph [44];
this graph calculates the distance between a point and its k-th nearest points (in this
case, k = 5). We then plotted the distances in ascending order on a k-distance graph
and chose the value at the point of maximum curvature, where the graph has the
highest slope. Finally, noise samples were manually assigned to the defined clusters
using domain knowledge. This procedure resulted in four clusters (1S Fig). Finally, we
one-hot encoded the cluster identifier and represented the socioeconomic status with
four binary variables: cluster 1, cluster 2, cluster 3, and cluster 4. The list of features
used in the DBSCAN algorithm are detailed in 1S Table with their descriptive statistics.

1S Fig. Clusters performed on socio-economic and health variables.
Countries are colored by their respective cluster ID. The DBSCAN algorithm found a
total of 4 clusters: a large group comprising mostly African, South/Central American,
and South East Asian countries (in dark green); another cluster predominantly with
Eastern European countries (light green); the third cluster with the USA, Canada, and
part of Western Europe (light orange); and lastly, a group of countries composed of the
UK, along with a few Western European and Asian countries (dark orange).

Appendix E2

Geography selection The geography was selected based on the intersection of
countries with available NPI data, mobility trends and at least 70% non-missing
variables from socioeconomical and health databases (World Development Indicators
[WDI] and Our World in Data [OWID]). The final dataset consisted of the following 113
countries:

Afghanistan, Angola, United Arab Emirates, Argentina, Antigua and Barbuda,
Australia, Austria, Belgium, Burkina Faso, Bangladesh, Bulgaria, Bahrain, Bahamas,
Bosnia and Herzegovina, Belarus, Belize, Bolivia, Brazil, Barbados, Canada,
Switzerland, Chile, Colombia, Cabo Verde, Costa Rica, Czechia, Germany, Denmark,
Dominican Republic, Egypt, Spain, Estonia, Finland, Fiji, France, Gabon, United
Kingdom, Georgia, Ghana, Greece, Guatemala, Honduras, Croatia, Hungary, Indonesia,
India, Ireland, Iraq, Israel, Italy, Jamaica, Jordan, Japan, Kenya, Kyrgyzstan,
Cambodia, Republic of Korea, Kuwait, Laos Peoples Democratic Republic, Lebanon,
Libya, Sri Lanka, Lithuania, Luxembourg, Latvia, Morocco, Moldova, Republic of,
Mexico, North Macedonia, Mali, Malta, Myanmar, Mongolia, Mauritius, Malaysia,
Nigeria, Netherlands, Norway, Nepal, New Zealand, Oman, Pakistan, Panama, Peru,
Philippines, Papua New Guinea, Poland, Portugal, Paraguay, Qatar, Romania, Russian
Federation, Rwanda, Saudi Arabia, Senegal, Singapore, Serbia, Slovakia, Slovenia,
Sweden, Togo, Thailand, Trinidad and Tobago, Turkey, Ukraine, Uruguay, United
States, Venezuela, Viet Nam, Yemen, South Africa, Zambia, Zimbabwe.
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1S Table. Descriptive statistics for observed variables from OWID and the World
Bank’s WDI datasets (accessed on October 10, 2021) across 113 countries.

Variable Mean ± std Observations

Socio-economic variables
Access to electricity 92.36 ± 17.03 % of population
Access to electricity 97.43 ± 6.25 % of urban population
Forest area (%) 30.92 ± 21.25 land in hectares
Air pollution, mean annual ex-
posure

26.91 ± 20.50 micrograms per cubic meter

GDP per capita 23198.36 ± 20778.14
Human Development Index 0.76 ± 0.13
People with basic handwash-
ing facilities

59.93 ± 17.64 % of population

Hospital beds 3.32 ± 2.49 per 100,000 people
Population density 234.21 ± 768.68
Median age 33.05 ± 8.70
Population ages 65 and above 10.33 ± 6.65 % of total population
Population ages 70 and above 6.60 ± 4.57 % of total population
Health variables
Cardiovascular death rate 242.38 ± 120.20 per 100,000 people
Life expectancy at birth, total 74.59 ± 6.45 in years
Antiretroviral therapy cover-
age

60.39 ± 14.23 % of people living with HIV

Smoking prevalence, males 32.21 ± 17.64 % of adults
Smoking prevalence, females 12.18 ± 11.39 % of adults
Prevalence of undernourish-
ment

7.33 ± 9.88 % of population

Prevalence of overweight 50.74 ± 6.73 % of adults
Cause of death by communi-
cable diseases and maternal,
prenatal and nutrition condi-
tions

16.45 ± 9.58 % of total

Cause of death by non-
communicable diseases

74.91 ± 18.31 % of total

Diabetes prevalence 7.8 ± 3.97 % of population ages 20 to 79
Mortality from CVD, cancer,
diabetes or CRD

17.72 ± 5.82 % of ages 30 to 70
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Because we had more locally fine-grained mobility and NPI data available for the
United States, we used the state-level information of all 50 states.

Appendix E3

Identification assumptions The Rubin Causal Model [31] used in this study is an
approach to causal inference that is based on a framework of potential outcomes. Under
this framework, causal effects are estimated with comparisons of potential outcomes
under the two different treatments: one that received the intervention, and another that
received a different intervention (e.g., placebo or no treatment). In our context, these
two groups are defined as days in countries where NPIs were imposed vs. days in
countries where NPIs were not imposed. Causal estimates from this source are unbiased
when three assumptions are met, namely (i) conditional exchangeability, (ii) Stable Unit
Treatment Value Assumption (SUTVA) and (iii) positivity.

Conditional exchangeability states that the counterfactual outcomes are
conditionally independent of the treatment given the set of covariates. Under this
assumption, the treatment groups are ”exchangeable”, i.e., there are no unmeasured
confounders that are a common cause of both treatment and the outcome [45]. In other
words, if all confounders are measured, then we can assume that exchangeability holds
within the strata dictated by the confounders, and we can estimate the causal effect by
using methods that eliminate the confounding (e.g.,, by emulating a randomized
controlled trial [RCT] using balancing weights methods). This is because randomization
ensures that the covariates associated with the outcome are equally distributed between
the treatment groups. In reality, in observational studies as the one we studied here, one
cannot empirically verify that conditional exchangeability holds or there is no
unmeasured confounding. Thus, causal inference relies on subject-matter knowledge to
identify possible confounders in the data, so that the assumption is at least
approximately true.

SUTVA stipulates that the outcome of one unit should not be affected by another
unit’s treatment assignment. Although SUTVA plays a central role in the identification
of causal effects, this assumption does not hold in many settings. For example, when a
certain country bans inbound flights from its neighbouring countries (introduction of a
new NPI), the observable outcome (mobility change, Rt rate or any other Covid-19
morbidity measure) of the banned countries are certainly affected by this treatment
assignment. Another classical example is given in epidemiology, where the possibility of
an individual becoming infected depends on whether the population is vaccinated. In
our study of NPI effectiveness, SUTVA is an unrealistic assumption. Yet, we claim that
our final estimated effects are still a good enough approximation. We direct the reader
to the work of Hudgens and Halloran [46]. In their paper they do a review of previous
studies that estimated causal effects in the presence of interventions’ interference.

Positivity, also called a lack of covariate overlap, is the assumption that any sample
has a positive probability of receiving all values of the treatment variable. In other
words, to identify causal effects pertaining to a treatment A, there must be some
probability of receiving A given a certain baseline of covariates X, otherwise treatment
versus control causal effects cannot be identified. Mathematically,
Pr(A = a|X = x) > 0 for all xwherePr(X = x) 6= 0. The positivity assumption has the
very important consequence of ensuring that features in both treatment groups are
equal in their distribution. In our work, we empirically verify to some extent whether
positivity holds by checking whether the distribution of covariates is similar between the
two treatment groups. By inspecting the success of the weighting method used (in our
case, either IPW or the AdvBal algorithm [33], we are ensuring that positivity holds in
our dataset. In the next section, we discuss the balancing evaluation of the applied
weights in more detail.
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Appendix E4

Balancing evaluation A fundamental step required to produce reliable effect
estimates is to control for systematic differences between the treatment and control
groups. To this end, balancing weights methods, such as adversarial balancing
(AdvBal) [33], generate weights that reduce the observed confounding biases, and thus
can be used to emulate a randomized controlled trial (RCT) by re-weighting the
population. To evaluate the performance of AdvBal, we analysed the distribution of all
covariates across the treatment groups before and after re-weighting samples with
AdvBal. The covariate balancing plot in 2S Fig is an example of an evaluation plot
when work restrictions was assigned as treatment. In the plot, the difference in
distribution between treatment groups is quantified by the absolute standard mean
difference (ASMD), defined as the absolute value in the difference in means of a
covariate between the treatment groups, divided by its standard deviation in the treated
group. A small ASMD value represents a good balance, while a value larger than some
threshold is considered imbalanced. In this study, we considered a threshold of 0.1 as a
reasonable cutoff for acceptable ASMD [38]. We observed that before balancing, many
features were biased between the treated and untreated groups. AdvBal was able to
minimize this discrepancy, bringing the ASMD to less than 0.1 for all covariates.

2S Fig. Balancing evaluation plots of AdvBal algorithm (upper) and IPW
(lower) of the dataset during train phase. The plot displays the absolute
standard mean difference (ASMD) of each feature in the original unweighted data
(orange triangles) and in the weighted data (blue circles) obtained with the weights
generation method. Although both methods were able to balance all covariate
distributions and bring ASMD below 0.1, AdvBal performed marginally better.

Appendix E5

NPIs effect on places of recreation The mobility data for retail and recreation
areas represents the change (relative to the period before the pandemic) in the number
of visitors to places like restaurants, shopping centers, and libraries. The estimated
causal effects show that, apart from mask wearing, all social distancing policies were
effective in decreasing visits to this category of places (3S Fig). Of these, school and
cultural mandates were the most effective ones, achieving a 50.4% [95% CI: 41.9%,
58.2%] and 47.4% [95% CI: 39.4%, 55.1%] average reduction in 21 days, respectively.
Overall, changes in mobility outside residential areas were larger in magnitude.

3S Fig. Effect of NPIs over time on retail and recreation areas. Model results
for the 113 countries show that school and cultural mandates were the most effective
ones, achieving a 50.4% and 47.4% reduction in the average number of visitors to
recreation areas in 21 days, respectively. AdvBal: Adversarial balancing algorithm,
IPW: inverse propensity weighting.

Appendix E6

Complementary analysis of effect of NPIs In an alternative cohort study design,
the treatment group is composed of all events of a certain NPI of interest, whereas the
control group contains all events of the remaining NPIs. Thus, instead of estimating the
effect of NPIs compared to a period when no NPIs are imposed, we aimed at estimating
the effects of individual NPIs relative to others. We consider this scenario a more
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”strict” design where we hoped to examine whether our findings would be consistent
with the results of the original study.

Results of this complementary analysis are shown in 4S Fig. We found that
compared to other NPIs, school closure was the most effective restriction in changing
the two mobility categories 14 days later after its initiation. It was also the only NPI
that greatly impacted Rt in the same time period.

4S Fig. Estimated causal effects of NPIs under the study design ”NPI vs.
other NPIs”. Under this approach, we investigated which NPI has the highest impact
compared to the others. AdvBal: Adversarial balancing algorithm, IPW: inverse
propensity weighting.

Appendix E7

5S Fig. NPI employment statistics per country and US state before and
after June 1st 2020. Until June 11st, governments worldwide enacted restrictions in a
more consistent way, i.e., the distribution of the NPIs employed was more similar across
countries.
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