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Abstract

Computational models offer a unique setting to test strategies to mitigate infectious diseases’
spread, providing useful insights to applied public health. To be actionable, models need to be
informed by data, which can be available at different levels of detail. While high resolution data
describing contacts between individuals are increasingly available, data gathering remains chal-
lenging, especially during a health emergency: many models thus use synthetic data or coarse
information to evaluate intervention protocols. Here, we evaluate how the representation of con-
tact data might affect the impact of various strategies in models, in the realm of COVID-19
transmission in educational and work contexts. Starting from high resolution contact data, we use
data representations ranging from very detailed to very coarse to inform a model for the spread of
SARS-CoV-2 and simulate several mitigation strategies. We find that coarse data representations
underestimate the risk of super-spreading events. However, the rankings of protocols according to
their efficiency or cost remain coherent across representations, ensuring the consistency of model
findings to inform public health advice. Caution should be taken, however, on the quantitative
estimations of those benefits and costs that may trigger the adoption of protocols, as these may
depend on data representation.

1 Introduction
Computational models and numerical simulations are essential tools for the understanding of epidemic
spread [1, 2], at scales ranging from global to local [3, 4, 5, 6]. They have been used in the past to
examine pandemic scenarios, and more extensively during the current COVID-19 pandemic, to evaluate
the potential impact of non-pharmaceutical interventions (NPIs) ranging from international travel
restrictions [5, 4, 7, 8, 9] to lockdowns or curfews aiming at reducing global mobility and interactions
[10, 11, 12, 13], to more targeted measures such as isolation of positive cases, contact tracing, telework,
partial closures of schools or surveillance by regular testing [14, 15, 16, 17, 18, 19, 20, 21, 22].

Epidemic models of infectious diseases rely on the one hand on the physiological characterization of
the disease within hosts, and on the other hand on the representation of how the disease can propagate
from host to host, i.e., of the interactions between hosts. These interactions can be described at various
levels of details: at the coarsest level, homogeneous mixing [1] assumes that all individuals can interact
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with each other in a uniform way; contact matrices divide individuals into classes, and give the average
duration of contacts between individuals of given classes [23]; contact networks describe specifically
which pairs of hosts have been in contact [24, 25, 26]. Regardless of the level of description chosen,
a model needs to be informed by data in order to be actionable, i.e., to provide scenarios that can
inform public health decisions. These data are typically collected by surveys or diaries [27, 23, 28] or,
more recently, using wearable sensors able to detect close-range proximity between individuals with
high spatial and temporal resolution [29, 30, 31, 32, 33].

Gathering data is however expensive, time-consuming and implies logistical challenges, which be-
come particularly prohibitive for large-scale populations or multiple coupled settings, especially for
high-resolution data [25, 34]. The questions of how much detail should be included in computational
models, and of how the description of interactions impacts the outcome and actionability of compu-
tational models, arise therefore naturally [6, 35]. For instance, the estimation of the role of super-
spreading needs to be informed by the heterogeneity of contact patterns [36]. Coarse representations
can also overestimate the impact of a spread or the epidemic risk of specific groups [6, 37, 38], even
if a rescaling of parameters can enhance the accuracy of models based on a homogeneous mixing hy-
pothesis [39]. To overcome the limitations of coarse representations, intermediate data representations
informed by statistical heterogeneities of contact numbers and duration yielding a good estimation of
the epidemic risk have been put forward [37, 38].

Although data with a limited resolution were shown to be insufficient to inform interventions at
individual scale [40], they are still useful to inform strategies at intermediate scales [41, 42, 14, 15, 43].
In practice however, a general issue faced by models concerns the comparison of strategies or control
measures, in terms of both costs and benefits. In the case of COVID-19 for instance, the computational
models mentioned above have considered a wide variety of measures (contact tracing, regular testing,
telework, class or school closures), with each study using specific empirical or synthetic data and a
specific representation of contacts [17, 20, 44, 45, 22, 19, 46, 47, 48, 21, 43]. However, just as the
data representation can affect the identification of risk groups [37], it might also impact the ranking
of different strategies. Here we tackle this issue by leveraging high-resolution data describing contacts
between individuals in several settings (offices, schools, hospital). We consider several representations
of the data, from fine-detailed to coarse-grained [37], and use these representations to feed an agent-
based model of propagation of SARS-CoV-2 infection in these settings. We simulate several strategies
(reactive and regular testing, telework, reactive class closures) and evaluate their cost and benefit for
each representation, highlighting differences and similarities in the outcomes.

2 Methods
We consider a model for the spread of COVID-19 in different settings, namely two distinct school
settings, an office setting and a hospital ward. In this section, we first present the compartmental
model used and the non-pharmaceutical interventions (NPI) considered. We then describe the high-
resolution data on interactions between individuals that we use, as well as the hierarchy of coarse-
grained representations of the contact patterns that preserve the temporal and structural information
of the data at different levels of detail.

2.1 Compartmental model
We use an agent-based model in which the progression of the disease within each host follows discrete
states, as shown in Figure 1a [20]. Infectious individuals can transmit the disease to susceptible
(healthy) individuals (S), who first enter the exposed (non-infectious) state (E) and then a pre-
symptomatic infectious state (Ip) after a time τE . The pre-symptomatic phase lasts τp, after which
individuals either evolve into a sub-clinical infection (Isc) or manifest a clinical infection Ic, with
respective probabilities 1−pc and pc. The infectious state leads finally to the recovered state R after a
time τI . The disease state durations τE , τp and τI are distributed according to Gamma distributions,
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Table 1: Parameters of the compartmental model, taken from [20]

SEIR parameter value
mean (std) [days]

τE 4 (2.3)
τp 1.8 (1.8)
τI 5 (2.0)
R0 1.5, 3.0
pc 0.5
σ 1.0
rpβ , r

sc
β 0.55

rcβ 1.0

Table 2: Reduction in susceptibility σ, probability of clinical infection pc and relative infectiousness
rβ for children and adolescents, with respect to their values for adults. Taken from [20]

parameter reduction for reduction for
children adolescents

σ 50 % 25%
pc 60 % 60%
rβ 27 % 0 %

with average values and standard deviations given in Table 1 (See also Supplementary Material - SM,
Section S1.2.4).

Transmission of the disease can occur upon contact between a susceptible and an infectious (Ip, Isc
or Ic). The probability of transmission per unit of time depends on the product of the transmission
rate β, the relative infectiousness rβ of the infectious individual and the susceptibility σ of the agent.
The parameter β is tuned to obtain a desired specific value for the basic reproductive number R0, as
detailed in the SM Section S1.3. The relative infectiousness rβ depends on the compartment of the
infectious individual, with a larger rcβ value for infectious individuals in the clinical state Ic, and lower
values rpβ and rscβ for Ip and Isc (Table 1). It also depends on the age class of the infectious, with
adults and adolescents more infectious than children (Table 2). The susceptibility σ also depends on
the age of the susceptible individual, with adults more susceptible than other groups (adolescents and
children have a susceptibility reduced by respectively 25% and 50% with respect to adults, see Table
2). Finally, the probability to develop a clinical infection is also reduced by 60% for both adolescents
and children.

We can further enrich the compartmental model of Figure 1a by considering that individuals can
be vaccinated. Here we do not consider a dynamic vaccination rollout, and assume that vaccination
coverage is fixed throughout the simulation. We also assume full vaccination of individuals. We assume
vaccination to reduce rβ by 50%, σ by 85%, and pc by 93% We consider (in the SM, Section S2.4)
levels of vaccination coverage of 25%, 50%, and 75%. As sensitivity analysis, we also consider a less
effective vaccine (see SM Section S2.5.3).

2.2 Non-pharmaceutical interventions
We consider several interventions based on testing and isolation of cases, as well as closure of classes
in school settings, and telework in offices. We first use as baselines the following cases:
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Figure 1: Model and data sets. (a) Schematic illustration of the epidemic model. After contact
with an infected individual, a susceptible individual can become exposed, then transition to a pre-
symptomatic state, which develops into either a clinical or a sub-clinical infection before recovering.
(b,c,d,e) Weighted networks of contacts for each setting, aggregating in each case the interactions over
the first day of the data collection in the settings OD, HD, PS and CP, respectively. The width of
an edge is proportional to its weight, i.e., the total contact time between the individuals connected.
(f,g,h,i) Contact matrices showing the average daily density of links between categories in the settings
OD, HD, PS and CP, respectively. Namely, if there are EdXY links on day d between the NX individuals
of category X and the NY individuals of category Y , the (X,Y ) element of the contact matrix is given
by the average over days of EdXY /(NXNY ), (if X = Y , 2EdXX/(NX(NX − 1)).
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• No Test (NT): No control strategies are in place. This would correspond to uncontrolled disease
spread.

• Symptomatic testing (ST) and case isolation: Clinical cases have a probability pD = 0.5
(pD = 0.3 for children) to take a test and then isolate for ∆Q = 7 days after receiving the result
of the test. Tests are performed outside work/school hours. Symptomatic individuals remain
isolated while they wait for their test results.

The NT case is used for calibration purposes and to study general properties of an unrestrained
spread. The ST protocol is used as a reference protocol against which all other protocols are compared.
With ST always implemented, we consider the following additional NPIs:

• Regular testing (ST + RT α t/w): Non-vaccinated individuals are periodically tested t times
every w weeks with an adherence α. Positive cases remain in isolation for ∆Q = 7 days. Tests
are performed during work/school hours.

• Telework (ST + TW d/w) : Telework is implemented in rotation on groups of individuals,
only in the office setting. Each group works remotely once every g working days. Each individual
stays thus at home d = 5/g times a week, and each working day a fraction (g−1)/g of individuals
is present at the office. We consider, for simplicity, only g = 5 and g = 10, corresponding to one
day of telework every week or every two weeks.

• Class quarantine (ST + Qc): This protocol is implemented only in the school settings. When
an individual is tested positive through the ST intervention, the whole class goes into isolation
for ∆Q = 7 days.

• Reactive testing (ST + rT α): This protocol is implemented only in the school settings
and in the office setting. When an individual tests positive through the ST intervention, the
non-vaccinated students of the same class (for schools) or the members of the same department
(for offices) are tested after a time ∆r = 1 day, with an adherence α. A second test is performed
after ∆2

r = 4 days. Positive cases are quarantined during ∆Q = 7 days.

In the office setting, we additionally consider a protocol in which RT is combined with TW,
(RT+TW). Further details of the implementation can be found in the SM Section S1.2.

The efficacy of a protocol is quantified in terms of relative reduction of cases with respect to the
ST at the end of 60 simulation days. The cost is measured as the average number of days spent in
quarantine per individual after 60 days. Cost and benefit are also evaluated at additional points in
time (after 30, 90 or 120 days), see SM Section S2.5.4.

In all scenarios, we consider self-administered antigenic tests with turnaround time ∆w = 15
minutes [20]. We assume the tests to have a 100% specificity, and a sensitivity θ which depends on
the infectious compartment, with θp = 0.5, θc = 0.8, and θsc = 0.7 for the pre-symptomatic, clinical
and sub-clinical compartments respectively. As sensitivity analysis, we consider in the SM the case of
PCR tests with higher sensitivity and longer turnaround time (see SM Section S2.5.1).

2.3 Empirical contact data
We use high-resolution face-to-face empirical contacts data collected using wearable sensors in four
different settings, two workplaces and two educational contexts: an office building, an hospital, a
primary school and a high school. The data sets are publicly available on the website http://www.
sociopatterns.org/datasets.

• The office data set (OD) gathers the contacts among 214 individuals, measured in an office
building in France during two weeks in 2015 [40]. Individuals are divided in 12 departments with
different sizes.
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• The hospital data set (HD) describes the interaction among 42 health care workers (HCWs) and
29 patients in a hospital ward in Lyon, France, gathered during three days in 2010 [31]. HCWs
are divided in three roles: nurses, doctors, and administrative staff.

• The primary school data set (PS) describes the contacts among 232 children and 10 teachers in
a primary school in Lyon, France, during two days of school activity in 2009 [41]. The school
is composed of 5 grades, each of them comprising 2 classes, for a total of 10 classes; there is a
teacher for each class.

• The high school data set (CP) describes the contacts among 324 students of classes préparatoires
in Marseille, France, during one week in 2013 [49]. These classes are located in high schools and
are specific to the French schooling system: they gather students for 2-year studies at the end of
the standard curriculum to prepare for entry exams at specific Universities. Students are grouped
in 9 different classes, and classes are divided in three groups, each focusing on a specialization
(mathematics and physics; physics, chemistry, engineering studies; biology).

Data sets are available as lists of contacts over time between anonymized individuals, with a
classification by department (for OD), role (for HD) or class (for PS and CP), and in terms of stu-
dents/teachers (for PS). From the raw data, we built the corresponding temporal contact networks,
composed of nodes representing individuals, and links representing empirically measured proximity
contacts occurring at a given time (see SM Section S1.1.1).

Figure 1b-e displays for each setting a graph of the links aggregated over one day for each data set
(where the weight of a link between two individuals is given by the total contact time between them).
The corresponding contact matrices representing the daily average density of interactions are shown
in Figure 1f-i. In school settings and in offices, contacts occur preferentially within groups [41, 49, 40].

2.4 Data representations
The empirical data describes contacts at high resolution, giving temporally resolved information on
who has been in contact with whom. These data can be aggregated into representations at different
levels of detail, i.e., retaining only selected features of the empirical temporal contact network while
aggregating over the others.

A first type of representations, which we denote by individual-based representations, preserve the
empirical structure of the contact network (who has met whom).

• Dynamical networks (DYN): Contacts are aggregated into a different weighted graph for
each successive time window of 15 minutes (The weight of a link between two nodes is given
by the time in contact of the two corresponding individuals during this time window). This
representation is the closest to the raw empirical data (that has a temporal resolution of 20
seconds), and will be considered as the reference against which the other representations will be
compared.

• Daily heterogeneous networks (dHET): Contacts are aggregated into a different weighted
graph for each of the ddata days of data collection. The weight wij,d of a link (i, j) on day d is
given by the total contact time registered between i and j during the corresponding day.

• Heterogeneous networks (HET): Contacts measured during the whole data collection are
aggregated into a single weighted network. The weight of a link (i, j) is given by the average
daily contact time between i and j.

In a second type of representations, the category-based representations, we aggregate individuals into
categories, corresponding to departments for the office data, to roles for the hospital data, and to classes
in the school settings (and a category for teachers in the primary school data). Individuals belonging
to a given category are considered as a priori equivalent. For each pair of categories X and Y , we
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Table 3: Number of days ddata of the data set, number of individuals N , initial hour (ti) and final
hour (tf ) of each day, and days of activity in each week (indicated with an X) for each setting.

Setting ddata N ti tf M T W T F S S
OD 10 214 8:00 20:00 X X X X X
HD 3 71 5:00 00:00 X X X X X X X
PS 2 242 8:30 17:15 X X X X
CP 4 324 9:00 18:00 X X X X X

summarize the interactions between individuals of these categories by the list of daily contact weights
DXY = {wij,d|i ∈ X, j ∈ Y, d ∈ [1, ddata]}. The average daily number of links between individuals of
categories X and Y is EXY = |DXY |/ddata, and the quantity WXY =

∑
i∈X,j∈Y,d wij,d/ddata gives the

average daily total time in contact between individuals of categories X and Y . We define the three
following data representations based on the concept of contact matrix [37]:

• Contact matrix (CM): Each individual from category X is connected with all individuals of
category Y with a weight equal to wXY = WXY /(NXNY ) (NX is the number of individuals
in category X; for X = Y we set wXX = WXX/(NX(NX − 1)/2)). This representation only
retains the average time spent in contact between members of given categories. For instance in
the hospital data, WNUR,ADM gives the total contact time between nurses and members of the
administrative staff.

• Contact matrix of bimodal distributions (CMB): This representation, in addition, retains
the information about the density of links between categories. To this aim, we create for each
day a random graph assigning EXY random links connecting individuals of categories X and
Y . Each link is assigned a weight w̃XY = WXY /EXY : contact durations between pairs of
individuals depend only on their respective categories, but not all pairs of individuals are in
contact. In the hospital data for instance, this representation retains the actual average daily
number ENUR,ADM of links between nurses and administrative staffs, and w̃NUR,ADM gives the
average contact time on a link between a nurse and a member of the staff.

• Contact matrix of distributions (CMD): The CMD representation preserves the statistical
heterogeneity of the daily contact durations between pairs of individuals. First, we create a
random graph for each day as in the CMB case. The weight of each link between individuals of
categories X and Y is then drawn from a negative binomial distribution, obtained by fitting the
empirical distribution DXY through a maximum likelihood procedure. In the same example as
above, the representation not only retains ENUR,ADM , but it also uses the fitted distribution of
all observed daily contact times between nurses and staff members.

Finally, we consider as a baseline a very coarse representation informed only by the total daily
contact time:

• Fully connected (FULL): Individuals are all connected with each other. The weight of each
link is equal to the daily contact time averaged over the whole data set w =

∑
XY WXY /(N(N−

1)/2), where N =
∑
X NX is the total number of individuals.

Only the DYN representation retains information on the temporal evolution of contact activity
along each day. However, we inform all other representations by the office or school hours and by
the alternation of weekdays and week-ends, as reported in Table 3: no contacts occur outside of these
hours nor on the week-ends.
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2.5 Simulation setup
Simulations are initialized at a random time with one exposed individual chosen at random. Simula-
tions then unfold in a stochastic way (see SM Section S1.2), with transmission events occurring, for
each representation, along the contacts available in that representation of the data. To simulate the
disease spreading on longer time scales than the available data (Table 3), copies of the initial data are
repeated over time. Periodic introductions are considered to model infections from community. At
regular intervals a susceptible individual in the considered setting is chosen at random and switched
to the exposed compartment (see SM Section S1.2.5). To simulate a limited adherence to testing,
the individuals accepting to perform tests are randomly chosen at the beginning of each simulation.
Finally, we also explore the effect of initial immunity, simulated by the fact that a fraction of the
population, randomly chosen at the start of each simulation, cannot be contaminated.

As discussed in [37, 38], simulations using a given rate of transmission β performed on different
data representations yield different outcomes: less detailed representations tend to over-estimate the
final size compared to the DYN representation [37], as they make more transmission paths available.
Therefore, we fix a target basic reproductive number R0 in the absence of any control measures
and starting with one random seed in an otherwise susceptible population, and calibrate for each
representation the rate of transmission β needed to obtain the target R0 (see SM Section S1.3).

We consider two types of simulations. On the one hand, we study the dynamics of the spreading
process in the absence of interventions (NT), starting from one random seed and with no introductions,
and running simulations until no infectious individual is present in the population (Section 3.1). On
the other hand, to evaluate NPIs, we consider in Section 3.2 simulations of a spread starting from one
initial seed, with in addition bi-weekly introductions of exposed individuals. We simulate the spread
for 60 days and compute the final epidemic size as well as the number of days that individuals spent in
quarantine. Each result corresponds to a median over 2000 simulations, with bootstrapped confidence
intervals (see SM Section S1.4).

3 Results

3.1 Unmitigated spread on different data representations
We present in the main text the results concerning the unmitigated spread in the office data set for
R0 = 1.5 and R0 = 3, and we show in the SM Section S2.2 the results for the other data sets and both
values of R0.

Figure 2 highlights differences and similarities between the processes taking place on different
representations of the same data set. Figure 2a shows the distributions of the number of secondary cases
resulting from one random seed, R0,i (the basic reproductive number R0, which takes by construction
the same value in all cases, being the average of this distribution), obtained on the various data
representations. All distributions span a rather wide range of values, with events reaching almost four
times the average. However, the curves exhibit distinct shapes depending on the type of representation.
In the category-based representations, both small and large values of R0,i are underestimated, i.e., both
the probability that the spread never starts and the probability that super-spreading events occur.
Fitting the distributions with negative binomials yields indeed values of the over-dispersion parameter
k larger for the individual-based representations (≈ 0.5 for R0 = 3 in the office data set, see SM Section
S2.2) than for the category-based ones (≈ 0.25 for CM, CMB, CMD and ≈ 0.22 for FULL, for R0 = 3
in the office data set, see SM Table S4). As shown in the SM Section S2.2, this effect is pronounced
for OD and HD, but not in the school settings where individuals have a dense structure of contacts
within each class.

Another interesting difference between the two types of representations arises from the investigation
of how the spread evolves within the population. Figure 2b shows the temporal evolution of the average
fraction of individuals who have been infected at a given time for the various representations. The
growth is slightly faster at short times for individual-based representations with respect to category-
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based ones, but saturates earlier and at smaller final epidemic sizes. These differences in dynamics can
be understood by examining which nodes are infected at early and late stages of the spread. Indeed,
as already discussed in [50], a spreading process on a network tends first to reach the most connected
nodes, and a cascade towards the less connected nodes follows: the average number of neighbours of
newly infected nodes decreases with time [50]. Here, as we deal with (weighted) contact networks in
which heterogeneities concern contact times rather than numbers of neighbours [34], we show in Figure
2c the average daily strength < snew > (w) of individuals who are infected and become exposed during
week w (the strength s of an individual is the average daily time s/he spends in contact with other
individuals). The cascading process from individuals with large s towards individuals with lower s is
seen as a decreasing trend of < snew > (w) for the individual-based representations. For the category-
based representations, the cascade still exists, but the effect is weaker: all individuals within a category
are equivalent, but some categories are more connected than others, so that some heterogeneity remains
in the population. On the other hand, simulations using the FULL representation cannot show any
such effect as all individuals are equivalent, and < snew > (w) does not change with time. Overall, at
early times the newly infected individuals are more connected in the individual-based representations
than in category-based ones, leading to a faster spread. However, at later times, the tendency is
inverted, with thus a slower spread on individual-based representations; moreover, as the remaining
susceptible individuals tend to be less well connected, and as much less paths are available to reach
them, the final epidemic size is also smaller. An additional difference is observed between the HET
and the other individual-based representations: more causal propagation paths are present in the HET
case (where the same network of contacts is present every day) than in the DYN and dHET cases,
so that more nodes with smaller strength can be reached by the cascade and a larger epidemic size is
obtained (as seen in Figure 2b).

Figure 2d-f explores the effect of an initial immunity of a part of the population. Figure 2d shows
that differences in the dynamical evolution remain at intermediate immunity rates. Notably, the ran-
dom immunization of nodes can change the ranking of final sizes obtained in different representations.
Indeed, the category-based representations tend to make the networks of interactions more homoge-
neous than the individual-based ones, and random immunization is less efficient in heterogeneous than
in homogeneous networks [51], so that the final epidemic size can become smaller for the category-
based representations (Figure 2d). When increasing the initial immunity, the effect on the final attack
rate is similar for all representations. In particular, the mean attack rate decreases to small values
at approximately the same fraction of immune individuals (Figure 2e), and the probability of rapid
extinction of the spread becomes similar for all representations (Figure 2f).
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Figure 2: Spreading dynamics on different representations of the office data set, for R0 = 3.0, starting
from a single initial exposed seed. (a) Distribution of the number of secondary infections produced by
the initial seed. (b) Temporal evolution of the mean attack rate (fraction of individuals who have been
infected), starting from one single exposed individual in an otherwise susceptible initial population.
(c) Average strength (daily time in contact) of newly infected individuals infected in a given week
vs. time. For individual-based representations, a cascade from more connected individuals to less
connected ones is observed. The cascade is less pronounced for category-based representations. In
panels (a,b,c), initial immunity is set to zero. (d) Temporal evolution of the mean attack rate, starting
from one single exposed individual in a population with an initial immunity of 40%. (e) Mean final
attack rate vs. initial immunity for different representations (here we compute the attack rate at the
end of the simulation, i.e., when infectious individuals are no longer present). (f) Probability of no
onward transmission (i.e., the initial seed does not infect any other individual) as a function of the
initial immunity. Shaded areas correspond to the estimated error, obtained as a bootstrapped CI (see
SM Section S1.4).
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Figure 3: Effect of symptomatic testing (ST) in all settings and for all representations, for R0 = 1.5.
(a) Effective reproductive number Reff with ST implemented, measured as the average number of
secondary infections caused by an initial infected seed. The horizontal dashed line corresponds to
Reff = 1.5 (corresponding to no interventions). (b) Median attack rate in each setting, without
interventions (NT) and with ST in place.

3.2 Robustness of the evaluation of NPIs
We show here the results of simulations implementing NPIs for R0 = 1.5, and present additional results
and sensitivity analysis in the SM Sections S2.3-S2.5.

Figure 3 first shows the impact of the baseline intervention, ST (testing and isolation of symptomatic
cases), in different settings and when using different data representations when R0 = 1.5. Panel (a)
displays the effective reproductive number when ST is implemented (short term dynamics), compared
with the baseline no test scenario (NT), and panel (b) the median attack rate after 60 days, comparing
NT and ST. Several observations are in order. Even at fixed R0 and with no interventions, the median
attack rate after 60 days depends on the context. For all representations, it is much higher for the HD
data set (Figure 3b). Most representations also yield the same ranking of contexts as a function of the
attack rate, with the exception of the FULL representation, which strongly overestimates the attack
rate in the school contexts (where the structure of the population in groups is also the strongest).
The impact of the ST protocol also differs depending on context, with a smaller effect in the school
settings, for all representations, both in terms of decreasing the effective reproductive number (Figure
3a) and the final attack rate (Figure 3b). This could be explained by the strong density of links within
classes and the fact that the probability of developing clinical symptoms is smaller for children and
adolescents (in addition, the probability of symptomatic detection is smaller for children).

As testing and isolation of symptomatic individuals is the minimal strategy that can be put in
place, we now focus on a comparison of all protocols with respect to ST. We present the results for the
OD and PS data sets in Figure 4, and show the results for other data sets in the SM Section S2.3, as
well as additional values of the protocols’ parameters. Figure 4a-b shows the reduction in the median
epidemic size after 60 days for several protocols, with respect to the ST one, with protocols ranked
in order of increasing such reduction when simulated on the DYN data representation. Strikingly,
even if the precise values of the efficacy of each protocol depend slightly on the data representation
used in the simulations, the ranking of protocols remains almost always the same, both for benefits
(Figure 4a,b) and costs (Figure 4c,d). In particular, telework in the offices is particularly efficient, as it
reduces the number of contacts of all individuals [19], and reactive strategies at school are less efficient
than regular testing [20], due to the fact that reactive strategies are implemented only upon detection
of symptomatic cases: silent transmission by pre-symptomatic and asymptomatic infectious to other
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classes is very likely to occur before the strategies can contain the spread, as shown in [20]. These
conclusions can be reached whatever the data representation used to perform the simulations. Note
that the robustness of the ranking with respect to the representation is very strong but not perfect:
if two protocols yield average efficacy values that are very close, one can seem slightly better for one
representation and slightly worse for another; moreover, some exceptions can be observed, such as the
case of the FULL representation, which strongly underestimates the efficacy of the reactive testing
(rT) protocol. Figure 4e-f show that the impact of a protocol on the distributions of epidemic sizes is
also similar across representations: here, regular testing yields a strong reduction of the probability of
having a large epidemic size and a much higher peak at small sizes. We also show in the SM Section
S2.3 how, when two protocols have similar efficacies, the resulting distributions of epidemic sizes are
also very similar, and that this similarity holds across representations.
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Figure 4: Evaluation of several NPIs in offices (OD) and primary school (PS) settings, for R0 = 1.5
and simulations performed using different data representations. (a,b) Efficacy of NPIs in offices and
primary school, sorted by increasing order of efficacy in the DYN representation. Efficacy is defined
as the relative reduction in median size compared with symptomatic (ST) testing alone, after a period
of 60 days. (c,d) Average number of days in quarantine per individual under different protocols. (e-f)
Epidemic size distributions for the baseline protocol ST (dotted lines), and for weekly regular testing
with 75% adherence (continuous line).

We illustrate these results further in Figure 5, where we investigate the question of the adherence to
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regular testing needed in offices to obtain the same efficacy as telework, for a given testing frequency
(Figure 5a). Although the value of the median size reduction obtained by TW slightly depends
on the data representation (TW 1t/w yields a 59 ± 3% and 60 ± 3% reduction for CM and DYN
representations, respectively), we can estimate that RT with the same frequency becomes as efficient
as TW for adherence values that remain similar across data representations, ranging from 84% (CM
representation) to 81% (DYN representation). Figure 5b considers instead the comparison between the
regular testing and the class quarantine protocol ST+Qc: the estimation of the adherence needed for
ST+RTα to become more efficient than ST+Qc is also consistent across data representations. Another
interesting point concerns the effect of increasing the number of tests, either by increasing adherence
or by increasing frequency, within the RT protocol. First, the increase in efficacy faces diminishing
returns: Figure 5c-d illustrates this by showing the average size reduction per test for the RT protocol
with frequency once per week and adherence 25%, and comparing it with the additional size reduction
per test obtained for twice the number of tests, obtained either by doubling the adherence at the same
frequency, or by doubling the frequency at the same adherence. Second, and as already noted in [20]
with simulations on the DYN representation of a school data set, increasing adherence has a bigger
impact than an increase in frequency (at equal additional number of tests). We show in the SM Section
S2.3.3 that this property holds in all settings, and for all data representations.
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Figure 5: Effect of increasing adherence and frequency in regular testing protocols. (a) Effect of
the adherence α for a given frequency (once per week or every two weeks) in the ST+RTα protocol
for the office data set and R0 = 1.5, compared with telework (TW), for several data representations.
Horizontal lines correspond to the performance of TW at the same frequencies. (b) Effect of the
adherence α for a given frequency (once per week or every two weeks) in the ST+RTα protocol,
compared with the class quarantine protocol ST+Qc, for the school data set and R0 = 1.5. Horizontal
lines correspond to the ST+Qc protocol. (c,d) Effect of improving adherence or frequency, for R0 = 1.5
for OD (c) and PS (d). We consider ST+RT at frequency once per week and α = 50%, and we measure
the average size reduction (w.r.t. ST) per test (in blue), and the additional size reduction per additional
test when doubling the adherence (in orange), and when doubling the frequency (in green).
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We finally examine in the SM Section S2.3.2 the impact of the reproductive number R0. As also
observed in [20, 47], the efficacy of each protocol depends in a non-monotonic way on R0. At small
R0, even the basic ST protocol leads to small epidemic sizes, so that additional protocols have a
limited impact. At very large R0 instead, even the best protocols reach their limits and the spread
cannot be well mitigated. These arguments hold for any data representation, and we indeed observe
this non-monotonicity for all data representations. However, the optimal range of R0 depends on
the data representation, with an overestimation of the optimal R0 for the category-based representa-
tions. Moreover, the differences between the efficacy values of a given protocol by using different data
representations become larger at large R0, with an overestimation of the efficacy by category-based
representations.

Different protocols have different efficacies but also different costs, which need to be taken into
account in decision making processes. We thus compare in Figure 4c-d the cost of each protocol
simulated on each data representation, computed as the average number of days spent in quarantine
per node. As for the efficacy, the precise evaluation of the cost depends on the data representation,
but the ranking of protocols according to their cost does not. In particular, regular testing at school
avoids a large fraction of the number of days of class lost, with respect to reactive class closures. In
the offices, regular testing is more costly than telework, as the latter simply decreases the number of
contacts without quarantining individuals.

Overall, Figure 4 indicates that a coherent picture of the relative efficacy and cost of different
protocols is obtained when using different representations of the data in the numerical simulations,
even if quantitative differences in the precise evaluation are observed. Additional results shown in
the SM Section S2.5 indicate that these conclusions are robust with respect to changes in disease
and protocol parameters. We also explore in the SM Section S2.4 the combined effect of NPIs and
vaccination: vaccination reduces the final epidemic size even in the absence of NPIs or for the basic
ST protocol, and decreases the costs in terms of quarantines. This effect can be assessed using any
data representation. Moreover, even in the presence of vaccination, all data representations agree on
the ranking of protocols according to their efficacy or cost, and on the fact that NPIs remain very
valuable additional tools at intermediate vaccination coverages [20, 43].

4 Discussion
We used high-resolution contact data sets to build aggregated representations and evaluate how loss
of resolution informing epidemic models can influence the evaluation of prevention and control strate-
gies. Numerical simulations of a model for the spread of SARS-CoV-2 in educational and professional
contexts show that detailed representations are needed to correctly account for over-dispersion of repro-
duction numbers and for a precise evaluation of the efficacy and costs of each strategy. However, coarse
representations containing only very summarized information are good enough to rank protocols, and
thus to provide insights on better options given the context.

Models offer a unique opportunity to evaluate strategies for prevention and control of epidemics,
anticipating their expected advantage and costs associated to inform public health decisions. Depend-
ing on the context and the question to be addressed, models need to integrate an accurate description
of the population under study and of the contacts along which disease transmission occurs. In recent
years, the increasing availability of data sets describing contacts between individuals has made it pos-
sible to devise models exposing the complexity of human interactions in terms of number of contacts,
repeated contacts, frequency, duration, etc. For instance, models integrating data describing interac-
tions with high temporal and spatial resolutions can be used to design and study measures tailored
to specific contexts such as schools, where repetition of contacts because of friendships and structural
organization of contacts due to classes impact the resulting epidemic dynamics [14, 46, 21, 20]. Com-
plex models are however data hungry, and detailed data are not always available. Moreover, data sets
in specific settings may provide a narrow vision of the interaction patterns occurring in those contexts
and may be difficult to generalize. By loosing some of these specificities, aggregated representations
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may become more generally applicable.
Our results show that some differences emerge in the disease spread simulated on different data

representations, even when calibrating the simulations to yield the same basic reproductive numbers. In
particular, category-based representations tend to underestimate the over-dispersion of the distribution
of the reproductive number, and could thus lead to difficulties in correctly estimating the role of super-
spreading events. This is in line with recent results highlighting the role of contact heterogeneities
in super-spreading [36]. As they ignore individual differences, these representations cannot inform
strategies targeted towards specific individuals, they are also less able to describe the cascading of
a spread from individuals with a high connectivity to less well connected ones [50], and lead to an
overestimation of the final epidemic size [37].

The picture is more complex when dealing with the evaluation of control protocols. On the one
hand, the ranking of protocols according to their efficacy or their cost does not depend on the data
representation. The picture of which protocol is most efficient in each context remains coherent. When
a protocol depends on several parameters, the information on which parameter is the most important
to act upon is also coherent across data representations (e.g., increasing adherence for regular testing
protocols has a larger impact than increasing frequency, at given number of tests). It is even possible to
use coarse data representations to quantify the adherence needed for the regular testing to become more
efficient than e.g. telework or class quarantine. On the other hand, using various data representations
can lead to quantitative differences in the precise values of benefit and cost. This can be a limitation
for coarse representations when, despite a coherent ranking in efficiency of protocols, decisions require
accuracy in the estimate of the benefit/cost – for example, to define a minimum benefit that would
trigger the application of the measure. Such decisions should thus take into account an inherent
uncertainty in the model outcomes due to the limited information contained in the data.

In the contexts we considered, we found that regular testing with high enough adherence is a
very efficient strategy allowing to limit spread in school contexts while minimizing the number of lost
school-days, confirming prior works [20, 52, 21]. In offices, telework is also very efficient [19]. Reactive
class closure or reactive testing instead have limited efficacy, and class closure naturally leads to a
strong cost in terms of lost school-days. The robustness of such results across data representations
is explained by the fact that these NPIs reduce the epidemic size through mechanisms that do not
depend on the data description. Indeed, symptomatic testing, class quarantines and reactive testing are
reactive measures triggered by the detection of cases. However, the infectiousness of pre-symptomatic
and asymptomatic individuals strongly limits the efficacy of such measures: for instance, due to the
resulting silent propagation, many other classes can already have been reached by the infection when
one class is closed upon the detection of a case at school [20]. In contrast, regular testing is a proactive
approach that allows to detect also pre-symptomatic and asymptomatic cases. Telework on the other
side simply reduces the time in contact, thus effectively reducing the probability of contagion events,
whatever the data representation. Overall, our results support the use of even coarse representations
of the interactions between individuals in settings such as schools or workplaces when evaluating NPIs
and potentially choosing between possible protocols.

Individual data such as the ones used in this study across different settings are rarely available.
Moreover, the existing data sets are each specific to a context and potentially to the time of the
data collection campaign. In emergency situations or during a crisis such as the current pandemic,
gathering such data in real time encounters many challenges, and more coarse-grained representations
are generally opted for. Indeed, summarized data is more accessible, and can be enriched by some
robust statistical features of contact data, such as the heterogeneities in contact durations [29, 37, 34],
as in the CMD data representation [37]: such information could be reconstructed from limited data
describing a given context [37, 42]. In particular, division of a population into categories with e.g.
different mixing patterns and/or schedules can be performed from limited information such as the
existence of classes in a school or of departments in offices. A population can also be separated in
groups according to an expected diversity of behaviours, as for instance in [43] that singles out the
group of "more social" students in a US campus as the ones belonging to fraternities and show that
targeted testing of this category can be an efficient strategy.
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Our work comes with limitations that are worth discussing. First, the data we used describe
contacts collected during only few days. Here, we have used the simplest method of repeating the data
set in order to simulate the contacts in the population during an extended time, while contacts are not
repeated identically in the real world. However, the simulations performed in [20] used different ways
of artificially extending the data duration and found no differences in the results. The settings we
have considered are also relatively small, but represent the state of the art in terms of data describing
interactions between individuals, and have very different structural and temporal properties. These
settings are moreover very important ones in practice, for which protocols need to be tailored and
evaluated. Further work could also consider data at larger scale or with more heterogeneous contact
structures (e.g., with categories of very different sizes, or with more heterogeneous distributions of the
numbers of neighbours of each node) if they become available, or synthetic data representing larger
contexts. Second, we used a rather simple coupling with the community, through regular introduction
of cases, as the data we considered do not include contacts happening outside of the studied context.
Even though our results are robust with respect to variations in the frequency of introductions, it
would be desirable to inform the model with empirical data on the contacts that individuals have with
members of the community, or with one another outside of school. Third, we have here considered
one specific infectious disease. However, our results are robust with respect to variations in the
basic reproductive number, initial immunity, and the impact of vaccination. Moreover, this disease
is of particular interest both practically and theoretically, as the pre-symptomatic and asymptomatic
transmissions make it necessary to go beyond the usual reactive strategies and to evaluate a range of
protocols.

Finally, our modelling approaches deal with the interactions between individuals but do not address
the issue of individual heterogeneities with respect to the disease transmission (beyond the differences
between children, adolescents, adults), such as heterogeneous infectious periods [53] or heterogeneous
rates of transmission [54], nor with respect to potential changes of behaviour depending on the epidemic
situation [55]. An interesting extension of this work would be to consider situations where these
differences between individuals are correlated with their contact behaviour: to take into account such
correlations, one would need to go beyond the category-based representations we have considered here,
allowing heterogeneous properties within each category, in the spirit of degree-corrected stochastic
block models [56].
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