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Abstract 
Histopathological examination is a pivotal step in the diagnosis and treatment planning of many major 
diseases. To facilitate the diagnostic decision-making and reduce the workload of pathologists, we 
present an AI-based pre-screening tool capable of identifying normal and neoplastic colon biopsies. 
To learn the differential histological patterns from whole slides images (WSIs) stained with 
hematoxylin and eosin (H&E), our proposed weakly supervised deep learning method requires only 
slide-level labels and no detailed cell or region-level annotations. The proposed method was 
developed and validated on an internal cohort of biopsy slides (n=4 292) from two hospitals labeled 
with corresponding diagnostic categories assigned by pathologists after reviewing case reports. 
Performance of the proposed colon cancer pre-screening tool was evaluated in a cross-validation 
setting using the internal cohort (n=4 292) and also by an external validation on The Cancer Genome 
Atlas (TCGA) cohort (n=731). With overall cross-validated classification accuracy (AUROC = 
0.9895) and external validation accuracy (AUROC = 0.9746), the proposed tool promises high 
accuracy to assist with the pre-screening of colorectal biopsies in clinical practice. Analysis of 
saliency maps confirms the representation of disease heterogeneity in model predictions and their 
association with relevant pathological features. The proposed AI tool correctly reported some slides as 
neoplastic while clinical reports suggested they were normal. Additionally, we analyzed genetic 
mutations and gene enrichment analysis of AI-generated neoplastic scores to gain further insight into 
the model predictions and explore the association between neoplastic histology and genetic 
heterogeneity through representative genes and signaling pathways. 
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Introduction 
Colorectal cancer (CRC) is the fourth most common cancer in the UK and 2nd leading cause of 
cancer-related fatalities in the UK and US. Over 42 000 people are diagnosed with CRC every year in 
the UK1 and 140 000 in the US. Most CRCs develop from polyps, a pre-cancerous outgrowth of tissue 
from the lining of the colon. Colonoscopy has long been the reference standard for investigation to 
examine the entire rectum and colon for precancerous polyps, tumors, or other problems (1,2). A 
tissue sample (biopsy) taken during colonoscopy helps make a definitive diagnosis of colonic 
abnormalities. Microscopic examination of colorectal biopsies is a clinical standard to obtain 
diagnostic information and the key characteristics of CRC tissue for deciding a future management 
plan, as it may reveal normal findings or a variety of indications of malignancy (1).  

The increasing number of patients due to cancer screening programs for early detection adds to 
pathologist workloads. Early stage disease is more challenging and difficult to detect often increasing 
the numbers of biopsies as further diagnostic information can be required to provide the best standard 
of care. Pathology laboratories have seen a doubling of large bowel biopsy slide volumes in the last 
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1 https://www.bowelcanceruk.org.uk/about-bowel-cancer/bowel-cancer/ 
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decade2 as opposed to only 10% increase in the number of cases. Digitization of cellular pathology 
laboratories with increasing ubiquity of digital slide scanners and an accelerated transition to digital 
pathology during the COVID-19 pandemic (3) offer an opportunity for automated pre-screening of 
large bowel cancer. 

In the clinical workflow, a fundamental diagnostic problem in large bowel cancer screening is the 
separation of neoplastic from normal biopsies. Normal biopsies are more frequent than neoplastic and 
form a sizeable portion of the clinical workload. Therefore, it would be clinically beneficial to 
automate the separation of normal and neoplastic biopsies (4–7). Artificial intelligence (AI) based 
diagnostic tools for histopathology pre-screening deployed in the digital pathology workflow is an 
unmet need of clinical research. We conjecture that developing high sensitivity AI models will lead to 
a reliable and low-risk inclusion of AI-based screening tools in the clinical workflow. An AI-based 
pre-screening tool will reduce workload and improve impartiality and efficiency. The tool can then be 
reused and optimized as per the clinical objectives efficiently with incremental, machine aided learning. 
AI based pre-screening carries the promise of early detection of CRC, which is curable if diagnosed 
early (1). However, to the best of our knowledge, there is no existing AI tool addressing the screening 
or pre-screening of colon and rectal biopsies. 

In this study, we present an automated method for colon biopsy pre-screening based on digitized 
whole slide images of colorectal biopsy sections to distinguish between normal and neoplastic cases. 
A pre-assessment of all biopsies digitally is likely to prove beneficial if done before pathologist 
evaluation of biopsies. In particular, our study aims at: 1) filtering slides with normal histology out of 
daily workload; 2) highlighting regions of high neoplastic scores and; 3) neoplastic scoring of each 
malignant slide which can be used to separate the neoplastic cases into urgent and non-urgent groups 
for further detailed microscopic examination. Our AI tool can help the efficient management of the 
time and effort of medical experts for detailed examination of urgent neoplastic biopsies. 

In recent years, an increasing number of weakly supervised deep learning methods for whole-slide 
image (WSI) classification has been proposed for various histopathology problems (8–13). An 
attractive feature of weakly supervised methods is their ability to enable automatic classification 
without the need for detailed pixel or regional annotations process. These methods can be made to 
work efficiently on thousands of WSIs, often after dividing them into smaller parts as image tiles (or 
patches), during the model training. Recently, Oliveira et al. have identified limitations of existing 
algorithms and underscored the need for more accurate methodologies for use in clinical practice (14). 
They highlighted the need for larger datasets and the use of appropriate learning methodology to 
improve prediction accuracy. In our previous work, we proposed an iterative draw and rank sampling 
based weakly supervised WSI classification pipeline (IDaRS) for prediction of molecular pathways 
and genetic mutations in CRC (15). For the CRC pre-screening task in this study, we adapt IDaRS for 
the task of pre-screening of colon biopsies into normal and cancerous categories, termed as the 
IDaRS-COBI from hereon. We show its potential in data efficiency and its effectiveness for training 
of a weakly supervised deep learning model. For the task of pre-screening, we demonstrate its high 
accuracy by cross-validation in a large internal cohort and in an independent validation on a 
completely unseen external cohort.  

Materials and Methods 
Study Design 

The study was undertaken mainly using a cohort of large bowel biopsies scanned at the University 
Hospitals Coventry and Warwickshire (UHCW), a large academic teaching hospital in the UK 
providing pathology services for two hospital sites (UHCW and George Eliot Hospital NHS Trust 
Nuneaton).  

                                                           

2 Based on data from the internal UHCW pathology laboratory requests over the last decade. 
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Figure 1. A schematic diagram of the proposed weakly supervised deep learning based tool for pre-screening of colon 
biopsies: (A) Tissue segmentation and tiling is performed to obtain tiles containing tissue from the slides of development 
cohort. These tiles serve as input to the iterative draw and rank sampling (an adaptation of ResNet34 model (16)), which 
was trained on input tiles to learn discriminative features of diagnostic categories. The inset shows a conceptual diagram of 
the IDaRS training strategy for efficient classification of WSIs. The deep learning model was trained with iterative draw (di) 
of the fixed percentage of tiles from each WSI while using k of top-ranked tiles of the same slide drawn in the previous 
iteration; (B) At the time of inference (i.e., validation or testing), the trained IDaRS model gives a prediction score to each 
tile in the WSI, which are then used to obtain an aggregated slide-level score for each WSI; (C) Validation of IDaRS 
predicted scores on TCGA slides is achieved via an investigation of their relationship with corresponding genomics and 
clinical parameters. 

During 2019, the cellular pathology laboratory at UHCW processed a total of 41 771 histopathology 
requests, including 4 877 (11.7%) colon and rectal (large bowel) biopsies of which, 1 680 (34.4%) 
were normal3. The cellular pathology laboratory achieved the milestone of 100% digital scanning of 
colorectal cases in 2016 with all gastrointestinal pathologists fully validated for digital pathology 
reporting with the exception of bowel cancer screening cases, which are required to be reported on 
using glass slides. The sites of biopsies or resection for both UHCW and TCGA cohorts include colon 
NOS (not otherwise specified), ascending colon, hepatic flexure of colon, caecum, rectosigmoid 
junction, transverse colon, rectum, descending colon, and sigmoid colon. A total of 12 pathologists 
were involved in the development of the pre-screening tool. The scale of digitization and active 

                                                           

3 The data from 2019 shows a doubling of case volume as compared to 2008. The percentages may vary among 
different hospitals and for different years but nevertheless give an indication of the reporting workload. 
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involvement of pathologists was crucial for designing a clinical-grade large-scale study for the 
development of the proposed AI-based pre-screening tool. To understand the potential workflow 
implications of the digital pre-screening tool, all colorectal (colonoscopic) biopsies were audited over 
a 5-year period from 2012 to 2017. The data collected included the colon location and the diagnosis. 

COBI – The development and internal validation cohort 

The first cohort of colon biopsies, termed as the COBI cohort, comprises cases from UHCW and is 
used as the development cohort in this study. All slides in the COBI cohort are diagnostic standard 
Hematoxylin and Eosin (H&E) stained Formalin-Fixed Paraffin-Embedded (FFPE) histology slides 
scanned at 40× (0.275 microns per pixels or MPP) using the Omnyx VL120 scanner at UHCW. The 
slide-level diagnosis for all slides (neoplastic or normal) was through review by at least two 
pathologists, with additional pathologists providing a consensus diagnosis in instances of discrepancy. 
Table 1 gives details of the COBI cohort and shows the total number of slides and tiles, and number 
and percentage of slides and tiles per diagnostic category. 

Cohort Diagnostic Categories Cases Slides % Tiles % 

Development & Internal Validation 

(COBI) 

Normal 1 274 2 775 64.66 199 215 47.47 

Neoplastic 907 1 517 35.34 220 484 52.53 

Total 2 181 4 292 100.0 419 699 100.0 

External validation 

(TCGA) 

Normal 112 134 18.33 20 709 5.81 

Neoplastic 588 596 81.67 335 488 94.19 

Total 700 731 100.0 356 197 100.0 

Table 1. Cohorts used in this study for development and internal/external validation of the AI pre-screening method. Cases 
with samples in both diagnostic categories are counted twice. 

TCGA – Multicentric external validation cohort 

The Cancer Genome Atlas (or TCGA) COAD and READ cohorts are used as an external validation 
cohort in this study. It is a multicentric cohort with slides from 38 different centers in the United 
States with resections taken during the period 1998–2013. TCGA slides are scanned at 40× (≈ 0.25 
micron-per-pixel or MPP, n=387) and at 20× (MPP ≈ 0.5, n=345). In this cohort, slides with 
malignant labels (n=597) are all FFPE whereas normal slides (n=135) are frozen sections. In this 
dataset, in addition to the demographics, genomic characterization information as gene-level copy 
number variations, mutations and cellular fractions is available for malignant cases.  

Neoplastic abnormalities (Development cohort – COBI) Neoplastic abnormalities (Validation cohort – TCGA) 

Tubulo-villous adenoma 
Tubular adenoma 
Villous adenoma 

Hyperplastic polyp 
Sessile serrated lesion 

Traditional serrated adenoma 
Adenocarcinoma 

Low-grade and high grade dysplasia 
Neoplastic – other malignant condition e.g. lymphoma, 

neuroendocrine 

Adenocarcinoma with neuroendocrine differentiation 
Adenocarcinoma with mixed subtypes 

Malignant lymphoma, large B-cell, diffuse, NOS 
Adenocarcinoma in tubolovillous adenoma 

Papillary adenocarcinoma, NOS 
Adenosquamous carcinoma 
Mucinous adenocarcinoma 

Dedifferentiated liposarcoma 
Adenocarcinoma, NOS 

Tubular adenocarcinoma 

Table 2.  Examples of neoplastic colorectal biopsies in the internal (development) and external (validation) cohorts used in 
this study. 

Modeling the colon biopsy pre-screening tool 

We modeled colorectal biopsy pre-screening as a binary classification machine learning problem 
where each WSI is classified into one of two categories: normal and neoplastic. Table 2 lists the 
various types of early signs and malignancies present in colorectal biopsies which characterizes 
neoplastic category in our development and validation cohorts. Our proposed neoplastic category 
models early signs and cancerous abnormalities together. It enables the detection of a wide range of 
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malignant conditions and any potential cancer to be monitored and managed from an early stage. Such 
a sensitive disease pre-screening tool will enhance clinical practice for preventive and proactive 
disease management. TCGA cohort is used to validate the model's generalization on an extended 
range of unseen malignant samples from various centers. 

Figure 1 shows the development and validation methodology of COBI-IDaRS. A deep convolutional 
neural network (CNN) is trained for binary classification on image tiles from the training slides of the 
COBI cohort. The prediction scores of image tiles are then aggregated into a single prediction score 
for the entire slide. The internal validation of the trained model is performed using WSIs from the 
COBI cohort in a cross-validation setting and external validation using WSIs from TCGA cohort.  

Data preprocessing 

Tissue regions are segmented from each WSI to extract tiles corresponding to the tissue areas only. 
We extracted square tiles of 256×256 pixels from a downscaled version of WSI at a 5× objective 
magnification (≈2.2 MPP) from the segmented tissue regions. A tile is retained for subsequent 
processing if the tissue area covers 75% or more of it. WSIs with fewer than four tiles are excluded.  

Weakly supervised deep learning using IDaRS 

For training a WSI classifier in a weakly supervised manner, we adapted our published method IDaRS 
(15), which works on the principle that all image tiles from the tissue regions in a WSI are not equally 
predictive of the WSI label. Therefore, instead of using all tiles, we choose two subsets of image tiles 
from each slide for the training. For each training iteration, one subset contains randomly picked 
proportion (r) of tiles and the other contains only the top-ranked proportion (k) of the tiles. The 
parameter settings for IDaRS in this study include r=10% and k=1%, maximum of T=30 training 
iterations and batch size of 1024 tiles. We fine-tuned the backbone ResNet34 (16) network (originally 
pretrained on ImageNet) on the COBI cohort using cross-entropy loss, the Adam optimizer with initial 
learning rate and weight decay of 10-4. During the training iterations, we iteratively use COBI-IDaRS 
to produce prediction scores for each tile and select the top-ranking k tiles of each slide, i.e. those with 
high likelihood of being neoplastic. 

We used PyTorch for the deep learning implementation. A set of data augmentations, including 
random rotation with maximum angles at 0, 90, 180, and 270 degrees, random horizontal and vertical 
flip transformations, color jitter with brightness, contrast, saturation of 0.3 and hue of 0.05 were 
applied on-the-fly on all training tiles (of size 224×224 pixels, ≈2.514 MPP). All experiments were 
conducted on an Nvidia DGX-2 Deep Learning System with 16× 32GB Tesla V100 Volta GPUs in a 
shared environment. The deep learning model was built on 2 parallel GPUs with 10 worker threads, 
with each GPU having a dedicated RAM of 32 GB. 

Experimental setup 

We performed three-fold internal cross validation with case-controlled stratification for performance 
evaluation of the proposed pre-screening tool using the COBI cohort. In this evaluation protocol, the 
dataset is divided into three subsets based on the case identifiers to ensure that all WSIs of a case are 
in the same fold. For each fold of the cross-validation, two subsets were used for training (with WSIs 
in the training set randomly split into training and validation sets) while the third served as an unseen 
internal test set. The best performing model, in terms of area under the convex hull of the receiver 
operating characteristic (AUROC) for the validation set, was chosen as the best performing trained 
model to obtain predictions on the held-out test set in a blinded manner.  

For performance evaluation, we use the following metrics: AUROC, the average precision of 
precision-recall curve (AUPRC), sensitivity and specificity at three selected thresholds. All evaluation 
metrics are averaged for multiple runs and multiple folds of each experiment. We report the mean and 
standard deviation of AUROC, as well as those for AUPRC. Moreover, we investigated the average 
specificity values at sensitivities of 0.95, 0.97, and 0.99, as the benchmarks to evaluate the 
effectiveness and robustness of the AI tool to serve in a real clinical setting. In the Supplementary 
materials, (Table S2, p.2) shows details of the data folds used for 3-fold cross validation experiment 
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on the COBI development cohort. It gives number of cases, slides, and tiles for each cohort, class, set 
and fold. 

Demographic and mutation characterization analysis 

Malignant samples in the TCGA cohort have associated information about demographics (gender and 
race), molecular subtype, stage, anatomical region of biopsy, mutation genotypes as well as immune 
expression signatures (17). We performed statistical analysis to identify any systematic differences 
between model-generated probability values or prediction scores for a test case being classified as 
cancerous based on these factors. For this purpose, we employed the non-parametric Mann-Whitney 
U-tests between a factor of interest (such as gender or stage, etc.) and the prediction score generated 
by the proposed model.  

We also estimated the association between occurrence of different colorectal gene mutations and the 
prediction score for malignant cases obtained from the model. Any such association is expected to 
indicate possible preferential scoring by the model for a given set of gene mutations, as well as 
signaling pathways implicated in colorectal cancer. We analyzed the bootstrap average of weights of a 
linear support vector machine classifier trained to predict whether the prediction score of a given case 
is above or below the median value of prediction scores across all cases using gene mutation 
information for that case alone. The resulting estimate can be regarded as the relative association of 
mutation in a given gene with the model prediction score. We also performed signaling pathway 
enrichment analysis using DAVID (18,19) based on genes whose mutations receive a large magnitude 
of average weights across 100 bootstrap runs.  

Results 
The IDaRS-COBI gives two probabilities to each tile at the test time. These probabilities correspond 
to the likelihood of a tile belonging to normal and neoplastic histology in the binary classification 
setting. Scores of various numbers of tiles in a WSI are considered for aggregation with multiple 
schemes into a single WSI score, which represent likelihood scores (probabilities) of WSIs being 
neoplastic. The performance metrics AUROC, AUPRC measures, sensitivities, and specificities are 
obtained from the WSI scores. To generate the slide-level label, IDaRS-COBI employs the “Average 
Top Half” aggregation scheme, which calculates an average of prediction scores of tiles with score 
higher than the median score of all tiles in the slide. 

Mean and standard deviation values of all performance metrics are reported for an unseen test set in a 
3-fold internal cross-validation on the COBI cohort (n=4 292) and external validation on the TCGA 
cohort (n=731), as shown in Table 3. For comparative analysis of the IDaRS-COBI results, we also 
report same performance measures of a recent state-of-the-art data-efficient method named CLAM 
(8), for the two cohorts with the same training and testing splits. It can be seen from Table 3 that 
IDaRS-COBI produced higher accuracy values on all reported measures. We report better results of 
CLAM obtained using all training data, parallel attention branches (8), and keeping the subtype 
parameter active. For IDaRS-COBI, in the Supplementary materials (Table S1, p.1), we also report 
results using different aggregation schemes of maximum probability, weighted average probability, 
and simple average of all probabilities, average of top four and top ten probabilities, from each slide. 

Figure 2a shows the shaded ROC curve while Figure 2b the sensitivity-vs-specificity curve at 
sensitivity values between 0.8 and 1.0. It can be observed that at the sensitivity value of 0.99, IDaRS-
COBI gives a specificity of 0.80 for the COBI cohort. Higher specificity can be achieved if the 
sensitivity threshold is relaxed to 0.97 (specificity = 0.92), or 0.95 (specificity = 0.954). The ROC and 
sensitivity-vs-specificity plots (for sensitivity > 0.8) for external validation on TCGA cohort are 
shown in Figure 2c and Figure 2d. It is perhaps worth noting that the normal tissue sections in the 
TCGA cohort were frozen and from the adjacent normal tissue and, therefore, it is possible that the 
model picks more than just the neoplastic histology. Being that in mind, for TCGA cohort, we 
extended our analysis to further explore the neoplastic regions as identified by the model within the 
neoplastic H&E slides. We investigated digital scores predicted by IDaRS-COBI in neoplastic regions 
and the association of our digital scores with relevant clinical and molecular variables of neoplastic 
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samples in the TCGA cohort, as reported below (see section titled Results of Demographic and 
Mutation Characterization Analysis). 

Methodology 
Average 

AUROC 

Average 

AUPRC 

Sensitivity 
0.95 

Sensitivity 
0.97 Sensitivity 0.99 

Specificity 

Internal 3-fold cross-validation on the COBI cohort 

CLAM (8) 0.9836 
(0.0011) 

0.9804 
(0.0017) 

0.9478 (0.0073) 0.8864 (0.0036) 0.5183 (0.1513) 

IDaRS-COBI 0.9895 
(0.0021) 

0.9851 
(0.0017) 0.9543 (0.0102) 0.9173 (0.0201) 0.7986 (0.0718) 

External evaluation (TCGA cohort) of all models obtained in 3-fold cross validation (COBI cohort) 

CLAM (8) 
0.8819 

(0.0444) 
0.9662 (0.013) 0.5 (0.202) 0.4154 (0.2123) 0.2761 (0.1748) 

IDaRS-COBI 0.9746 
(0.0159) 

0.9945 
(0.0034) 0.8524 (0.1662) 0.738 (0.1947) 0.4768 (0.1886) 

Trained on entire COBI cohort and tested on TCGA cohort 

IDaRS-COBI 
(Validation/TCGA) 

0.9708 0.9932 0.8806 0.7687 0.3955 

Table 3. Quantitative performance evaluation of the proposed pre-screening tool (IDaRS-COBI) as compared to another 
recently proposed method (CLAM) for both internal (COBI) and external (TCGA) cohorts. 

 

 

Figure 2. ROC plots and sensitivity vs specificity plots of the proposed IDaRS-COBI method on a 3-fold internal cross- 
validation on the COBI cohort (a, b) and external validation on the TCGA cohort (c, d).  
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Figure 3. Example image tiles of accurately predicted biopsies of a Hyperplastic polyp (a), adenocarcinoma (b), 
dysplasia/adenocarcinoma (c) and high grade dysplasia (d) from neoplastic colonic (a, b) and rectal (c, d) biopsies and 
their corresponding saliency maps (e-h) showing regions which contribute towards the accurate predictions. Gaussian 
smoothing has been applied on the saliency maps for improved visualization.  

Figure 3 shows input image tiles (a – d) of accurately predicted tiles for neoplastic cases and the 
corresponding saliency maps (e – h) overlaid on the input images. Saliency maps here highlight all 
pixels contributing to the prediction of neoplastic label for the given image tiles. It is worth noting 
that image tiles corresponding to different malignancy subtypes (hyperplastic polyp, poorly 
differentiated adenocarcinoma, dysplasia/adenocarcinoma, high grade invasive carcinoma, as shown 
in  Figure 3a-d) are predicted correctly at the tile level by the model and verified by a pathologist 
(YWT) using saliency maps.  

Sample image tiles of the normal slides incorrectly predicted with high probability of being neoplastic 
are shown in Figure 4. The model correctly identified image tiles of hyperplastic polyps (a-c) and 
tubular adenoma (d, e) and incorrectly identified normal small bowel (l) as neoplastic. The remainder 
of the images (f-k) show variation of normal, reactive changes, crypt distortion and artifact, which are 
wrongly attributed high probability of being neoplastic by the model. Sample normal image tiles 
correctly identified from the normal and neoplastic slides are also shown in Figure S1 (Supplementary 
p.2). Since we applied a weakly supervised classification for training IDaRS-COBI, all tiles from a 
slide were given the same slide label during training which will have added the noise in to the trained 
predictor. 

Figure 5 shows the prediction heatmaps overlaid on the input images with a corresponding sample 
image tile for a normal (a) and a neoplastic slide (b), respectively. As can be seen in Figure 5a, all the 
tiles are predicted as normal (shown by the blue overlay), confirming normal histology. Similarly, as 
can be seen in Figure 5b, most tiles are predicted as neoplastic (shown by the red overlay) confirming 
neoplastic histology. More examples of neoplastic slides with their corresponding overlay heatmaps 
can be found in supplementary figures Figure S2 and Figure S3 (Supplementary, p.2). Prediction of 
normal tiles in most of normal cases matches with the pathologist views. A few cases of sample 
normal histology tiles predicted as neoplastic in the neoplastic slides are shown in Figures S2 and S3. 
As our method did not use any regional or cellular annotations for training the prediction model, this 
can be expected. However, we would like to argue that such minor errors have minimal impact on the 
clinical workflow as long as the final WSI-level score points to a correct diagnostic category. Figure 
S4a (Supplementary, p.3) shows an interesting slide categorized as normal in the given ground truth 
labels whereas the proposed algorithm labeled it as neoplastic. The algorithm’s prediction was 
corroborated by our team of pathologists when they reviewed the slide and its corresponding heatmap 
(as in Figure S4b) and images of top-ranked tiles. The algorithm was also able to pick up other slides 

a. b. c. d. 

    
e. f. g. h. 
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that were originally labeled as normal but were predicted as neoplastic by the algorithm, also further 
attested by a consensus of our pathologists.   

 

Figure 4. Example image tiles predicted as neoplastic within normal slides of the COBI test set: hyperplastic polyps (a-c), 
tubular adenoma (d, e), variation of normal, reactive changes, and crypt distortion (f-k), and normal small bowel (l). 

 

Figure 5. Heatmap visualizations of COBI slides. a. Heatmap overlay of normal slide and a sample normal tile. b. neoplastic 
slide with a sample neoplastic tile. Overlay color legend: blue (normal) and red (neoplastic). 
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Results of Demographic and Mutation Characterization Analysis 

Our analysis revealed no statistically significant differences across prediction scores from the model 
for malignant cases based on their gender (Male/Female), stage (I, II, III or IV) or anatomical site of 
the biopsy (Descending, Ascending or Transverse Colon or Rectum) with Mann-Whitney U-test p-
values > 0.05. Also, no statistically significant differences between prediction scores for malignant 
cases were observed based on specific molecular subtypes (Chromosomal Instability (p = 0.59), 
Genomic Stability (p = 0.02) or Hypermutated Single Nucleotide Variants (p = 0.43)). However, the 
average prediction scores for Microsatellite Instability High cases (MSI-H) was found to be slightly 
lower in comparison to other groups (Mann Whitney U-test p-value of 0.0002). Similarly, a 
statistically significant difference between prediction scores for Caucasian cancer cases (n = 243) in 
the TCGA set in comparison to other demographics was observed (p < 0.0005). However, the effect 
sizes for these differences are practically insignificant indicating the future need for a larger validation 
cohort to confirm any such potential biases.  

Our analysis of association between prediction scores and gene mutations revealed that mutations in 
the TGFBR2 and NRAS genes were positively associated with model prediction score whereas those 
in SMAD2, TCERG1 and ACVR2A genes were negatively associated with the prediction score (see 
Supplementary Figure S5, p.3). Gene set enrichment analysis (GSEA) over these genes through 
DAVID resulted in the statistically significant identification (p < 0.05) of MAPK and TGF-β 
signaling pathways as being associated with increased and decreased prediction scores from the 
model, respectively (see supplementary Figures S6-S8, p.3 and p.4).  

Figure S5 (Supplementary p.3) shows the average weights of different genes from the SVM 
regression analysis against a model prediction score plotted against the probability of mutation 
occurrence in cancerous cases in the TCGA cohort, pointing to the role of important genes (red stars) 
whose prediction scores are associated with the model prediction scores obtained from DAVID Gene 
Set Enrichment Analysis.  

Discussion 
In this study, we have proposed a weakly supervised AI histology image pre-screening tool for CRC 
based on a variant of the IDaRS algorithm (15). The method presented in this study is aimed at 
assisting large bowel biopsy screening in clinical practice with a prior digital pre-screening. Our 
results demonstrate that AI based pre-screening offers the potential for improved efficiency as well as 
improved reliability.  

The proposed IDaRS-COBI tool yielded sensitivity values of 0.99, 0.97, and 0.95 for normal vs 
neoplastic slides, with corresponding specificities of 0.80, 0.92, and 0.95, respectively. Picking a 
highly sensitive operating point (with sensitivity of 99%) can help greatly reduce the pathologists’ 
workload by automated reporting of normal cases allowing their time to be spent examining more 
complex cases. The proposed AI tool has also been shown to be capable of identifying cancerous 
regions from all tumor slides of the multicentric TCGA cohort used for the external validation. 

To deploy in practical histopathological diagnostic workflow system for screening colon biopsies, a 
recent study (20) modeled the classification of epithelial tumors (adenocarcinoma and adenoma) with 
a large development cohort (n=4 036) and small validation cohorts (n=500, and TCGA-COAD: 
n=547). A more recent study (21) used gland segmentation and classification to model categorization 
of ‘low risk’ (benign, inflammation) and ‘high risk’ (dysplasia, malignancy) slides with a small cohort 
(n=294). However, these models do not cater for early diagnosis and lack high sensitivity. We 
designed a sensitive AI model that can differentiate between neoplastic and normal large bowel 
biopsies while being able to pick up hyperplastic polyps and dysplastic lesions, thus paving the way 
for a reliable and more efficient pre-screening step in the routine clinical workflow with the promise 
of reduced pathologist workload. 

The performance of our AI tool outperforms recently proposed supervised and semi-supervised AI 
tools (4,22) for CRC diagnosis considering multiple aspects. Wang et al. in (4) proposed a fully 
supervised AI tool for cancer vs. normal prediction while Yu et al. (22) proposed a semi-supervised 
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AI tool which matches to the performance of supervised AI. In both, semi and fully supervised 
classification authors have required both the slide-level and laborious tile-level annotations to achieve 
a sensitivity of 0.982, showing a slight improvement over an average performance of six pathologists 
(sensitivity = 0.975) on the same test set (4). However, it is not desirable for an AI pre-screening tool 
to yield high specificity at the cost of sensitivity. Our proposed weakly supervised algorithm improves 
sensitivity up to 0.99 at the cost of slightly reduced specificity (0.80). The proposed algorithm does 
not require any regional or cell level annotations, thereby saving the time and cost of laborious 
manual annotation. We have shown that the algorithm was able to identify a few errors in the slide-
level ground truth labels, which may be linked to human errors. The algorithm can also pick sparse 
features of neoplasia and early signs of abnormalities, which may be overlooked under the microscope 
given the vast amount of tissue content to be analyzed manually.  

To mitigate the effect of tile-level mispredictions, we considered different aggregation schemes to 
combine tile-level probability scores into slide-level probability scores and effectively filter out noise 
in tile-level predictions. As an additional training strategy, we also used a third subset of the top 
normal tiles from all slides during IDaRS-COBI training. This subset contained 0.5% of top normal 
tiles from normal and neoplastic slides added in the training set by pseudo-labelling normal tiles of 
neoplastic slides as normal. We noticed an improvement in cross-validation performance of IDaRS-
COBI on the development cohort (AUROC=0.9902±0.0013, AUPRC=0.9854±0.0018, 
Specificity=0.8282±0.0297 at sensitivity of 0.99). We did not use explainable cellular features or 
richly annotated image tiles to build the deep learning model. We relied on automatic feature 
extraction of the image tile-based weakly supervised deep learning, because of its efficient processing, 
automatic feature engineering and not necessitating laborious detailed annotations. However, we 
investigated the automatically learned features by saliency map visualizations which led to identifying 
a few false positives at tile levels as well as errors in the ground truth labels. Some of the false 
positives were found to be insignificant or irrelevant features and mimickers amplified in the 
neoplastic tissues. The false positives at tile levels have been mitigated with a selection of better 
aggregation schemes. Moreover, assigning a single ground-truth label to all tiles from multiple slides 
belonging to the same case may be interpreted as overfitting in classical machine learning theory. 
Despite the tile-level false positives, the quantitative measures have shown excellent predictive 
accuracy, robust performance and generalization on both cohorts. This may be associated with 
interpolation and generalization capabilities of overparameterized deep learning systems leading to 
benign overfitting, as demonstrated by Bartlett et al. in their latest findings (23). 

Additionally, based on the genetic mutations and gene enrichment analysis on external validation 
cohort, it can be hypothesized that the proposed model generates larger prediction scores for cases 
with increased MAPK signaling in comparison to those with TGF-β pathway activity. This would be 
in line with the known roles of these pathways in colorectal cancer (24). A statistically significant 
negative Pearson correlation of -0.18 (p < 0.00001) between prediction scores and the TGF-β 
response values obtained from (17) also lends support to these findings. The statistically significant 
Pearson correlation of 0.16 (p < 0.005) between prediction scores and the estimated values of absolute 
tumor purity (percentage of cancer cells in a solid tumor sample) from (17) also indicates that the 
model is possibly more sensitive towards detection of proliferation-centered mechanisms in colorectal 
cancer cases. 

A weakly supervised model with sensitivity greater than 99% and higher level of specificity is 
achievable with a large-scale, international, multi-cohort validation while ensuring the slide-level 
diagnostic labels are correct. Such an outcome is highly likely to assist with screening of colorectal 
biopsies for multiple abnormalities in a clinical setting. As mentioned above, a digital pre-screening 
tool such as IDaRS-COBI can result in time and cost efficiency, reliability and higher accuracy of 
routine diagnostic screening by filtering out normal colorectal biopsies from the daily workload of the 
pathologist and highlighting the neoplastic regions on the slide. Furthermore, high-scoring true 
positive cases can also be pre-screened digitally and prioritized by an expert’s examination to further 
improve the management of clinical workload. Finally, we argue that digital biopsy pre-screening for 
colon and rectal screening is the need of the day, which connects modern digital technologies and 
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human expertise together consequently enabling significant decrease in cancer fatalities and under- or 
over- treatment as a result of timely diagnosis of cancer. 

Limitations of this study include a class imbalance in the dataset, which is often the case in medical 
datasets and which, it may be argued, overrate AUROC values. To mitigate the effect of class 
imbalance, we have also reported AUPRC measure as well. We also expect that after careful revision 
of the ground truth labels and introducing an additional supervisory signal for model training, both 
sensitivity and specificity of the model should be further improved. As noted above, the external 
validation on multicentric TCGA cohort has a caveat that all normal slides from that cohort are of 
frozen sections. However, being able to identify neoplastic tiles in all H&E neoplastic slides of TCGA 
cohort is an encouraging outcome of the external validation in addition to demonstrating the 
generalization ability in an independent cross-validation setting. In future, these results merit 
validation on a large and diverse multicentric cohort, paving the way for improving the model 
performance and evidencing generalization before its eventual clinical deployment. 
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