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Abstract 

Psychological distress is a multifactorial construct that refers to non-specific symptoms 

of depression, anxiety, posttraumatic stress disorder (PTSD), or stress more generally. A 

systematic review of metabolomic markers associated with distress has the potential to reveal 

underlying molecular mechanisms linking distress to adverse health outcomes. The current 

systematic review extends prior reviews of clinical depressive disorders by synthesizing 39 

existing studies that examined metabolomic markers for PTSD, anxiety disorders, and 

subclinical psychological distress in biological specimens. Most studies were based on small sets 

of pre-selected candidate metabolites, with few metabolites overlapping between studies. Vast 

heterogeneity was observed in study design and inconsistent patterns of association emerged 

between distress and metabolites. To gain a more robust understanding of distress and its 

metabolomic signatures, future research should include 1) large, population-based samples and 

longitudinal assessments, 2) replication and validation in diverse populations, 3) and agnostic 

metabolomic strategies profiling hundreds of targeted and nontargeted metabolites. Addressing 

these research priorities will improve the scope and reproducibility of future metabolomic studies 

of psychological distress. 

 

Highlights 

• Literature on metabolomic markers of distress beyond clinical depression is scarce  

• Most existing studies were candidate based and had little overlap of targets  

• Vast heterogeneity exists in methods and patterns of findings from studies reviewed 

• Critical gaps in sample selection, study design, and methods need to be addressed  
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1. Introduction 

1.1 Psychological distress  

Psychological distress can be characterized by a composite of common psychological 

conditions, ranging from subclinical symptoms to clinical diagnoses of depression, anxiety, 

stress, or posttraumatic stress disorder (PTSD). High levels of distress can serve as a marker of 

impaired mental health or of the presence of common mental disorders, including depression or 

anxiety. Various forms of psychological distress, defined based on differing diagnoses and 

measures, are highly comorbid, share similar symptoms, and may be linked to the same 

underlying pathways of dysregulation (Kalin, 2020); therefore, it is reasonable to hypothesize 

they might share a similar metabolomic signature.  

Various forms of psychological distress have consistently been linked to a range of 

adverse physical health outcomes, including accelerated aging, cognitive decline, and mortality 

(Russ et al., 2012; Miller and Sadeh, 2014; Cohen et al., 2015; Roberts et al., 2015, 2017). The 

most methodologically rigorous work has examined associations of psychological distress with 

excess risk of cardiometabolic diseases (CMD). Findings have been particularly strong and 

consistent, with associations evident across animal models, clinical samples, and population-

based cohorts (Grippo and Johnson, 2009; Sumner et al., 2015; Golbidi et al., 2015; Levine et al., 

2021). Despite this consistency, molecular mechanisms underlying these associations are not 

well-delineated. One promising hypothesis is that distress may affect downstream metabolism 

across biochemical domains, (e.g., steroids, amino acids, lipids), leading to dysregulated 

metabolomic profiles that give rise to excess disease risk (Cohen et al., 2007; Dinoff et al., 2017; 

Juster et al., 2010).  
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1.2 Metabolomics 

Metabolomic markers, or metabolites, refer to a wide range of small molecules that occur 

in biological fluids and tissues, including peptides, lipids, amino acids, nucleic acids, and many 

other chemical compounds that can be metabolized (Wishart et al., 2018; Yu et al., 2019). It has 

been long appreciated that metabolite levels are linked to health and functioning, are influenced 

by genetics, health, diet, and environmental exposures, and can serve as a signatures of processes 

that are proximal to disease phenotypes (Gerszten and Wang, 2008; Clish, 2015). In the last 20 

years, metabolites have been reliably measured across different biospecimens including plasma, 

serum, urine, and cerebral spinal fluid (CSF), making it possible to gain greater insight into 

disease conditions, molecular signatures, and potential therapeutic targets. A metabolomics 

perspective may also provide important new understanding of key mechanisms and causal 

pathways underlying the relation between psychological distress and CMD (Humer et al., 2020). 

Understanding directionality of associations in this context is important as there are likely 

bidirectional relationships between diseases or psychological conditions and metabolomic 

profiles. 

Several key features of design and analytic approaches distinguish metabolomics studies 

from one another. First, studies may use a variety of different techniques for metabolomics 

profiling, such as Nuclear Magnetic Resonance (NMR), and mass spectrometry (MS). Compared 

to NMR-based methods, MS is thought to more effectively reduce sample complexity and 

increase detection of metabolite levels especially when a large number of metabolites are 

assessed simultaneously (Lee et al., 2019; Zhou and Yin, 2016). Second, analogous to other 

omics studies, both candidate and agnostic approaches have emerged in studies evaluating the 

relationship between distress and metabolites. A candidate approach involves a priori selection 
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of a small to moderate number of metabolites as the focus, and their selection is generally based 

on specific hypotheses drawn from theory or prior literature. An agnostic approach assesses 

associations with a large number (typically hundreds) of metabolites simultaneously and detects 

signals for future follow-up experiments. Third, researchers can use a targeted versus 

nontargeted approach when measuring metabolites. Most studies to date have utilized targeted 

strategies, involving quantification of the relative abundance of known metabolites. However, 

with the recently developed capacity to simultaneously assay hundreds of metabolic markers at 

once, platforms measuring large-scale metabolomic markers can detect not only known analytes 

(i.e., a targeted approach), but also unlabeled peaks that can then be mapped to specific 

metabolites post hoc, including structurally novel metabolites (i.e., a nontargeted approach) 

(Schrimpe-Rutledge et al., 2016). Nontargeted strategies are advantageous especially when the 

goal of research is to generate new hypotheses. Lastly, while studies may examine the same 

metabolites, differences in results and interpretations may arise from identifying these 

metabolites using different types of biospecimen. For example, metabolites concentrations in 

plasma represent molecules in peripheral circulation whereas metabolites in urine are derived 

from the degradation and excretion of molecules. Different types of biospecimen may be 

implicated in different pathways and mechanisms of disease physiology. Without an integrative 

and standardized pre-processing and analytical procedure, studies looking at different 

biospecimen types separately may yield seemingly inconsistent results because in fact, they are 

measuring different pathways (Patti et al., 2012; Zhou et al., 2019).  

1.3 Associations between psychological distress and metabolomic profiles  

Preliminary evidence suggests specific psychological disorders may be linked to unique 

metabolic signatures in several peripheral tissues. In animal models of depression, tissue-specific 
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biomarkers have been identified; in particular, neurotransmitter and kynurenine metabolite levels 

in the brain, and amino acid and corticosterone metabolite levels in blood have been linked to 

depression (Pu et al., 2021). A recent systematic review focused on human studies considering 

metabolomic markers (from blood, urine, and CSF) in relation to several forms of clinical 

affective disorders, including major depressive disorder (MDD) and bipolar disorder (BD) 

(MacDonald et al., 2019). This review included evidence from 266 articles considering 249 

metabolites and found 122 metabolites were evaluated in at least two studies. Several key 

pathways implicated in MDD emerged, including mitochondrial/energy metabolism, neuronal 

integrity, and signaling/neurotransmission. The review also highlighted a few metabolites 

showing consistent associations with MDD and BD, such as glutamate and other amino acids, 

which play key roles in signaling, neurotransmission and energy metabolism. In 2020, a meta-

analysis from nine Dutch cohorts (n=10,145 controls and n=5,283 cases with depression) 

identified 21 metabolites associated with clinically diagnosed depression (Bot et al., 2020). 

Findings suggested the metabolomic signature of depression is characterized by lower high-

density lipoprotein and higher very-low-density lipoprotein and triglyceride particle levels, 

highlighting the importance of lipid metabolites in the pathophysiology of depression.  

These review articles, both primarily focused on clinical mood disorders, have 

considerably contributed to our understanding of linkages between psychological distress and 

metabolomics. However, psychological distress encompasses a broader set of phenotypes beyond 

mood disorders, including subclinical manifestations of these disorders; our understanding of 

how psychological distress may influence metabolic processes across this broad spectrum 

remains limited. To our knowledge, no review to date has considered other forms of 

psychological distress such as anxiety disorder or PTSD, nor considered subclinical symptoms of 
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these types of distress in population-based samples. It remains unclear whether metabolic 

markers for clinical depression are similar in other forms of psychological distress or in 

subclinical distress. In the current systematic review, we address this question by synthesizing 

existing literature on psychological distress and alterations in metabolomic biomarkers, 

considering multiple forms of psychological distress at both clinical (e.g., anxiety disorder, post-

traumatic stress disorder) and subclinical (e.g., symptoms of anxiety or depression or post-

traumatic stress that may not meet criteria for psychopathology) levels. We excluded studies of 

clinical depression and related disorders given the recently published reviews described above. 

1.4 Study aims 

 We aim to summarize and assess literature examining associations between metabolomic 

profiles in human adults and psychological distress, covering anxiety disorders, PTSD, or 

subclinical symptoms of depression, anxiety, and PTSD. Objectives include the following: 1) to 

summarize the aims, study characteristics, and methodological approaches of existing distress 

and metabolomics studies; 2) to assess converging and diverging evidence from these studies; 

and 3) to identify critical directions for future work.   

2. Methods   

2.1 Eligibility and study selection process  

An electronic literature search was performed using PubMed (NLM) and PsychINFO 

(Ovid) in June 2020. Search terms were selected to identify metabolomics studies of 

psychological distress, specifically pertaining to subclinical levels of depression as well as 

clinical or subclinical levels of anxiety and PTSD. All searches were limited to original research 

conducted in human adults as we were primarily interested in the implications for human 

diseases.    
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We conducted a search for studies with subclinical and population-based samples for 

depression and studies of clinical and population-based samples for anxiety and PTSD (full 

details on the search strategy are available in the appendix). We excluded two types of studies 

that were captured by the searches. First, studies measuring metabolite levels using magnetic 

resonance spectroscopy (MRS) were removed due to general challenges in validating MRS 

results and varying degrees of reliability depending on the metabolites and brain regions assessed 

(Dhamala et al., 2019). Second, studies assessing acute stress responses following experimental 

manipulations were excluded (e.g., alterations in metabolite levels following exposures designed 

to induce anxiety in patients with phobia or panic disorder), as we were primarily interested in 

metabolic markers linked with chronic psychological distress.  

The Covidence platform was used to organize and perform abstract screening. Two 

independent reviewers (SJ and RS) reviewed abstracts using standardized criteria. Studies were 

rejected if they reported findings from animal models, children, or pregnant women. Abstracts 

that reported findings primarily related to drug effects, herbal treatments, or any sort of 

intervention and treatment were also excluded. Furthermore, we include only primary research 

articles, and excluded all commentaries, editorials, opinions, and reviews. We further excluded 

grey literature, unpublished studies, and articles not available in English, and also studies with a 

primary focus on mental, physical, or medical conditions other than general psychological 

distress, subclinical depression, PTSD, and anxiety.  

When disagreements regarding a study’s relevance occurred between abstract reviewers, 

a third rater (LK) evaluated the abstract. Once all abstracts were screened and a set of relevant 

research articles were collected, both raters performed a full text review applying similar 

inclusion and exclusion criteria. Finally, new searches and screening were conducted once more 
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before finalizing our analyses to collect and include any additional studies published since 

initiating our systematic review. Figure 1 shows the process of study selection.  

2.2 Data extraction and analysis 

For each study included, we extracted features related to publication details, key 

population characteristics, study design, measures used to assess distress and metabolomics, 

statistical analysis, and main findings. Each reported metabolite was entered into the Human 

Metabolome Database (HMDB, www.hmdb.ca) to extract the corresponding ID, common name, 

and class. Key characteristics were summarized into separate tables for each of the three distress 

types: PTSD, anxiety disorders, and subclinical distress including depressive or anxiety 

symptoms.  

Study quality was evaluated using an adapted version of the Newcastle-Ottawa Scale for 

Cohort Studies (Herzog et al., 2013; Wells et al., 2010) by two independent reviewers (SJ and 

YZ). The scale was modified to evaluate metabolomic studies in three specific domains: 

selection, comparability, and outcomes. Specifically, quality of sample selection included the 

following items: representativeness of study population, sample size, rigor in assessment of 

exposure, and exclusion of outcome of interest at baseline (when study was longitudinal) or 

temporality. Study comparability assessment focused on covariate adjustment, i.e., if the most 

important potential confounders (defined based on prior literature and expertise from our 

research group, including key determinants of metabolomics and distress – age, sex, and/or 

race/ethnicity) and additional confounders were considered. Outcome assessment consisted of 

three items: representativeness of outcome (i.e., scope of metabolite measurement regarding 

whether candidate vs. agnostic approaches were used), metabolite measurement, and statistical 

test. Disagreements between raters were resolved by consensus.  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 25, 2022. ; https://doi.org/10.1101/2022.02.24.22271464doi: medRxiv preprint 

http://www.hmdb.ca/
https://doi.org/10.1101/2022.02.24.22271464
http://creativecommons.org/licenses/by-nc-nd/4.0/


 10 

3. Results 

3.1 Search results and quality assessments 

A database search for studies of subclinical depression and metabolomics identified 861 

potentially relevant articles. After excluding 127 duplicate articles, a total of 734 abstracts were 

screened and 44 articles were further reviewed using the full text. Eight of these met review 

criteria and were retained for analysis.  

A database search for studies of anxiety or PTSD and metabolomics identified 2,227 

papers. After removing 1,039 duplicate papers, a total of 1,114 paper abstracts were screened. Of 

these, 106 studies entered a full-text screening process and a total of 69 studies advanced to the 

extraction phase. 36 of these met review criteria and were retained for analysis. 

Combining results from these two searches yielded a total of 39 unique papers that were 

included in this review. Of these, 21 primarily targeted PTSD, seven targeted anxiety disorders, 

and 11 targeted subclinical distress (generally characterized by anxiety or depressive symptoms). 

If studies included more than one measure of distress, we used the measure which addressed the 

primary research question. We included fewer studies specifically focused on clinical anxiety 

disorders compared to studies on clinical PTSD and subclinical symptoms of depression and 

anxiety, primarily because we excluded studies that experimentally induced short-term responses 

related to the disorder (such as in phobia or panic disorders). Of the 39 unique reports, two 

studies utilized an agnostic approach. For these papers, we reported null associations between 

distress and metabolites only if the same metabolites were also examined in at least two other 

candidate studies. Given that more than two hundred metabolites were tested in each of the two 

agnostic studies included in the current review, it was not feasible to examine all tested 

associations.  
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Characteristics of all included studies are summarized in Table 1. An increasing number 

of studies were conducted after the year 2000, corresponding to the timeline of technology for 

assessing metabolites becoming more available and development of various metabolomic 

platforms (Figure 2; Scalbert et al., 2009). Quality assessments completed in the 39 studies 

revealed nine to be of good quality, 23 to be of average quality, and seven to be of poor quality 

and at high risk for bias. The full assessment and results can be found in Table S1. The least 

endorsed quality measures were temporality (most studies were cross-sectional) and 

representativeness of the selected sample (most studies were based in small clinical samples). 

Studies that scored low on the quality assessment frequently had inadequate sample sizes and did 

not adjust for important risk factors. Generally, studies with higher quality scores were those 

using larger and more representative samples.  

3.2 PTSD status or symptoms and metabolites 

We identified 21 studies. Sample sizes ranged from 19 to 731, but the majority (90%) had 

fewer than 200 participants. Eleven studies were conducted in civilian clinical populations, 

while the rest relied on specific populations with elevated levels of trauma exposure and clinical 

diagnoses of PTSD: nine studies were based in veteran or military samples, and one study 

included Holocaust survivors. Out of the 17 studies reporting the age distribution of participants, 

the average age was 39 years. Only one study included a sample of older adults (average age 

above 60 years; Yehuda et al., 2009). Seven studies included only male, and three studies 

included only female participants; among studies with both male and female participants, the 

average percentage of female participants was 44.1% (Figures S1-S2).  

Most studies used a case-control design (n=17) (Figure S1C). Among the remaining four 

studies, two were analyses of cross-sectional data nested within ongoing cohort studies, one 
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study assessed associations between symptom severity and metabolite levels cross-sectionally in 

a sample of veterans recruited for that purpose, and one observational study included patients 

with clinical disorders who were followed and assessed at two additional timepoints after 

baseline. Metabolites were assayed in a range of biospecimens across the 21 studies: blood 

plasma (n=8), urine (n=7), CSF (n=4), blood serum (n=2), hair (n=2), and saliva (n=1). Of note, 

three studies collected more than one type of biospecimen and performed pre-processing and 

analysis separately for each type (Figure S3). Across the 21 studies, only one took an agnostic 

approach, examining all 244 compounds available on the analytic platform (Mellon et al., 2019). 

The others evaluated associations with from one to 15 prespecified candidate metabolites.  

 Measures of PTSD overlapped across a subset of the studies: namely, the Clinician 

Administrated PTSD scale was used to measure PTSD severity in 11 studies (Blake et al., 1995), 

and the Structured Clinical Interview for DSM-III-R or DSM-IV was administered in five studies 

(Spitzer et al., 1992; First and Gibbon, 2004). Other instruments used in more than one study to 

assess PTSD included the Impact of Event Scale-Revised (Weiss, 2007), PTSD checklist 

(Blanchard et al., 1996), and the Posttraumatic Diagnostic Scale (Foa et al., 1997). All these 

measures have been psychometrically validated. While 18 studies primarily focused on the 

comparison of metabolites between PTSD cases and controls, associations of metabolite levels 

with PTSD symptom severity on a continuous scale were also examined in 14 studies.  

3.2.1 Metabolites in candidate PTSD studies 

A total of 57 unique metabolites were examined across the 20 studies of candidate 

metabolites and PTSD. We were able to match forty-three metabolites to existing HMDB IDs, 

spanning 10 distinct classes (Figure 3). Twelve metabolites or composite measures (e.g., 

metabolite ratios or aggregate) available in HMDB were selected for study in at least two 
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candidate studies (Figure 4). Here, we summarize results regarding the three top metabolite 

classes with overlap across studies: steroids and steroid derivatives, phenols, and carboxylic 

acids and derivatives. Metabolite classes that appeared only in one study are not discussed, but a 

detailed summary of all associations examined is provided in Table S2. Direction of associations 

with PTSD (i.e., when higher PTSD or case status is associated with higher or lower metabolite 

levels) varies across the different metabolites but are indicated in Table S2. 

 Steroids and steroid derivatives. A total of eight studies examined links between PTSD 

and 18 steroid metabolites available in HMDB. Four studies tested the hypothesis that deficits in 

the synthesis of GABAergic neuroactive steroids, such as metabolites of progesterone, may be 

implicated in the pathophysiology of PTSD (Rasmusson et al., 2006; Pineles et al., 2018; 

Rasmusson et al., 2019; Kim et al., 2020). Rasmusson et al. (2006) assessed four neurosteroids in 

CSF (5a-DHP, dehydroepiandrosterone (DHEA), progesterone, Allo+Pregnan), examining 

differences between nine premenopausal women with chronic PTSD and 10 healthy controls 

with no trauma history. PTSD patients had lower Allo+Pregnan levels, but no other differences 

emerged. Another study examined levels of Allo+Pregnan and 5a-DHP in women with PTSD 

(N=15) compared to trauma-exposed controls (N=19) in blood plasma (Pineles et al., 2018). 

Contrary to prior findings in CSF, plasma 5a-DHP levels were higher in PTSD patients but no 

difference in plasma Allo+Pregnan levels were evident. A follow-up study in 2019 investigated 

CSF levels of the same neurosteroid metabolites in 13 men with PTSD compared to 17 healthy 

male controls with trauma history. Although no between-group differences were identified, an 

inverse correlation between Allo + Pregnan levels and a continuous measure of PTSD symptom 

severity emerged (Rasmusson et al., 2019). Lastly, Kim et al. (2020) identified a negative 

correlation between CSF Allo+Pregnan levels and PTSD symptom severity among trauma-
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exposed men with and without PTSD (N=30) but found no difference in 5a-DHP levels or 

DHEA. Three of these four studies also assessed associations between metabolite ratios and 

PTSD. The Allo+Pregnan/5a-DHP ratio was inversely associated with PTSD in two studies 

(Rasmusson et al., 2006; Pineles et al., 2018) and not associated in one study (Rasmusson et al., 

2019). The Allo+Pregnan/DHEA ratio was also inversely associated with PTSD in both studies 

that included this measure (Rasmusson et al., 2006, 2019).  

Investigators have also considered metabolites related to glucocorticoid metabolism. Four 

studies examined the associations between specific glucocorticoid metabolites and PTSD status 

or symptoms (Wheler et al., 2006; Yehuda et al., 2009; Steudte et al., 2013; Wingenfeld et al., 

2015). Overall, results were mixed: Wheler et al. (2006) found no difference in urinary levels of 

14 cortisol metabolites between 10 PTSD patients and 10 controls matched by age and gender. In 

a sample of aging Holocaust survivors (N=51) evaluating urinary levels of four glucocorticoid 

metabolites, Yehuda et al. (2009) identified one positive association between PTSD symptom 

severity and 5a-THF. Wingenfeld et al. (2015) analyzed urinary cortisol levels in a large cohort 

recruited at two Veterans Affairs medical centers (N=613) found cortisol levels were lower in 

PTSD patients. A fourth study evaluating hair and salivary cortisol also found lower hair cortisol 

levels among those with PTSD in comparison to non-trauma exposed controls, but no association 

with salivary measures (Steudte et al., 2013).  

Phenols or catecholamine metabolites. Six studies examined levels of seven phenols 

available in HMDB. Of three studies assessing norepinephrine levels in CSF or urine samples 

(Kim et al., 2020; Mellman et al., 1995; Wingenfeld et al., 2015), only one found a positive 

association with PTSD status which suggested norepinephrine levels in urine may be higher in 

PTSD patients; however, this study did not find associations with either epinephrine or dopamine 
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(Wingenfeld et al, 2015). Two studies using small samples (including 10-20 individuals with 

PTSD and approximately the same number of healthy controls) examined metanephrine and 

normetanephrine levels from urine and found no link to PTSD status (Wheler et al. 2006; Breen 

et al. 2019). Notably, while Mellman et al. (1995) did not identify differences in nocturnal or 14-

hour excretion levels of urinary norepinephrine or MHPG between PTSD patients and controls 

(N=28), their analyses did find PTSD patients had a larger difference between their nocturnal 

and daytime MHPG levels, reflecting potential dysregulation during sleep. One study measured 

VMA, an epinephrine and norepinephrine metabolite; findings from 50 patients with chronic 

PTSD and 50 healthy controls showed that VMA derived from urine was higher in patients 

(Dikanović et al., 2011).  

  Carboxylic acids and derivatives. Five studies assessed a total of five carboxylic acids 

and derivatives. The only metabolite analyzed in at least two studies was gamma-aminobutyric 

acid (GABA). While Kim et al. (2020) found GABA levels in CSF did not differ between 

trauma-exposed men with and without PTSD in a small sample (N=30), Schür et al. (2016) 

identified a positive association between GABA levels in plasma and PTSD symptoms in a large 

sample of military personnel (N=731).  

3.2.2 Agnostic analyses 

Out of the 21 studies on PTSD, only one study performed an agnostic analysis of 

metabolomic profiles (Mellon et al., 2019). The authors identified 244 compounds in plasma 

available in both the discovery (N=103) and test samples (N=62) and compared group-level 

differences between combat trauma-exposed male veterans with and without PTSD, matched on 

age. Identified markers were primarily related to glycolysis and fatty acids uptake and 

metabolism. Among 33 identified markers, only cortisol and Docosahexaenoic acid (DHA) were 
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also examined in the candidate studies of PTSD described above, with cortisol levels being 

higher among PTSD patients in the discovery group but not the test group, and DHA being lower 

among PTSD patients in both groups. Additionally, two metabolites, cortisone and 

dehydroepiandrosterone sulfate (DHEA-S), showed consistently null relationships with PTSD in 

this agnostic analysis as well as in other candidate studies (Wheler et al., 2006; Yehuda et al., 

2009; Rasmusson et al., 2019; Kim et al., 2020).  

3.3 Anxiety disorders and metabolites 

A total of seven studies documented the relationship between anxiety disorders and 

metabolites in clinical populations. Studies were performed in six different countries with sample 

sizes ranging from 34 to 2,912 individuals. The majority of studies (57%) were small, with less 

than 100 participants. Notable exceptions were two large population-based cohorts that included 

2,841 and 2,912 individuals recruited from the Netherlands Study of Depression and Anxiety 

(NESDA) (Black et al., 2017; Thesing et al., 2018a). All studies were conducted among 

individuals in early to mid-adulthood, with mean age across samples ranging from 30.5 to 45 

years. One study consisted of only male participants. In studies with both male and female 

participants, the average percentage of female participants was approximately 62.5% (Table 1).  

Four studies defined “anxiety disorders” as having a clinical diagnosis of any anxiety 

disorders including social phobia, generalized anxiety disorder (GAD), panic disorder and/or 

agoraphobia (Black et al., 2017; Dušková et al., 2015; Thesing et al., 2018a; Yamada et al., 

2000). One study focused specifically on panic disorder (Eriksson et al., 1991), one on social 

anxiety disorder (Green et al., 2006), and one on GAD (Garvey, 1995). Diagnoses were made 

using the Structured Clinical Interview (for DSM-II, DSM-IIIR, or DSM-IV), the Composite 
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International Diagnostic Interview (CIDI), or the International Classification of Diseases, Tenth 

Revision (ICD-10). Anxiety symptoms were most often evaluated using the Hamilton Rating 

Scale for Anxiety (HRSA) or the Beck Anxiety Inventory (BAI).  

No agnostic studies of anxiety disorders and metabolites were conducted. Three studies 

used blood plasma, and one study each used urine, saliva, red blood cells, and CSF to measure 

metabolite concentrations (Table S3).  

3.3.1 Metabolites in candidate studies 

A total of 48 unique metabolites were identified in the seven studies. Of these, 37 

matched existing HMDB IDs. These 37 metabolites belong to five different metabolite classes. 

Only two of these were documented in at least two studies: Vanylglycol (MHPG) belonging to 

the phenols metabolite class, and 5-Hydroxyindoleacetic acid belonging to the indoles and 

derivative class (Figure 4C).  

MHPG was assessed in both saliva and CSF. Yamada et al. (2000) assessed salivary 

levels of MHPG in patients with diagnosed anxiety disorders (including panic disorder, GAD, 

adjustment disorder with anxiety or adjustment disorder with mixed anxiety and depressed 

mood) and found higher salivary MHPG concentrations in patients versus controls. In contrast, 

Eriksson et al. (1991) found no significant differences in CSF MHPG levels in patients with 

panic disorder compared to controls.  

5-Hydroxyindoleacetic acid (5-HIAA) was assessed in CSF (Eriksson et al., 1991) and 

urine (Garvey, 1995). Neither study revealed significant relationships of 5-HIAA concentrations 

with panic disorder or with total symptom scores.  
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3.4 Subclinical distress and metabolites 

A total of eleven studies documented the relationship between depressive  or anxiety 

symptoms and metabolites (Table 1). All studies were conducted in sub-clinical or population-

based cohorts, with three comprising occupational samples and one comprising students. Studies 

were performed in nine different countries with sample sizes ranging from 25 to 2,912 

individuals. More than a third of these comprised large population-based cohorts with over 1,000 

participants. Mean age across studies ranged from 23.3 years to 76.3 years, with most studies 

performed in middle age and older participants. Four study samples included only female, and 

one study included only male participants; among studies with both males and females, the 

average percentage of female participants was approximately 60.5%.  

Distress symptoms were assessed using a variety of different measurement tools. The 21-

item Depression, Anxiety, and Stress Scale (DASS-21) was administered in two different studies 

(Hashemi et al., 2020; Lee et al., 2011). Depression screeners such as the CES-D (CES-D-20, 

CES-D-10, or CES-D-6), and PHQ-9 were also used in two or more studies (Altmaier et al., 

2013; Huang et al., 2020; Liu et al., 2019; Szabo de Edelenyi et al., 2020). Altmaier et al. also 

utilized Type D personality, a measure of general psychological distress characterized by both 

social inhibition and negative affectivity. 

Ten of the eleven studies (91%) were candidate studies, pre-selecting study metabolites 

based on previous research. The remaining study (Altmaier et al., 2013) performed an agnostic 

assessment of Type D personality using 668 metabolites. Metabolites were assayed from blood 

plasma (N=5), urine (N=4), blood serum (N=1), or red blood cells (N=1) (Table S4).  
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3.4.1 Metabolites in candidate studies 

A total of 106 unique metabolites were identified in the 11 studies pertaining to 

subclinical distress. Most metabolites (N=98) were matched to existing HMDB IDs and 

classified into 14 different metabolite classes. Fourteen of these were selected as candidates in at 

least two studies, with eleven belonging to the carboxylic acids and derivatives metabolite class 

(Figure 4). The remaining metabolites belonged to the following classes: indoles and 

derivatives, fatty acyls, steroids and steroid derivatives, and organooxygen compounds classes.  

  Carboxylic acids and derivatives. The relationship of carboxylic acids and derivative 

metabolites with subclinical distress was examined in three studies. Of the 11 metabolites 

examined, only hydroxyproline and glutamic acid showed significant trends with distress in at 

least one study.  

Hydroxyproline was evaluated as a candidate metabolite in two studies (Adachi et al., 

2019; Lee et al., 2011). Adachi et al. (2019) categorized a sample of Japanese older community 

dwelling adults into two groups experiencing high vs. low depressive symptoms as measured by 

the Geriatric Depression Scale-15, then examined the association with levels of plasma amino 

acid-related metabolites, including hydroxyproline. Lee et al. (2011) examined the relationship 

between urinary hydroxyproline and depression, anxiety, and stress symptoms, as measured by 

the Depression Anxiety Stress Scale (DASS), in hospital employees from South Korea. Both 

studies found significant associations, albeit in biospecimen-specific and in opposite directions: 

Adachi et al. showed a negative relationship between plasma hydroxyproline levels and 

depressive symptoms (Adachi et al., 2019) while Lee et al. found urinary hydroxyproline 

concentrations were higher among those with high levels of stress symptoms but not with either 

depressive or anxiety symptoms (Lee et al., 2011). 
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Glutamic acid was considered as a candidate metabolite in two studies as well (Adachi et 

al., 2019; Huang et al., 2020), but findings were inconsistent. Huang and colleagues (2020) 

assessed the association of depression status (yes/no), measured by reporting either elevated 

current depressive symptoms, history of depression (based on self-report of physician diagnosis), 

or antidepressant use, with glutamic acid (as well as other candidate metabolites from plasma) in 

three independent samples of postmenopausal women in the US. While this study found average 

levels of plasma glutamic acid were higher in the depressed cases relative to controls, the Adachi 

et al. (2019) study described above observed no significant differences between those with and 

without depressive symptoms. Six additional carboxylic acids and derivative metabolites were 

also assessed in these studies, but none were significantly associated with any measure of 

depression in either study. 

  Indoles and derivative metabolites. Two indoles and derivative metabolites, tryptophan 

and serotonin, were examined in two or more studies (Adachi et al., 2019; Chojnacki et al., 2020; 

Huang et al., 2020). Details of Adachi et al. (2019) and Huang et al. (2020) are described above. 

Chojnacki and colleagues (2020) used the Hamilton Depression Rating Scale (HAM-D) to 

characterize depressive symptom levels and evaluated urinary metabolite levels in middle-aged 

adult without mood disorders, older aged adults without mood disorders, and older adults with 

mild and moderate depressive symptoms.  

While all three studies evaluated tryptophan, associations varied across all reports. One 

found significantly lower levels of plasma tryptophan in the depressed cases relative to controls 

(Huang et al., 2020), another reported higher urinary levels of tryptophan in older adults with 

depressed mood compared to middle-aged adults without depression symptoms (Chojnacki et al., 

2020), and the third study found no associations between plasma tryptophan and depressive 
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symptoms among older adults (Adachi et al., 2019). Two studies considered serotonin as a 

candidate metabolite but found no significant relationships with depressive symptoms (Adachi et 

al., 2019; Huang et al., 2020) .  

  Other metabolites. DHA and kynurenine, belonging to the fatty acyls and 

organooxygen compounds classes, respectively, were also assessed in two or more studies and 

association were generally inconsistent across studies. DHA levels were evaluated in two studies 

(Hashemi et al., 2020; Thesing et al., 2018b). Hashemi et al. (2020) assessed the relationship of 

DHA in red blood cells with self-reported stress and anxiety symptom levels, as measured by the 

DASS, in Iranian university students, comparing a group with elevated subclinical stress and 

anxiety to matched controls with low levels of depression, stress, or anxiety symptoms. Thesing 

et al. (2018b) investigated the association of depression and anxiety sensitivity, as measured 

using the Leiden Index of Depression Sensitivity-Revised (LEIDS-R) and the Anxiety 

Sensitivity Index (ASI), with plasma DHA in a large cohort of healthy adults. The first study 

found lower DHA levels among participants with elevated subclinical stress and anxiety, while 

the second study found no evidence of an association.  

Kynurenine levels were assessed in two studies (Adachi et al., 2019; Chojnacki et al., 

2020) and associations with depressive symptoms were similarly inconsistent. Urinary 

concentrations of kynurenine were higher among elderly participants with elevated depressive 

symptoms when compared to non-depressed younger adults (Chojnacki et al., 2020), but plasma 

concentrations were not associated with depressive symptom severity in the second candidate 

study (Adachi et al., 2019).  
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3.4.2 Agnostic analysis 

Altmaier et al. (2013) performed an agnostic analysis using metabolomic panels by 

Metabolon, Inc. and Biocrates to identify a signature for Type D personality in a population-

based cohort of 1502 German adults. Using an agnostic assessment of the associations of 668 

serum metabolites, the study found significantly lower levels of kynurenine in individuals with 

versus without Type D personality. Moreover, when looking at the two subscales of Type-D 

personality, there was a positive association between cortisol and social inhibition and a negative 

association between cortisol and negative affectivity.   

3.5 Concordance of Metabolite Associations Across Distress Phenotypes 

Across studies of PTSD, anxiety disorders, and subclinical distress, 28 metabolites were 

examined in studies considering relationships with at least two different forms of distress. These 

28 metabolites span five metabolite classes: steroids and steroid derivatives, fatty acyls, 

carboxylic acids and derivatives, phenols, and indoles and derivatives. Out of the 28 metabolites, 

21 were reported to be significantly associated with a form of distress in at least one study.  

3.5.1 Steroids and steroid derivatives 

Across nine studies, eleven steroids and steroid derivatives were assessed in relation to 

the different forms of distress. Cortisol was the most frequently studied metabolite (included in a 

total of six studies) but findings were inconsistent. For example, while cortisol was negatively 

correlated with PTSD in two candidate studies using hair and urine samples, respectively 

(Steudte et al., 2013; Wingenfeld et al., 2015), higher serum cortisol was associated with lower 

negative affectivity and higher social inhibition in a large agnostic study (Altmaier et al., 2013); 

another agnostic study also found higher plasma cortisol levels among individuals with PTSD. 
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Adding to the inconsistencies, in a small candidate study found no association of subclinical 

distress with plasma cortisol levels (Barbaccia et al., 2000). 

Progesterone and dehydroepiandrosterone (DHEA) were also commonly studied, 

examined in five studies. None found an association of progesterone with any form of distress, 

regardless of study design, biospecimen type, or analytic platform. Apart from one small study 

(N=25) documenting a negative association for depression and anxiety symptoms with DHEA, 

no other studies found evidence of associations. Related, DHEA-sulfate was assessed in three 

studies, and associations with any form of distress were consistently null. Other metabolites in 

this class were either included in two or fewer studies or had mixed results across studies.  

3.5.2 Fatty acyls 

 Six fatty acyl metabolites were studied across four studies, with two focusing on PTSD, 

one on anxiety disorder, and one on subclinical distress. While associations between distress and 

fatty acyls varied across studies examining the same distress type (i.e., PTSD), some consistency 

was observed across different forms of distress. For example, six of the omega-3 fatty acids 

examined in relation to social anxiety disorder by Green et al. (2006) were also analyzed in other 

studies, and five showed consistent directions of associations in at least one other study. While 

some studies failed to identify an association, no conflicting directions of associations occurred 

for any of the fatty acyl metabolites.   

3.5.3. Carboxylic acids and derivatives 

L-Tyrosine, L-Glutamine, L-Arginine, and GABA were examined in relation to various 

distress types in a total of six studies. While the two studies on subclinical distress (Adachi et al., 

2019; Huang et al., 2020) did not find a significant relationship, single studies on PTSD 

identified significant associations without replication. GABA, the most frequently studied 
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metabolite in this class, was examined in four studies, with two examining associations with 

PTSD and two examining subclinical distress. Out of these, only one identified a significant 

association with PTSD (Schür et al., 2016). Additionally, L-Glutamine and L-Arginine levels 

were lower among individuals with PTSD (Mellon et al., 2019) but none of these metabolites 

were significantly associated with subclinical distress levels in other studies.  

3.5.4 Phenols  

 Four phenol metabolites, all of which pertain to catecholamine metabolism, were 

assessed across eight studies of different distress types. Two out of four studies examining levels 

of MHPG found positive associations. Specifically, Mellman et al. (1995) found significant 

daytime to nocturnal differences in metabolites levels between PTSD patients and controls. One 

study of anxiety found higher MHPG concentrations in patients versus controls (Yamada et al., 

2000). However, other studies evaluating this metabolite in relation to anxiety or subclinical 

distress found no significant concentration differences between groups (Sothmann and Ismail, 

1984; Eriksson et al., 1991). Normetanephrine was assessed in three studies, all of which found 

no association with distress. Out of the three studies that assessed levels of metanephrine, only 

one identified a negative association (Sothmann and Ismail, 1984); the two studies that included 

VMA also yielded inconsistent results  (Garvey, 1995; Dikanović et al., 2011).  

3.5.6 Indoles and derivatives 

Three indoles and derivatives (5-HIAA, serotonin, and L-tryptophan) were examined in 

eight studies considering various forms of distress. All four studies including 5-HIAA found no 

association with any forms of distress, while results concerning relationships with serotonin and 

L-tryptophan were mixed. Serotonin levels were lower among individuals with PTSD in one 

study (Li et al., 2016) but no associations were evident in two large studies of subclinical 
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depression. Conflicting findings regarding L-tryptophan emerged from the two studies on 

subclinical distress: while Huang et al. found lower levels of plasma L-tryptophan associated 

with higher distress, another study found higher levels of  urinary L-tryptophan associated with 

higher levels of distress (Chojnacki et al., 2020).  

 

4. Discussion  

Data extracted from the 39 studies provide the current state of evidence for associations 

between psychological distress and various metabolic markers. Our synthesis did not yield a 

clear and robust set of metabolites reliably associated with one or more forms of psychological 

distress. However, failure to find a common set of metabolites altered in relation to various 

forms of distress is likely due, at least in part, to the widely varying methodological approaches, 

biospecimens, and metabolites selected for assessment across the studies that have been done to 

date. Specifically, few candidate studies assessed the same metabolites and even the overlap of 

metabolite classes across studies was limited. Additionally, most studies were heterogeneous 

with regard to their underlying population, design, biospecimen type, laboratory procedures, and 

data processing pipelines; moreover, many studies were small, such that even when the same 

metabolites were examined, possibilities for replication and validation were limited. Our findings 

strongly suggest the need for more unified and systematic examination of these relationships. 

That said, while the heterogeneity across studies suggests we cannot yet draw any conclusions 

about a common set of distress-linked metabolites, a substantial amount of information can be 

drawn from existing studies to inform future investigations.  

Summarizing across metabolite classes, we identified several notable patterns. First, 

although many studies examined steroids and steroid derivatives, regardless of the type of 
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distress considered or the specific metabolites examined, most associations were null. Even 

investigations of metabolites linked to well-documented pathways underlying stress responses, 

such as cortisol regulation, yielded mixed results. Second, similar inconsistencies across findings 

emerged for several other metabolite classes across the various forms of distress, including 

catecholamine metabolites (e.g., MHPG), serotonin and its metabolites, and amino acids. Third, 

when comparing across distress types, there was suggestive evidence of consistent associations 

between fatty acids and several forms of distress. In the following sections, we unpack each 

finding in more detail and discuss recommendations for future studies. 

4.1 Metabolite findings within and across distress types 

Comparing studies looking at similar forms of distress, we largely observed discordant 

results for most candidate metabolites evaluated. For example, across studies of PTSD and 

anxiety disorders, the most commonly examined metabolite class was steroids and their 

derivatives; however, we did not see consistent patterns of associations even when comparing 

only among studies of anxiety or only among studies of PTSD that looked at the same 

metabolites. Of note, CSF levels of a composite measure, Allo+Pregnan, were negatively 

associated with PTSD severity in two studies among men and women, although no association 

was evident with PTSD case-control status in the same two studies. Somewhat surprisingly, 

cortisol-related metabolites, long identified as part of a stress-linked pathway, were not 

consistently associated with PTSD status or symptoms, nor with anxiety as examined in one 

study. Furthermore, across studies, few individual steroid or their derivative metabolites were 

consistently associated with any forms of distress. Beyond potential differences in design or 

analytic approach (see below for more detailed discussion), one potential explanation is that 

cortisol metabolites specifically may not be independently associated with measures of distress, 
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but dysregulation of the entire pathway could play a key role in stress physiology, as shown in a 

differential network analysis from relevant recent studies that explored this approach (Shutta et 

al., 2021). Similarly, although catecholamines play a central role in sympathetic nervous system 

activation and are heavily implicated in stress response regulation, we failed to see any robust 

links among the studies reviewed here. Moreover, while numerous studies examining subclinical 

distress evaluated associations with candidate carboxylic acids and derivatives, few meaningful 

or consistent associations were found across studies.  

Compared to the body of work linking metabolic markers with clinical depression which 

has identified key pathways related to neurotransmission or energy metabolism (MacDonald et 

al., 2019), studies of subclinical distress are somewhat sparse and current evidence for consistent 

associations is limited. Most studies considered either subclinical depression or subclinical 

symptoms of depression and anxiety. Among studies of subclinical depression, at least 10 

metabolites selected as candidates by two studies (Adachi et al., 2019; Huang et al., 2020) failed 

to demonstrate significant associations. In contrast, the previous systematic review of clinical 

depression found significant associations with eight of these metabolites in two or more studies 

(MacDonald et al., 2019). One possible explanation for differences in findings across these 

different ways of characterizing distress is that metabolite differences evident in individuals 

experiencing severe and clinical levels of depression may not be as potent or detectable among 

individuals with subclinical depression. However, another possibility is that detection rate of 

metabolites could also vary by analytical platforms and biospecimen. Because most studies use 

different platforms and many use different biospecimen, efforts to compare findings across 

studies and forms of distress are further complicated. It is also possible that measures of 

subclinical versus clinical distress capture different underlying constructs depending on what 
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features of the disorder are measured. In that case, biological signatures of these phenotypes may 

not completely overlap, analogous to differences that have been observed between the genetic 

architecture of minimally phenotyped versus clinically defined depression (Cai et al., 2020).   

Several additional issues may be at play regarding the divergence in findings regarding 

metabolite association with clinical versus subclinical depression. Lack of consistency could be 

attributed to the narrow scope of metabolic function captured by studies of candidate 

metabolites; as the field moves forward with agnostic approaches based in larger samples, 

additional insights regarding metabolic differences in pre-clinical and clinical populations are 

likely to emerge. Another issue could be differences in sample sizes and statistical power: large 

studies (i.e., n>1,500) considering subclinical depression with either tryptophan (Huang et al., 

2020) or kynurenine (Altmaier et al., 2013) each produced results consistent with those observed 

in clinical studies of depression (MacDonald et al., 2019). Furthermore, in a recent discovery and 

validation study that was performed across large subclinical datasets (Shutta et al., 2021), 

relationships between depressive status and GABA and serotonin were identified, consistent with 

findings in studies of clinical depression.  

 Other factors could also introduce confounding and noise into metabolomic analyses of 

psychological distress, rendering it more difficult to find consistency across studies. As noted by 

prior reviews (Davison et al., 2018; MacDonald et al., 2019), a key factor is whether studies take 

account of psychotropic medication status. Medications may affect associations of interest 

because their therapeutic effects could induce changes in metabolomic profiles. Of the 39 studies 

included in this review, twelve did not provide specific information about medications that may 

impact distress and metabolomics associations (i.e., psychotropic medications). Nineteen studies 

either excluded all individuals taking psychotropic medication or required a washout period (i.e., 
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asked participants to stop taking their medications) prior to sample collection. The remaining 

eight studies included individuals using psychotropic medications. Of these, two PTSD case-

control studies of veterans’ cohorts consisted entirely of patients using psychotropic medication. 

The remaining six studies focused on antidepressant use and considered the variable as a 

confounder or evaluated its effects in secondary and sensitivity analyses. While these reports 

generally revealed no significant impact of antidepressant use (Black et al., 2017; Mellon et al., 

2019; Wingenfeld et al., 2015), one of the larger studies did find that in a model simultaneously 

adjusting for three different depression indicators, associations with amino acids were strongest 

with antidepressant use compared to depressive symptoms (Huang et al. 2020). In general, 49% 

of studies in this review included currently unmedicated individuals. However, among studies 

that did include individuals who are medicated, information on medication was not consistently 

available, not consistently assessed, and/or not consistently included in analyses. As a result, our 

ability to determine how psychotropic medication use impacts observed associations of 

psychological distress with metabolite alterations is limited. Moreover, psychotropic medication 

use varies widely across different forms of distress, often depending on severity and type of 

distress. Of note, MacDonald et al. (2019) found antidepressant medication status did not 

significantly impact findings of altered metabolite levels related to MDD or BD.  

Although overlap in findings of metabolite alterations across distress types was limited, 

we observed several intriguing patterns that may be potential targets for future follow-up studies. 

First, across the four studies that assessed fatty acyls, a generally consistent picture emerged 

whereby higher levels of fatty acyls were mostly associated with lower psychological distress. Of 

note, all four studies analyzed blood samples from a clinical population. This finding suggests 

not only that reliable metabolite alterations may occur but also that lipids may be an important 
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component of a molecular signature of psychological distress. This inference is supported by 

other work linking aberrations in lipid profiles to clinical depression (Dinoff et al., 2017; Bot et 

al., 2020) as well as to higher risk of cardiovascular diseases (Laaksonen et al., 2016; Xu et al., 

2016). Taken together, these findings may suggest that lipids are involved in the underlying 

pathophysiology linking elevated CMD risk with distress. Nonetheless, because only four studies 

examined fatty acyls and each metabolite was included in at most three studies, more rigorously 

designed follow-up studies are needed to further validate this finding. Second, for some 

metabolite classes such as carboxylic acids and indoles, results were largely divergent across 

distress types. For example, differences in findings about GABA or 5-HIAA across distress types 

could be attributed to both heterogeneity across studies and potential distress-specific signals.  

4.2 Study designs and epidemiologic characteristics 

As noted throughout, the body of work to date is characterized by great heterogeneity in 

study designs and epidemiological characteristics. Such differences can make any direct 

comparisons difficult or unwise. Thus, a key finding from this review is the critical need to 

consider these factors carefully in future studies. Here, we discuss several key aspects of design, 

including sample size, tissue type, selection of metabolites, and measurement of distress. Of 

note, in the current review, studies often differ on many of these elements, making it difficult to 

pinpoint a specific reason for any heterogeneity in findings. 

First, limited sample sizes and consequently insufficient power likely contributed to the 

failure to detect associations in some studies. In brief, among the reviewed studies, those with 

larger versus smaller samples were more likely to find positive associations of various metabolite 

levels with distress. For example, a large sample of middle-aged postmenopausal women found 

higher depressive symptoms levels were associated with higher plasma glutamate levels (Huang 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 25, 2022. ; https://doi.org/10.1101/2022.02.24.22271464doi: medRxiv preprint 

https://doi.org/10.1101/2022.02.24.22271464
http://creativecommons.org/licenses/by-nc-nd/4.0/


 31 

et al., 2020) but this association was not evident in a sample of 152 older community dwelling 

adults (Adachi et al., 2019). On the other end of the spectrum, underpowered studies are also 

more likely to yield more biased estimates and potentially exaggerated effects (Gelman and 

Carlin, 2014). Given most studies in the current review were relatively small, an important focus 

future work will be to implement metabolomic assessments in large, population-based cohorts.  

A second source of heterogeneity relates to variation in tissue type used across studies. 

For example, a number of studies found urinary tryptophan and kynurenine were higher in 

individuals with higher depressive symptoms (Chojnacki et al., 2020) but associations were not 

evident in studies measuring these metabolites in plasma (Adachi et al., 2019). Use of different 

tissue types may also help explain inconsistent findings regarding associations of cortisol and its 

metabolites with distress. Measures of metabolites from different biospecimens could reflect 

different metabolic processes, such as those occurring with acute responses versus chronic 

dysregulation, or in central versus peripheral processes. Furthermore, concentration of amino 

acids in CSF or plasma may be influenced by a variety of activities including diet and metabolic 

processes that control the absorption, transport, degradation and excretion of metabolites, 

whereas concentrations in urine are largely influenced by the rate of excretion of these molecules 

(Fonteh et al., 2007). Thus, if alterations in metabolite levels occur only after chronic exposure 

and reflect long-term functional changes, it might be difficult to observe associations in studies 

considering only acute responses to distress or using different biospecimens. Related, even if the 

same types of biospecimens were analyzed, measurements of basal differences may be less 

reflective of some relative dysregulation compared to change over time, such as the nocturnal-

daytime differences of MHPG levels assessed in a study of PTSD (Mellman et al., 1995). Thus, 

careful attention is needed regarding which biospecimens and measures of metabolites are used. 
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To mitigate variability arising from these differences, studies should also consider matching 

factors such as fasting status, date, and time of blood draw.  

A third source of heterogeneity is the use of different metabolomic platforms, a problem 

present in the field of metabolomics as a whole. For example, in the 47 cohorts represented in the 

COnsortium of METabolomics Studies (COMETS; Yu et al., 2019), the world’s largest 

metabolomics consortium, at least 15 different analytic platforms were used to collect 

metabolomics data. Different platforms do not typically evaluate the same set of metabolites. In 

fact, when comparing the three most commonly used platforms, Yu et al. (2019) found only 

modest overlap in the metabolites measured across them, with only 14 metabolites measured by 

all three. In the set of six studies collecting large-scale metabolomics data that were included in 

the current review, we found four different platforms were used; given limited overlap of 

metabolites evaluated across platforms, comparability across studies is constrained. There is a 

pressing need for research that addresses comparability across metabolomics platforms to 

evaluate more precisely similarities and differences in whether and how various forms of distress 

may be associated with metabolic alterations.  

 A fourth source of heterogeneity is how distress is measured, including the use of 

instruments designed to capture clinical vs non-clinical levels of distress and the assessment of 

formal diagnoses of disorders versus the use of symptom-level gradients. For example, while 

prior studies reported associations between PTSD symptom severity and the combined measure 

of Allo+Pregnan, no such associations were evident in studies comparing PTSD cases and 

controls. Additionally, for PTSD research specifically, the selection of controls remains an 

important question. By definition, PTSD occurs only in the context of experienced trauma. Thus, 

some studies defined the control group as individuals who experienced trauma but not PTSD, 
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while other studies compared individuals meeting clinical criteria for having PTSD with a 

control group of individuals with no trauma history. Determining which control group is most 

appropriate would involve developing an understanding of whether trauma itself, even in the 

absence of any additional psychological distress, might be associated with certain metabolic 

alterations, and whether researchers are primarily interested in dysregulation that occurs in the 

context of trauma.  

A fifth source of heterogeneity is that existing candidate studies use an inconsistent 

approach to metabolite selection. While most studies provided justification for why they 

considered certain sets of metabolites, they did not discuss why these metabolites might be more 

pertinent to the underlying question of interest than other metabolites. The lack of overlap 

between studies overall also suggested that researchers are generally more incentivized to pursue 

novel hypotheses, instead of conducting replication or validation studies. In the omics era, 

reproducibility of findings is increasingly important. An additional challenge with assessing 

reproducibility is the requirement that validation or replication studies consider the variability of 

metabolite concentrations due to both technical measurement error and changes in lifestyle and 

environmental factors,  while using similar study populations and pursuing similar analytic 

approaches (Perng and Aslibekyan, 2020). That said, ultimately it will be important to consider 

associations across highly diverse populations. 

Lastly, differences in analytic method and covariate adjustment may also lead to different 

degrees of bias and interpretations of study results. For example, in the agnostic metabolomic 

study of PTSD, Mellon and colleagues (2019) adjusted for a range of potential confounders, 

including medication use, comorbid depression (to account for the independent effects of PTSD), 

and physiological markers. However, other candidate studies that examined the same metabolites 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 25, 2022. ; https://doi.org/10.1101/2022.02.24.22271464doi: medRxiv preprint 

https://doi.org/10.1101/2022.02.24.22271464
http://creativecommons.org/licenses/by-nc-nd/4.0/


 34 

generally did not adjust for any additional lifestyle or physiological factors. Among the 39 

studies included in the current review, most adjusted for age, sex, or race/ethnicity, while only 

half additionally accounted for biobehavioral factors (e.g., physical activity, diet). Ten studies 

included no covariates, merely reporting between-group differences. Such variation makes it 

challenging to compare estimates across studies. Thus, we must interpret some results as only 

crude observed differences and can consider only a more limited set of studies as a source of 

unbiased estimates of the associations of interest.  

4.4 Recommendations for future studies 

Findings from this systematic review highlight the need for large, systematic studies of 

psychological distress and metabolomics that use a consistent set of methods and platforms. 

More specifically, we make three key methodological recommendations for future studies. First, 

diverse study samples and large, population-based cohorts should be prioritized. While studies in 

our review represent samples from 18 different countries, many are quite small and 74% do not 

report information regarding race or ethnicity. Consequently, considering consistency of findings 

across diverse populations is not currently possible. Moreover, among even the large population 

cohorts to date that do provide racial and ethnic information, all include a majority of non-

Hispanic white participants. Recruiting diverse and representative populations can enhance our 

understanding of natural variations in metabolite levels and pathways related to psychological 

health (Reavis et al., 2021). Studies of preclinical distress have utilized large cohorts such as the 

Nurses’ Health Study II and Women's Health Initiative (Huang et al., 2020), NESDA (Thesing et 

al., 2018a), and the National Health and Nutrition Examination Survey (Liu et al., 2019), but 

community-based cohorts addressing clinical PTSD and anxiety disorders are lacking. To date, 
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studies of PTSD and metabolomics have generally been conducted in small clinical samples, and 

studies of anxiety disorder have not yet been conducted with samples of older adults. 

Second, regarding the measurement of metabolomics, we recommend performing 

agnostic analyses based on large-scale platforms that can provide broader coverage of the 

metabolome. Such analyses allow for simultaneous measurement of hundreds of metabolites in 

plasma or other tissue types. We found only two studies that have utilized this high-throughput 

approach to date. With the introduction of international collaborations such as COMETS (Yu et 

al., 2019), datasets can be aggregated to produce well-powered, large-scale studies linking 

metabolomics profiles not only with disease endpoints but also with social and psychological 

factors. Such datasets can also be used to examine metabolite levels across various tissue types 

and platforms to standardize and optimize collection methods. In addition to expanding the scope 

of metabolomic platforms, we recommend implementing studies that not only identify 

relationships (i.e., discovery) but also validate these relationships using rigorous criteria to 

demonstrate that associations can be replicated. Our recent study provides an example of this; a 

metabolome-wide agnostic approach was used to assess metabolomic profiles associated with 

psychological distress using a discovery and validation design, identifying eleven metabolites 

with validated associations with psychological distress (Shutta et al., 2021). Additionally, given 

high variability in metabolite concentrations due to both technical variations and fluctuations in 

external environments, future studies should carefully assess measurement error and provide 

coefficients of variation in reporting.  

Third, well-powered longitudinal analyses are needed to address causal and mechanistic 

questions. Specifically, future studies should evaluate the chronicity of psychological distress 

and assess whether higher levels of distress are associated with change in metabolites over time 
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as well as with the persistence of metabolomic changes over time. Such studies should carefully 

consider sources of potential confounding, may also consider life course and whether these 

changes are evident only at particular developmental periods (e.g., among older adults), and 

assess if such changes may be modified or “reversed” if distress is appropriately treated or remits 

on its own. 

4.5 Limitations 

There are several limitations to note for this review. First, due to the heterogeneity across 

studies with regard to methods and platforms and biospecimens, we could not conduct a 

quantitative synthesis. Second, because most studies excluded individuals who were taking 

distress-relevant medications, we were unable to assess the role of pharmacological treatment in 

the dysregulation of metabolite levels. Lastly, the scope of this review is constrained by the 

criteria used for study selection. As with most systematic reviews, this limitation impacts the 

generalizability of our findings to other populations, such as children and individuals with 

clinical depression.  

4.6 Conclusion 

 Findings from our systematic review highlight the potential of and need for examining 

metabolite profiles linked to psychological distress beyond clinical depression. Through 

summarizing characteristics, methods, and results of 39 existing studies, the review points to a 

number of important future directions that will make it possible to conduct a more unified, 

systematic analysis of distress metabolomics. Adequately powered population-based longitudinal 

studies with multidimensional measures of distress and large-scale assessments of metabolomics 

are needed to validate existing findings, resolve inconsistencies, and generate novel hypotheses 

for future research.  
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Mellman, 1995 

Biological 

Psychiatry 

Clinical/Vete

ran, United 

States 

Case-

control 

28 NR2 NR NR Urine Candidate 6 PTSD (combat-

related) 

Mississippi Scale for 

Combat-Related PTSD 

(M-PTSD); SCID (DSM-
III-R) 

Maes, 1999 

Neuropsychopha
rmacology 

Clinical 

(survivors of 
traumatic 

events), 

Belgium 

Case-

control 

57 Group 1: 

78.6% 
Goup 2: 

66.7% 

NR Group 

1: 45.8 
Group 

2: 47.6 

Blood 

plasma 
and 

serum 

Candidate 6 PTSD; major 

depression 

CIDI (DSM-III-R); 

HAM-D 

Strawn, 2002 

Life Sciences 

Clinical/Vete

ran, United 

States 

Case-

control 

20 0.0% NR NR Blood 

plasma; 

CSF 

Candidate 1 PTSD SCID (DSM-IIIR) 

Rasmusson, 
2006  

Biological 

Psychiatry 

Clinical, 
United States 

Case-
control 

19 100.0% 53% 
Caucasian, 

21% 

African 
American, 

11% 

Hispanic.  
11% Asian, 

5% 

Askenazi 
Jewish 

31 CSF Candidate 7 PTSD CAPS 

Wheler, 2006 

Journal of 

Clinical 
Endocrinology 

& Metabolism 

Clinical, 

United States 

Case-

control 

20 70.0% NR 42.2 Urine Candidate 15 PTSD Clinician-Administered 

PTSD Scale (CAPS) 

Yehuda, 2009 
Journal of 

Psychiatric 

Research 

Holocaust 
survivors, 

United States 

Case-
control 

73 40.1% 100% 
Jewish 

72.5 Urine Candidate 4 PTSD CAPS 

McFarlane, 2010 

Journal of 

Affective 

Disorders 

Clinical, 

Australia 

Clinical 

follow-up 

48 25.0% NR 34 Urine Candidate 3 PTSD; depression CAPS-II; IES-R; Beck 

Depression Inventory 

(BDI) 

Dikanović, 2011 

Collegium 

Antropologicum 

Clinical/Vete

ran, Croatia 

Case-

control 

100 0.0% NR Range 

30-50 

Urine Candidate 1 PTSD DSM-IV; International 

Classification of 

Diseases (ICD-10) 

Steudte, 2013 

Biological 

Psychiatry 

Clinical, 

Germany 

Case-

control 

78 92.3% NR 38.7 Hair; 

saliva 

Candidate 1 PTSD Munich Composite 

International Diagnostic 
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Interview (CIDI) DSM-
IV; PDS 

Kalinić, 2014 

Croatian medical 
journal 

Clinical/Vete

ran, Croatia 

Cross-

sectional 

62 0.0% NR 47.1 Blood 

serum 

Candidate 12 PTSD; depressive 

symptoms; anxiety 
symptoms 

CAPS; Hamilton 

Anxiety Rating Scale 
(HAM-A); Hamilton 

Depression Rating Scale 

(HAM-D) 

de Vries, 2015 
Journal of 

Affective 

Disorders 

Clinical, 
Netherlands 

Case-
control 

94 70.2% NR 46.3 Blood 
plasma 

Candidate 4 PTSD Structured Clinical 
Interview for DSM- IV 

(SCID DSM-IV); Impact 

of Event Scale-Revised 
(IES-R) 

Wingenfeld, 

2015 
Psychoneuroend

ocrinology 

Clinical/Vete

ran, United 
States 

Cohort 

(cross-
sectional 

analysis) 

613 6.4% 57% White 58.6 Urine Candidate 4 PTSD; depressive 

symptoms 

CAPS, PTSD Checklist 

(PCL) 

Emmerich, 2016 

Journal of 
Neurotrauma 

Military, 

United States 

Case-

control 

120 0.0% 74.2% 

White, 
6.7% 

African 

American, 
10% 

Hispanic, 

7.5% Others 

26.8 Blood 

plasma 

Candidate 8 PTSD PTSD checklist - 

Military (PCL-M) 

Li, 2016 

Genetics and 

Molecular 
Research 

Clinical, 

China 

Case-

control 

120 35.0% 50% 

Chinese 

Han, 50% 
Chinese Li 

38.5 Blood 

plasma 

Candidate 1 PTSD IES-R 

Schür, 2016  

Psychoneuroend

ocrinology 

Military, 

Netherlands 

Prospective 

cohort 

731 9.3% NR 29 Blood 

plasma 

Candidate 1 PTSD symptoms; 

depressive 

symptoms; overall 
mental health 

problems 

Self-Report Inventory for 

PTSD (SRIP);Symptom 

Checklist-90 (SCL-90) 
Dutch version 

Wilker, 2016 
Psychoneuroend

ocrinology 

Clinical (war 
survivors), 

Uganda 

Case-
control 

76 48.7% NR 30.9 Hair Candidate 3 PTSD Posttraumatic Diagnostic 
Scale (PDS) 

Pineles, 2018 
Psychoneuroend

ocrinology 

Clinical, 
United States 

Case-
control 

34 100.0% 32% 
Caucasian, 

41% 

African 
American, 

9% Asian, 

3% 

American 
Indian, 9% 

other 

NR Blood 
plasma 

Candidate 3 PTSD CAPS 
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Breen, 2019 
Human 

Psychopharmaco

logy: Clinical & 
Experimental 

Clinical, 
South Africa 

Case-
control, 

quasi-

experiment 

60 100.0% NR 25.3 Urine Candidate 4 PTSD; depressive 
symptoms 

CAPS; Mini-
International 

Neuropsychiatric 

Interview (MINI)  

Mellon, 2019 

PLOS One 

Clinical/Vete

ran, United 

States 

Case-

control 

165 0.0% 38.8% 

Hispanic, 

61.2% Non-
Hispanic 

32.8 Blood 

plasma 

Agnostic 244 PTSD CAPS; SCID (DSM-IV) 

Rasmusson, 

2019,  
Psychoneuroend

ocrinology 

Clinical, 

United States 

Case-

control 

30 0.0% 43.3% 

Caucasian, 
50% 

African 

American; 
6.7% 

Hispanic/La

tino 

37.2 CSF Candidate 14 PTSD CAPS 

Kim, 2020 
Neurobiology of 

Stress 

Clinical/Vete
ran, United 

States 

Case-
control 

30 0.0% NR 37.2 CSF Candidate 11 PTSD CAPS-IV 

Anxiety 

Eriksson, 1991 

Psychiatry 

Research 

Clinical, 

Sweden 

Case-

control 

34 64.7% NR 34.1 CSF Candidate 3 Panic disorder with 

and without 

agoraphobia 

SCID (DSM-III);  

Hamilton Rating Scale 

for Anxiety (HRSA) 

Garvey, 1995 

Psychiatry 

Research 

Clinical, 

United States 

Cases only 45 53.0% NR 45 Urine Candidate 2 Generalized anxiety 

disorder 

SCID (DSM-IIIR); 

HRSA 

Yamada, 2000 

Psychiatry 

Research 

Clinical, 

Japan 

Case-

control 

238 66.8% NR 37.4 Saliva Candidate 1 Anxiety disorders 

[panic disorder, 

general anxiety 

disorder, adjustment 
disorder with anxiety  

or adjustment 

disorder with mixed 
anxiety and 

depressed mood] 

 SCID (DSM-IV); HAM-

A 

Green, 2006 
European 

Neuropsychopha

rmacology 

Clinical, 
Israel 

Case-
control 

49 57.4% NR 33.6 Red 
blood 

cells 

candidate 22 Social anxiety 
disorder 

MINI (DSM-IV); 
Liebowitz Social 

Anxiety Scale (LSAS), 

Hebrew version 

Dušková, 2015 
Physiological 

Research 

Clinical, 
Czech 

Republic 

Case-
control 

70 0.0% NR 30.5 Blood 
plasma 

Candidate 30 Depressive disorders; 
specific anxiety 

disorder (phobia, 

panic disorder, OCD, 
GAD, mixed anxiety 

depressive disorder, 

acute reaction to 

ICD-10; MINI 
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stress, adjustment 
disorder, and PTSD) 

Black, 2017 

Psychological 
Medicine 

Population-

based cohort, 
the 

Netherlands 

Cohort 

study 

2841 66.4% NR 41.9 Blood 

plasma 

Candidate 2 Current or remitted 

depressive disorder 
or anxiety disorder:  

depressive disorders 

(major depressive 

disorder or 
dysthymia) and 

anxiety disorders 

(social phobia, 
generalized anxiety 

disorder, panic 

disorder and/or 
agoraphobia) 

CIDI version 2.1; 

Inventory of Depressive 
Symptomatology (IDS-

SR30); Beck Anxiety 

Inventory (BAI);Fear 

Questionnaire (FQ); Life 
Chart Interview (LCI) 

Thesing, 2018a 

Psychoneuroend

ocrinology 

Population-

based cohort, 

the 
Netherlands 

Cohort 

study 

2912 66.4% NR 41.9 Blood 

plasma 

Candidate 4 Current or remitted 

depressive disorder 

or anxiety disorder:  
depressive disorders 

(major depressive 

disorder or 
dysthymia) and 

anxiety disorders 

(social phobia, 
generalized anxiety 

disorder, panic 

disorder and/or 
agoraphobia) 

CIDI, version 2.1; IDS-

SR30; BAI: FQ; LCI 

Subclinical distress 

Sothmann, 1984 

Psychosomatic 
Medicine 

Occupational

(white collar 
workers)/non

clinical, 

South Korea 

Cross-

sectional 

34 0.0% NR Range 

23-46 

Urine Candidate 3 Everyday stess 

(anxiety and 
depression) 

Minnesota Multiphasic 

Personality Inventory 
(MMPI) anxiety and 

depression scales 

Barbaccia, 2000,  

Psychoneuroend

ocrinology 

Population 

cohort, Italy 

Case-

control 

based on 
asymptomat

ic and 

symptomati

c groups 

25 100.0% NR 52.3 Blood 

plasma 

Candidate 13 Depression and 

anxiety-related 

symptoms 

Zung Self-administered 

Depression Scale 

(ZSDS); Cornell’s 
Dysthymia Rating Scale 

(CDRS) 

Lee, 2011 

Journal of 

Preventive 
Medicine and 

Public Health 

Occupational

(hospital 

employees)/n
onclinical, 

South Korea 

Cross-

sectional 

97 61.9% NR 34.1 Urine Candidate 2 Depression, anxiety, 

and stress symptoms 

DASS 
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Altmaier, 2013 
Psychoneuroend

ocrinology 

Population-
based cohort, 

Germany 

Cohort 
study 

1502 51.8% NR 58.6 Blood 
serum 

Agnostic 668 Type D personality; 
depressive 

smyptoms; 

generalized anxiety 
disorder 

Type D Scale-14 (DS-
14);PHQ-9;GAD-7 

Adachi, 2018 

2018 Japan 

Geriatrics 
Society 

Population-

based, Japan 

Cross-

sectional 

119 63.9% NR 76.3 Blood 

plasma 

Candidate 44 Depressive symptoms Geriatric Depression 

Scale-15 (GDS-15) 

Thesing, 2018b 

Journal of 
Psychosomatic 

Research 

Population-

based cohort, 
the 

Netherlands 

Cohort 

study 

2912 66.4% NR 41.9 Blood 

plasma 

Candidate 2 Cognitive reactivity 

(based on symptoms 
of depression and 

anxiety) 

 Leiden Index of 

Depression Sensitivity-
Revised (LEIDS-R) and 

the Anxiety Sensitivity 

Index (ASI)  

Liu, 2019 

Journal of 

Affective 

Disorders 

Population-

based, 

United States 

Cross-

sectional 

2136 52.0% 70% Non-

Hispanic 

White; 

10.7% Non-
Hispanic 

Black; 8.6% 

Mexican 
American; 

10.7% 

Other 

49.6 Blood 

plasma 

Candidate 5 Depressive symptoms PHQ-9 

Chojnacki, 2020 

Nutrients 

Population-

based, 

Poland 

Case-

control 

90 66.7% NR 64 Urine Candidate 8 Depressive symptoms HAM-D 

Hashemi, 2020 

Iran Journal of 

Psychiatry 

University 

students, Iran 

Case-

control 

82 100.0% NR 23.3  Red 

Blood 

Cells  

Candidate 9 Depression, anxiety, 

and stress symptoms 

21-item Depression, 

Anxiety, and Stress Scale 

(DASS-21) 

Huang, 2020 
Molecular 

Psychiatry 

Propspective 
cohorts, 

United States 

Cross-
sectional 

2469 100.0% 18.5% non-
White 

66.4 Blood 
plasma 

Candidate 46 Depression status  Presence of elevated 
current depressive 

symptoms (CESD-6 and 

CESD-10), history of 
depression (based on 

self-report of physician 

diagnosis) or 
antidepressant use. 

Szabo de 

Edelenyi, 2020 

European 
Journal of 

Nutrition 

Population-

based cohort, 

France 

Case-

control 

891 100.0% NR Range 

45-65 

Urine Candidate 1 Depressive symptoms CES-D-20 

1 Number of metabolite assessments 
2 NR: not reported 
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Figure 1. Diagram showing the process of study selection, following the PRISMA guidelines.   
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Figure 2. Trend of publication examining psychological distress and metabolic markers.  
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Figure 3. Distribution of HMDB metabolite classes in studies included in the current review. 
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Figure 4. Comparison of associations between psychological distress and metabolites across studies, within each distress type. 

Metabolites examined in at least two studies within each distress category are shown.  
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Figure 5. Comparison of associations between psychological distress and metabolites across distress types. Metabolites examined in 

at least two studies across distress categories are shown.  
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