

INVESTIGATING AUTOMATIC SPEECH EMOTION RECOGNITION FOR CHILDREN WITH AUTISM SPECTRUM DISORDER IN INTERACTIVE INTERVENTION SESSIONS WITH THE SOCIAL ROBOT KASPAR

Manuel Milling¹, Katrin D. Bartl-Pokorny^{1,2,3}, Björn W. Schuller^{1,4}

 ¹EIHW – Chair of Embedded Intelligence for Health Care and Wellbeing, University of Augsburg, Augsburg, Germany
²Research Unit iDN – interdisciplinary Developmental Neuroscience, Division of Phoniatrics, Medical University of Graz, Graz, Austria
³Division of Physiology, Otto Loewi Research Center, Medical University of Graz, Graz, Graz, Austria
⁴GLAM – Group on Language, Audio, & Music, Department of Computing, Imperial College London, London, United Kingdom

ABSTRACT

In this contribution, we present the analyses of vocalisation data recorded in the first observation round of the European Commission's Erasmus Plus project "EMBOA, Affective loop in Socially Assistive Robotics as an intervention tool for children with autism". In total, the project partners recorded data in 112 robot-supported intervention sessions for children with autism spectrum disorder. Audio data were recorded using the internal and lapel microphone of the H4n Pro Recorder. To analyse the data, we first utilise a child voice activity detection (VAD) system in order to extract child vocalisations from the raw audio data. For each child, session, and microphone, we provide the total time child vocalisations were detected. Next, we compare the results of two different implementations for valence- and arousal-based speech emotion recognition, thereby processing (1) the child vocalisations detected by the VAD and (2) the total recorded audio material. We provide average valence and arousal values for each session and condition. Finally, we discuss challenges and limitations of child voice detection and audio-based emotion recognition in robot-supported intervention settings.

This publication was supported in part by the Erasmus Plus project of European Commission: EMBOA, Affective loop in Socially Assistive Robotics as an intervention tool for children with autism, contract no 2019-1-PL01- KA203-065096. This publication reflects the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information contained therein. This publication is distributed free of charge.

This report is distributed free of charge under Creative Commons License CC BY

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

1. Introduction

Children with autism spectrum disorder (ASD; OMIM 209850) have problems in social interactions and show restricted, repetitive patterns of behaviour, interests, or activities (American Psychiatric Association, 2013). Previous studies revealed that children with ASD usually prefer interactions with human-like looking robots to interactions with humans and therefore benefit from robot-based interventions in order to improve their socio-communicative skills (Bartl-Pokorny et al., 2021). To date, robots used in intervention settings with children with ASD need lots of manual control by therapists as they are not able to automatically and in real time respond to a child's needs and emotional states. To overcome these limitations of social robots in the future, current research approaches focus on the implementation of automatic emotion recognition systems.

The EU Erasmus+ project "Affective loop in Socially Assistive Robotics as an intervention tool for children with autism" (https://emboa.eu), conducted by an international and multidisciplinary consortium of researchers from Gdansk University of Technology (GUT; Poland), University of Hertfordshire (UH; United Kingdom), Istanbul Teknik Universitesi (ITU; Turkey), Yeditepe University Vakif (YT; Turkey), the Macedonian Association for Applied Psychology (MAAP; North Macedonia), and University of Augsburg (UA; Germany), focuses on the practical evaluation of the use of state-of-the-art emotion recognition technologies in robot-supported interventions and aims to develop guidelines for the application of such technologies in intervention settings.

The project team collects data from multiple observation channels (e.g., vocalisations, eye movements, facial expressions, physiological parameters) during intervention sessions in which children with ASD are interacting with the social robot Kaspar (<u>https://www.herts.ac.uk/kaspar</u>). Based on these data, the researchers aim to evaluate each observation channel in terms of its information gain for automatic emotion recognition. This report focuses on the analyses of vocalisation data recorded in the first observation round.

The report is organised as follows: section 2 describes the available audio data, section 3 provides a description of the utilised child voice activity detection (VAD) system and results on detected vocalisations, section 4 describes the applied speech emotion recognition model (SER) and the detected valence and arousal values. Section 5 sums up the results and discusses revealed challenges and limitations of automatic child voice detection and audio-based emotion recognition in robot-supported intervention settings.

2. Methods

2.1. Audio data

The EMBOA team received ethics approval by Gdansk University of Technology/Poland for conducting the study. The inclusion criteria for the present study were: (1) Children were diagnosed with ASD by a mental health professional in the country of living, (2) children were recruited in institutions in the partner countries North Macedonia, Turkey, Poland, and UK, (3) children had already received treatments for ASD in their caregiving institutions or were newly diagnosed and had not received treatments before inclusion in the study, (4) children were between 2 and 12 years old, (4) the children's legal guardians signed an informed consent form for participation in the study. As there were no further inclusion criteria defined, the sample was heterogeneous regarding amongst others gender, exact age, language skills, and comorbidities. There were neither clinical assessments nor follow-up investigations done with the children in the framework of the present study.

The participating children with ASD were recorded during intervention sessions that were supported by the social robot Kaspar. During these interventions, at least one researcher and one parent were together with the child and the robot in a room. The audio data were recorded from the partners at GUT/Poland, ITU-YU/Turkey, MAAP/North Macedonia, and UH/United Kingdom using the internal and lapel microphone of the H4n Pro Recorder. For most of the recorded robot-supported intervention sessions, both the recordings from the internal and from the lapel microphone are available. Recordings with the internal microphone of four sessions of MAAP/North Macedonia and recordings with the lapel microphone of all fourteen sessions of ITU-YU/Turkey were excluded from analysis due to insufficient audio quality. Table 1 provides an overview of the final set of analysable audio recordings. The children with ASD were recorded in up to eleven intervention sessions, as listed in Table 2. The minimum number of recorded intervention sessions should be 2 for all children; the actual number of recorded sessions depended on the individual therapeutic needs of the children, the family's willingness to continue participation, and the achievement of the project goals regarding sample size. The children recorded by GUT/Poland were 6 years old, the children recorded by ITU-YU/Turkey were between 6 and 10 years old, the children recorded by MAAP/North Macedonia were between 2 and 6 years old, and the children recorded by UH/United Kingdom were 11 to 12 years old. All data were recorded in the years 2020 and 2021. The number of included children was in conformity with the EMBOA project protocol approved by the funding agency.

We are aware that certain systematic differences between the data recorded from the different partners such as age, mother tongue, individual language skills of the children, room acoustics, etc. may cause bias. Therefore, we report quantitative results separately for individual children and/or participating sites and discuss qualitative differences in the data.

<u>Table 1:</u> Audio data included in analysis. GUT = Gdansk University of Technology, Poland; ITU-YU = Istanbul Teknik Universitesi and Yeditepe University Vakif, Turkey; MAAP = Macedonian Association for Applied Psychology, North Macedonia; UH = University of Hertfordshire, United Kingdom.

Partner	No. sessions recorded with	No. sessions recorded with
	internal microphone	lapel microphone
GUT/Poland	7	6
ITU-YU/Turkey	15	0
MAAP/North Macedonia	70	74
UH/United Kingdom	16	16
Sum	108	96

<u>Table 2</u>: Availability of analysable audio data for each microphone type and session. GUT = Gdansk University of Technology, Poland; ITU-YU = Istanbul Teknik Universitesi and Yeditepe University Vakif, Turkey; MAAP = Macedonian Association for Applied Psychology, North Macedonia; Mic. = microphone; NA = not available/insufficient audio quality, no. = number, rec. = recorded, UH = University of Hertfordshire, United Kingdom.

Mic. type	Sessi	Total no.	Children	Children	Children	Children
	on	of children	rec. by	rec. by	rec. by	rec. by
			GUT/Pola	ITU-	MAAP/No	UH/Unite
			nd	YU/Turke	rth	d Kingdom
				у	Macedonia	
internal	1	31	2	13	11	5
internal	2	20	3	2	11	4
internal	3	16	2	NA	10	4
internal	4	11	NA	NA	8	3
internal	5	6	NA	NA	6	NA
internal	6	6	NA	NA	6	NA
internal	7	4	NA	NA	4	NA
internal	8	5	NA	NA	5	NA
internal	9	4	NA	NA	4	NA
internal	10	4	NA	NA	4	NA
internal	11	1	NA	NA	1	NA
lapel	1	18	2	NA	11	5
lapel	2	17	2	NA	11	4
lapel	3	16	2	NA	10	4
lapel	4	12	NA	NA	9	3
lapel	5	6	NA	NA	6	NA
lapel	6	6	NA	NA	6	NA
lapel	7	6	NA	NA	6	NA
lapel	8	5	NA	NA	5	NA
lapel	9	5	NA	NA	5	NA
lapel	10	4	NA	NA	4	NA
lapel	11	1	NA	NA	1	NA

2.2. Child voice activity detection

Following Milling et al. (2022), we apply a deep learning-based voice activity detection (VAD) system specifically trained for vocalisations of children with ASD to extract child vocalisations, as we expect the child vocalisations to contain the most information about the children's affective states. The used VAD system has been trained and evaluated on data recorded under similar conditions as the EMBOA data, namely in the framework of the European Commission's DE-ENIGMA project (Shen et al., 2018; <u>https://cordis.europa.eu/project/id/688835</u>; <u>https://de-enigma.eu</u>). For the intervention sessions in DE-ENIGMA, the robot Zeno was used. The model was trained on audio data from the British study arm of the project containing audio data from 84 robot-supported intervention sessions of 25 English-speaking children with ASD from the United Kingdom, having a total duration of more than 17 hours. For the experiments reported by Milling et al. (2022), the data was partitioned into train, development, and test partitions in a speaker-independent way. In total, this data contains more than 2 hours of annotated child vocalisations (partially overlapping with other vocalisations). The system was trained to predict the probability

of a child vocalisation being present in a given 10-millisecond-long audio frame based on so-called low-level descriptors (LLDs) of the said audio frame. LLDs are a common set of characteristics, which can be extracted from an audio signal, including features such as fundamental frequency (F0), variations in the volume (shimmer), and variations in the fundamental frequency (jitter). The deep learning approach consists of a two-layer bi-directional long short-term memory (Bi-LSTM) recurrent neural network (RNN), followed by a dense layer, which is designed to allow information flow for several consecutive audio frames. Different thresholds for the predicted probability of the system allow for the adjustment of trade-off between sensitivity and specificity. For inference, a threshold corresponding to the equal-error-rate (EER) was chosen, i.e., equal values of true positive rate and false positive rate. Finally, the VAD system summarises frame-level predictions with a detection event if the EER threshold is reached for at least 0.25 s of a 1-s-chunk. More details on the VAD are given in Milling et al. (2022). The child VAD system has a reported EER of 0.381 and an area-under-the-curve of 0.662 on the DE-ENIGMA corpus. However, even though the recording conditions of both projects appear rather similar to each other, it is not clear whether this performance translates to the EMBOA data, as a lack of systematic vocalisation annotations prevents a thorough evaluation of the model.

2.3. Speech emotion recognition

In order to estimate emotions from speech we use a deep learning model developed, trained, and evaluated by Milling et al. (2022), which is again based on the same DE-ENIGMA data and partitioning of British children, as described for the VAD component. The models are designed for a continuous speech emotion recognition (SER) task and we apply correspondingly trained models for two types of tasks: 1) each 1 s chunk from the original audio recording is used for the continuous SER task and 2) only 1 s chunks, for which a child vocalisation was detected, are being used for the continuous SER task. Within each task, for each relevant audio chunk, we then extract 88 functional features of the extended Geneva Minimalistic Acoustic Parameter Set (eGeMAPS; Eyben et al., 2015) from 1 s audio chunks. The features are then fed into a model consisting of two RNN layers with LSTM cells and a hidden layer size of 128 units, a feed-forward layer with 128 neurons, a rectified linear unit (ReLU) activation and a dropout rate of 0.3, and a final feed-forward layer with a single neuron, predicting the valence values (and arousal values, respectively). Reported performances of the models achieve up to 0.168 concordance correlation coefficient (CCC) on the test partition of the DE-ENIGMA corpus. More details on the SER system and performance values can be found in Milling et al. (2022).

3. Results

3.1. Detected child vocalisations

A general overview of detected child vocalisations is provided in Table 3. Table 4 groups child voice activity detections by the session number in a consecutive series of sessions with partly identical children. Detailed session-wise results can be found in Table A.1. of the annexe. The proportion of time with detected child vocalisations per session is similar in the internal and lapel microphone condition (Table 3). The proportion of time with detected child vocalisations for children recorded by MAAP/North Macedonia (Table 4); we can neither observe an obvious increase nor decrease in terms of detected vocalisations with the children's increasing experience with robot-supported intervention.

<u>Table 3:</u> Overview of results on child voice activity detection. GUT = Gdansk University of Technology, Poland; ITU-YU = Istanbul Teknik Universitesi and Yeditepe University Vakif, Turkey; MAAP = Macedonian Association for Applied Psychology, North Macedonia; UH = University of Hertfordshire, United Kingdom.

Mic	Ava	Session	Proporti	Time	GUT/P	ITU-	MAAP/	UH/Uni
type	ilabl	duration;	on of	with	oland -	YU/Tur	North	ted
	e	mean ±	time	detected	Proporti	key -	Macedo	Kingdo
	sess	std [s]	with	child	on of	Proporti	nia -	m -
	ions		detected	vocalisat	time	on of	Proporti	Proporti
			child	ions per	with	time	on of	on of
			vocalisat	session;	detected	with	time	time
			ions per	mean ±	child	detected	with	with
			session;	std [s]	vocalisat	child	detected	detected
			mean ±		ions per	vocalisat	child	child
			std [%]		session;	ions per	vocalisat	vocalisat
					mean ±	session;	ions per	ions per
					std [%]	mean ±	session;	session;
						std [%]	mean ±	mean ±
							std [%]	std [%]
internal	108	654 ± 240	3.9 ± 2.6	23 ± 14	9.7 ± 5	1.5 ± 0.5	3.8 ± 1.5	4 ± 2.3
lapel	96	613 ± 202	3.3 ± 2.4	19 ± 13	5.1 ± 6.7	NA	3 ± 1.3	3.6 ± 2.8

<u>Table 4:</u> Results on child voice activity detection for MAAP/North Macedonia data recorded with the internal microphone with respect to the session number in a consecutive series of sessions.

Session No.	Available	Session	Proportion of time	Time with detected
	children	duration; mean	with detected child	child vocalisations;
		\pm std [s]	vocalisations; mean	mean ± std [s]
			± std [%]	
1	11	568 ± 254	3.6 ± 1.8	19 ± 10
2	11	577 ± 152	4.2 ± 1.2	24 ± 9
3	10	585 ± 80	3.5 ± 1.0	21 ± 7
4	8	776 ± 335	2.5 ± 0.8	18 ± 4
5	6	621 ± 113	4.6 ± 1.6	29 ± 13
6	6	663 ± 85	4.5 ± 1.2	30 ± 11
7	4	694 ± 46	3 ± 0.5	21 ± 4
8	5	619 ± 100	4 ± 2.2	25 ± 15
9	4	644 ± 108	4.7 ± 1.1	31 ± 11
10	4	674 ± 77	4.2 ± 1.3	28 ± 9

3.2. Predicted valence and arousal values

We apply the SER model with and without previous VAD-based pre-processing, as introduced in section 2.3, on each recorded session. Session-wise averaged emotion predictions are reported in Table A.2 of the annexe and are further discussed below.

4. Discussion

The aim of the present study was to investigate the applicability of existing SER approaches in robot-supported intervention sessions with children with ASD. For this, we deployed a publicly available pipeline of a child VAD and a SER model, both specifically trained for children with ASD. Both the VAD system and the SER system were developed based on data from the DE-ENIGMA project that also focused on robot-supported intervention for children with ASD.

For the present study, the VAD system raises a – partially limited – amount of detection events for the data at hand. The most impactful limitation of our study is that we cannot evaluate our models on the investigated data, collected within the EMBOA project, as annotations for vocalisations and emotions are lacking. This hampers the investigation of potential effects of different languages, different ages, background noise, etc. on voice detection. However, some observations can be noted based on the raw predictions of the network. First, the amount of detected events depends on the utilised microphone. In general, it seems that the internal microphone leads to a larger amount of detection events compared to the lapel microphone (i.e., 3.9 ± 2.6 vs 3.3 ± 2.4 ; Table 3), which was surprising as we initially hypothesised that the lapel microphone recordings would allow us to detect more vocalisations compared to the internal microphone recordings. For GUT/Poland data, actually the opposite was the case: The VAD system detected longer child vocalisation intervals in the internal microphone recordings.

In an unstructured, exemplary analysis of the recording based on manual listening, we noticed that in the internal microphone recordings the voices of the other people in the room were considerably softer than the child's voice. In comparison, the voices of the robot and the researcher as well as background noise in general was much louder in the lapel microphone recordings which is a potential reason for fewer detected child vocalisation intervals. When listening to parts of the audio recordings and comparing them with the automatically detected child vocalisation times, we noticed a number of further challenges for the VAD system: In some of the recordings, the audio recording levels of the microphone were too low which seems to correlate with no or only very few detected child vocalisations. As automatic emotion recognition cannot benefit from such recordings, future studies need to carefully check the microphone settings before recording robotsupported intervention sessions. In some cases, the microphone position resulted in further difficulties; e.g., some of the children did not accept the lapel microphone on their clothes and sometimes the clothes or table where the microphones were positioned on produced noise, which was partly louder than the child's voice and seems to lower the detected child vocalisation time. In some of the recordings, potentially confounding factors related to room acoustics (e.g., ITU-YU/Turkey data were partly recorded in a room with long reverberation time) and background noise (e.g., in some of the MAAP/North Macedonia recordings, sound originating from chairs, tables, and doors is hearable) occurred. Overall, detected child vocalisation times seemed to be shorter in recordings with more people in a room compared to recordings with fewer overlay of voices (e.g., MAAP/North Macedonia data compared to GUT/Poland data). We also noticed that an apparent challenge for the VAD system is the detection of child vocalisation in the form of crying, which might be related to the limited number of crying instances in the original data. Similar observations can be reported for imitation of animal sounds and singing songs. Surprisingly, the VAD system detected relatively few child vocalisation events in the UH/United Kingdom recordings despite the children's seemingly advanced language skills. It needs to be mentioned here that the children recorded by UH/United Kingdom were older than most of the children included in the DE-ENIGMA training material, which might have a negative effect on the child-specific VAD system.

As suggested by Milling et al. (2022), the performance of VAD systems can have an impact on the estimation of affective states based on audio recordings. This hypothesis is supported by the clear differences in valence and arousal predictions in Table 5, when comparing the average absolute difference between VAD-based SER predictions and the non-VAD-based SER predictions, in particular for the arousal case. It can further be reported that similarly to the VAD task, the choice of microphones seems to have an additional impact on the SER predictions, even though the observed effect is smaller compared to the differences caused by the VAD-based pre-processing.

<u>Table 5:</u> Average absolute deviation (μ) and standard deviation of absolute deviations (std) of affect prediction derived from Table A.1. Results are based on the same sessions respectively and compare pre-processing with (VAD-based) and without (non-VAD-based) a VAD system (of the identical microphone recording), as well as recordings from the lapel and the internal microphone (with identical VAD-based or non-VAD-based pre-processing).

Comparison	Arousal ($\mu \pm std$)	Valence ($\mu \pm std$)
VAD-based vs. non-VAD-based	0.208 ± 0.113	0.055 ± 0.045
internal vs. lapel	0.086 ± 0.068	0.047 ± 0.056

However, the expressiveness of the SER models for the investigated data set has to be interpreted with caution as only some children in the EMBOA project have the same language and cultural background as the children based on which the model was trained, which potentially hinders the generalisation capabilities of said models. Additionally, the children in the EMBOA project were on average older than the children who provided the training data. To improve the reliability of the VAD and SER systems, the existing models, which were trained on the DE-ENIGMA data set, may be adapted to the EMBOA recording settings (e.g., acoustic room conditions, microphone type, specific age and language of children, etc.) based on annotated parts of the EMBOA data. Note that all reported observations on data quality and corresponding impact on model performance in this section rely on preliminary analyses and have not been quantitatively evaluated due to a lack of systematic annotations. Still, we gained a number of important insights with regard to VAD and SER that will help to formulate guidelines for the use of audio-based emotion recognition techniques in robot-supported intervention settings. Such guidelines will allow future studies to optimise their methodologies with regard to an improved audio-based automatic recognition of children's emotional states in intervention settings. This will in turn help the development towards a social robot, which is capable of automatically reacting to a child's current needs and could therefore enhance the child's motivation to interact with the robot, potentially resulting in positive influences on the intervention success for children with ASD. A prerequisite for this will further be more robust emotion recognition models, being available for different language, culture, gender, and age groups.

Acknowledgements

We are very grateful to all children, families, and healthcare professionals for their participation in our study. We want to thank all project partners for data acquisition. Furthermore, we thank Alice Baird and Shuo Liu for consultancy in data analysis.

This publication was supported in part by the European Commission's Erasmus Plus project "EMBOA, Affective loop in Socially Assistive Robotics as an intervention tool for children with autism", contract no 2019-1-PL01- KA203-065096.

The European Commission's support for the production of this publication does not constitute an endorsement of the contents which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information contained therein.

This report is distributed free of charge under Creative Commons License CC BY.

Bibliography

- American Psychiatric Association, "Diagnostic and Statistical Manual of Mental Disorders (DSM-5)", Arlington, VA: APA, 2013.
- K. D. Bartl-Pokorny, M. Pykała, P. Uluer, D. Erol Barkana, A. Baird, H. Kose, T. Zorcec, B. Robins, B. W. Schuller, A. Landowska, "Robot-Based Intervention for Children With Autism Spectrum Disorder: A Systematic Literature Review," in IEEE Access, vol. 9, pp. 165433-165450, 2021, doi: 10.1109/ACCESS.2021.3132785.
- F. Eyben, K. R. Scherer, B. W. Schuller, J. Sundberg, J. André, et al., "The Geneva Minimalistic Acoustic Parameter Set (GeMAPS) for Voice Research and Affective Computing," in IEEE Transactions on Affective Computing, vol. 7, no. 2, pp. 190-202, 2015.
- M. Milling, A. Baird, K. D. Bartl-Pokorny, S. Liu, A. M. Alcorn, J. Shen. T, Tavassoli. E, Ainger. E, Pellicano, M. Pantic, N. Cummins, B. W. Schuller., "Evaluating the Impact of Voice Activity Detection on Speech Emotion Recognition for Autistic Children," in Frontiers in Computer Science, vol. 4, 837269, 2022, doi: 10.3389/fcomp.2022.837269.
- J. Shen, E. Ainger, A. Alcorn, S. B. Dimitrijevic, A. Baird, P. Chevalier, et al., "Autism Data Goes Big: A Publicly-accessible Multi-modal Database of Child Interactions for Behavioural and Machine Learning Research" International Society for Autism Research Annual Meeting, Kansas City/MO, 2018.

Annexe

<u>Table A.1</u>: Detailed session-wise results on child voice activity detection. GUT = Gdansk University of Technology, Poland; ITU-YU = Istanbul Teknik Universitesi and Yeditepe University Vakif, Turkey; MAAP = Macedonian Association for Applied Psychology, North Macedonia; UH = University of Hertfordshire, United Kingdom.

ID	Total recording	Detection	Total detection
	length [s]	proportion	time [s]
GUT-C02-S01-internal	5	0.200	1
GUT-C02-S01-lapel	5	0.200	1
GUT-C03-S01-internal	35	0.114	4
GUT-C03-S01-lapel	35	0.029	1
GUT-C01-S02-internal	802	0.042	34
GUT-C02-S02-internal	580	0.070	41
GUT-C02-S02-lapel	580	0.017	10
GUT-C03-S02-internal	824	0.078	64
GUT-C03-S02-lapel	824	0.017	14
GUT-C01-S03-internal	805	0.053	43
GUT-C01-S03-lapel	805	0.016	13
GUT-C02-S03-internal	608	0.120	73
GUT-C02-S03-lapel	608	0.025	15
ITU-YU-C01-S01-internal	1814	0.017	32
ITU-YU-C02-S01-internal	821	0.018	15
ITU-YU-C03-S01-internal	605	0.026	16
ITU-YU-C04-S01-internal	644	0.020	13
ITU-YU-C01-S02-internal	937	0.018	17
ITU-YU-C03-S02-internal	752	0.015	11
ITU-YU-C05-S01-internal	713	0.022	16
ITU-YU-C06-S01-internal	933	0.014	13
ITU-YU-C07-S01-internal	997	0.006	6
ITU-YU-C08-S01-internal	713	0.011	8
ITU-YU-C09-S01-internal	832	0.010	8
ITU-YU-C10-S01-internal	1058	0.012	13
ITU-YU-C11-S01-internal	897	0.007	6
ITU-YU-C12-S01-internal	902	0.016	14
ITU-YU-C13-S01-internal	1033	0.011	11
MAAP-C01-S01-internal	885	0.023	20
MAAP-C01-S01-lapel	885	0.029	26
MAAP-C01-S02-internal	656	0.050	33
MAAP-C01-S02-lapel	656	0.038	25
MAAP-C01-S03-internal	665	0.054	36
MAAP-C01-S03-lapel	665	0.059	39
MAAP-C01-S04-internal	515	0.025	13
MAAP-C01-S04-lapel	515	0.027	14
MAAP-C02-S01-internal	277	0.014	4
MAAP-C02-S01-lapel	277	0.040	11
MAAP-C02-S02-internal	436	0.023	10
MAAP-C02-S02-lapel	436	0.014	6
MAAP-C02-S03-internal	457	0.046	21

MAAP-C02-S03-lapel	457	0.028	13
MAAP-C02-S03-iapei MAAP-C03-S01-internal	904	0.028	22
MAAP-C03-S01-Internal MAAP-C03-S01-lapel	904	0.024	17
MAAP-C03-S01-iaper MAAP-C03-S02-internal	552	0.045	25
MAAP-C03-S02-Internal MAAP-C03-S02-lapel	552	0.043	9
MAAP-C03-S02-internal	600	0.018	17
MAAP-C03-S03-Internal MAAP-C03-S03-lapel	600	0.028	25
MAAP-C03-S04-internal	596	0.042	23
MAAP-C03-S04-Internal MAAP-C03-S04-lapel	596	0.029	17
MAAP-C03-S05-internal	686	0.029	18
MAAP-C03-S05-Internal MAAP-C03-S05-lapel	686	0.020	22
MAAP-C03-S06-internal	507	0.032	20
MAAP-C03-S06-lapel	507	0.039	18
MAAP-C03-S00-iaper MAAP-C03-S07-internal	638	0.036	10
	638	0.022	7
MAAP-C03-S07-lapel			
MAAP-C03-S08-internal	619	0.061	38
MAAP-C03-S08-lapel	619	0.074	46
MAAP-C03-S10-internal	789	0.023	18
MAAP-C03-S10-lapel	789	0.018	14
MAAP-C04-S01-internal	854	0.012	10
MAAP-C04-S01-lapel	854	0.027	23
MAAP-C04-S02-internal	453	0.042	19
MAAP-C04-S02-lapel	453	0.033	15
MAAP-C04-S03-internal	578	0.043	25
MAAP-C04-S03-lapel	578	0.022	13
MAAP-C04-S04-internal	665	0.024	16
MAAP-C04-S04-lapel	665	0.038	25
MAAP-C04-S06-internal	697	0.047	33
MAAP-C04-S06-lapel	697	0.044	31
MAAP-C04-S07-internal	693	0.029	20
MAAP-C04-S07-lapel	693	0.020	14
MAAP-C04-S08-internal	548	0.016	9
MAAP-C04-S08-lapel	548	0.026	14
MAAP-C04-S10-internal	643	0.054	35
MAAP-C04-S10-lapel	643	0.033	21
MAAP-C05-S01-internal	655	0.034	22
MAAP-C05-S01-lapel	655	0.029	19
MAAP-C05-S02-internal	742	0.039	29
MAAP-C05-S02-lapel	742	0.020	15
MAAP-C05-S03-internal	610	0.021	13
MAAP-C05-S03-lapel	610	0.016	10
MAAP-C05-S04-internal	773	0.023	18
MAAP-C05-S04-lapel	773	0.018	14
MAAP-C05-S05-internal	560	0.066	37
MAAP-C05-S05-lapel	560	0.055	31
MAAP-C06-S01-internal	681	0.059	40
MAAP-C06-S01-lapel	681	0.053	36
MAAP-C06-S02-internal	719	0.031	22
MAAP-C06-S02-lapel	719	0.038	27

MAAP-C06-S03-internal	683	0.044	30
MAAP-C06-S03-lapel	683	0.012	8
MAAP-C06-S04-internal	751	0.012	20
MAAP-C06-S04-Internal MAAP-C06-S04-lapel	751	0.027	19
MAAP-C07-S01-internal	161	0.025	19
	161	0.075	8
MAAP-C07-S01-lapel	700		44
MAAP-C07-S02-internal		0.063	19
MAAP-C07-S02-lapel	700	0.027	
MAAP-C07-S03-internal	689	0.033	23
MAAP-C07-S03-lapel	689	0.016	11
MAAP-C07-S04-lapel	620	0.042	26
MAAP-C07-S05-internal	806	0.066	53
MAAP-C07-S05-lapel	806	0.026	21
MAAP-C07-S06-internal	766	0.042	32
MAAP-C07-S06-lapel	766	0.030	23
MAAP-C07-S07-internal	765	0.031	24
MAAP-C07-S07-lapel	765	0.018	14
MAAP-C08-S01-internal	437	0.034	15
MAAP-C08-S01-lapel	437	0.018	8
MAAP-C08-S02-internal	743	0.038	28
MAAP-C08-S02-lapel	743	0.023	22
MAAP-C08-S03-internal	463	0.028	13
MAAP-C08-S03-lapel	463	0.041	19
MAAP-C08-S04-internal	1633	0.010	16
MAAP-C08-S04-lapel	1633	0.017	28
MAAP-C08-S05-internal	456	0.029	13
MAAP-C08-S05-lapel	456	0.035	16
MAAP-C08-S06-internal	634	0.039	25
MAAP-C08-S06-lapel	634	0.038	24
MAAP-C08-S07-internal	680	0.037	25
MAAP-C08-S07-lapel	680	0.040	27
MAAP-C08-S08-internal	510	0.014	7
MAAP-C08-S08-lapel	510	0.020	10
MAAP-C08-S09-lapel	684	0.038	26
MAAP-C08-S10-internal	578	0.036	21
MAAP-C08-S10-lapel	578	0.022	13
MAAP-C08-S11-internal	532	0.024	13
MAAP-C08-S11-lapel	532	0.028	15
MAAP-C09-S01-internal	634	0.041	26
MAAP-C09-S01-lapel	634	0.009	6
MAAP-C09-S02-internal	667	0.027	18
MAAP-C09-S02-lapel	667	0.067	45
MAAP-C09-S03-internal	584	0.027	16
MAAP-C09-S03-lapel	584	0.026	15
MAAP-C09-S04-internal	572	0.021	12
MAAP-C09-S04-lapel	572	0.035	20
MAAP-C09-S05-internal	552	0.042	23
MAAP-C09-S05-lapel	552	0.011	6

MAAP-C09-S06-lapel	636	0.044	28
MAAP-C09-S07-lapel	688	0.025	17
MAAP-C09-S08-internal	616	0.023	42
MAAP-C09-S08-lapel	616	0.008	8
MAAP-C09-S09-internal	589	0.048	28
MAAP-C09-S09-lapel	589	0.048	8
MAAP-C09-S10-internal	687	0.055	38
MAAP-C09-S10-lapel	687	0.047	32
MAAP-C09-S10-laper MAAP-C10-S01-internal	541	0.047	27
MAAP-C10-S01-Internal MAAP-C10-S01-lapel	541	0.030	10
MAAP-C10-S02-internal	385	0.018	22
MAAP-C10-S02-Internal MAAP-C10-S02-lapel	385	0.034	13
1	519		13
MAAP-C10-S03-internal	519	0.025	13
MAAP-C10-S03-lapel MAAP-C10-S04-internal	699	0.037	24
MAAP-C10-S04-lapel	699	0.043	30
MAAP-C10-S05-internal	665	0.047	31
MAAP-C10-S05-lapel	665	0.033	22
MAAP-C10-S06-internal	738	0.069	51
MAAP-C10-S06-lapel	738	0.045	33
MAAP-C10-S07-lapel	638	0.044	28
MAAP-C10-S08-internal	801	0.039	31
MAAP-C10-S08-lapel	801	0.022	18
MAAP-C10-S09-internal	495	0.030	15
MAAP-C10-S09-lapel	495	0.034	17
MAAP-C11-S01internal	220	0.027	6
MAAP-C11-S01-lapel	220	0.009	2
MAAP-C11-S02-internal	299	0.043	13
MAAP-C11-S02-lapel	299	0.033	10
MAAP-C3-S09-internal	765	0.047	36
MAAP-C3-S09-lapel	765	0.014	11
MAAP-C4-S9-internal	726	0.062	45
MAAP-C4-S9-lapel	726	0.026	19
UH-C03-S01-internal	596	0.017	10
UH-C03-S01-lapel	596	0.012	7
UH-C04-S01-internal	266	0.049	13
UH-C04-S01-lapel	266	0.019	5
UH-C05-S01-internal	555	0.022	12
UH-C05-S01-lapel	555	0.022	12
UH-C06-S01-internal	833	0.047	39
UH-C06-S01-lapel	833	0.035	29
UH-C01-S02-internal	883	0.080	71
UH-C01-S02-lapel	883	0.104	92
UH-C04-S02-internal	743	0.032	24
UH-C04-S02-lapel	743	0.082	61
UH-C05-S02-internal	545	0.057	31
UH-C05-S02-lapel	545	0.064	35
UH-C01-S03-internal	731	0.100	73
UH-C01-S03-lapel	731	0.073	53

UH-C03-S02-internal	525	0.021	11
UH-C03-S02-lapel	525	0.023	12
UH-C04-S03-internal	600	0.033	20
UH-C04-S03-lapel	600	0.025	15
UH-C05-S03-internal	93	0.022	2
UH-C05-S03-lapel	93	0.022	2
UH-C01-S04-internal	718	0.058	42
UH-C01-S04-lapel	718	0.043	31
UH-C03-S03-internal	640	0.020	13
UH-C03-S03-lapel	640	0.014	9
UH-C04-S04-internal	357	0.025	9
UH-C04-S04-lapel	356	0.011	4
UH-C05-S04-internal	634	0.032	20
UH-C05-S04-lapel	634	0.016	10
UH-C07-S01-internal	612	0.028	17
UH-C07-S01-lapel	612	0.014	9

<u>Table A.2</u>: Average arousal and valence values per intervention session. GUT = Gdansk University of Technology, Poland; ITU-YU = Istanbul Teknik Universitesi and Yeditepe University Vakif, Turkey; MAAP = Macedonian Association for Applied Psychology, North Macedonia; non-VAD-based = based on the whole audio material; UH = University of Hertfordshire, United Kingdom; VAD-based = based on all detected child vocalisations.

ID	Arousal	Arousal	Valence	Valence
	VAD-based	non-VAD-	VAD-based	non-VAD-
		based		based
GUT-C02-S01-internal	0.053	0.039	0.038	0.014
GUT-C02-S01-lapel	0.055	0.038	0.033	0.019
GUT-C03-S01-internal	0.104	0.035	0.068	0.044
GUT-C03-S01-lapel	0.057	0.021	0.030	0.057
GUT-C01-S02-internal	0.295	0.031	-0.011	0.056
GUT-C02-S02-internal	0.249	-0.013	-0.027	0.059
GUT-C02-S02-lapel	0.196	-0.116	0.090	0.075
GUT-C03-S02-internal	0.286	-0.002	-0.118	0.051
GUT-C03-S02-lapel	0.221	-0.097	0.118	0.071
GUT-C01-S03-internal	0.329	0.006	-0.091	0.052
GUT-C01-S03-lapel	0.238	-0.103	0.110	0.060
GUT-C02-S03-internal	0.278	-0.023	-0.129	0.057
GUT-C02-S03-lapel	0.213	-0.114	0.093	0.067
ITU-YU-C01-S01-internal	0.242	-0.028	-0.081	0.054
ITU-YU-C02-S01-internal	0.252	0.233	0.066	0.029
ITU-YU-C03-S01-internal	0.216	0.204	0.071	0.020
ITU-YU-C04-S01-internal	0.214	0.205	0.054	0.023
ITU-YU-C01-S02-internal	0.231	0.201	0.055	0.045
ITU-YU-C03-S02-internal	0.206	0.197	0.085	0.037
ITU-YU-C05-S01-internal	0.255	0.212	0.065	0.030
ITU-YU-C06-S01-internal	0.203	0.263	0.089	0.036
ITU-YU-C07-S01-internal	0.134	0.251	0.084	0.034

ITU-YU-C08-S01-internal	0.179	0.277	0.079	0.043
ITU-YU-C09-S01-internal	0.179		0.079	0.043
ITU-YU-C10-S01-internal		0.252	0.074	0.046
	0.207			0.044
ITU-YU-C11-S01-internal	0.151	0.277	0.073	
ITU-YU-C12-S01-internal	0.227	0.271	0.083	0.043
ITU-YU-C13-S01-internal	0.217	0.281	0.069	0.040
MAAP-C01-S01-internal	0.262	-0.186	0.090	0.066
MAAP-C01-S01-lapel	0.317	0.129	-0.036	0.038
MAAP-C01-S02-internal	0.343	0.198	-0.039	0.036
MAAP-C01-S02-lapel	0.301	0.021	0.063	0.056
MAAP-C01-S03-internal	0.278	0.122	-0.050	0.036
MAAP-C01-S03-lapel	0.273	-0.051	-0.048	0.062
MAAP-C01-S04-internal	0.207	0.093	0.080	0.033
MAAP-C01-S04-lapel	0.250	0.020	0.124	0.065
MAAP-C02-S01-internal	0.116	0.191	0.063	-0.011
MAAP-C02-S01-lapel	0.242	0.319	-0.041	-0.052
MAAP-C02-S02-internal	0.193	0.278	0.111	-0.018
MAAP-C02-S02-lapel	0.159	0.093	0.089	0.015
MAAP-C02-S03-internal	0.295	0.159	0.042	0.027
MAAP-C02-S03-lapel	0.200	0.038	0.088	0.046
MAAP-C03-S01-internal	0.323	0.156	-0.002	0.043
MAAP-C03-S01-lapel	0.263	-0.122	0.095	0.054
MAAP-C03-S02-internal	0.257	0.032	0.027	0.034
MAAP-C03-S02-lapel	0.178	-0.037	0.101	0.052
MAAP-C03-S03-internal	0.270	0.180	0.100	0.028
MAAP-C03-S03-lapel	0.291	-0.065	0.073	0.060
MAAP-C03-S04-internal	0.294	0.167	-0.019	0.019
MAAP-C03-S04-lapel	0.247	0.001	0.076	0.046
MAAP-C03-S05-internal	0.270	0.155	0.075	0.033
MAAP-C03-S05-lapel	0.298	0.004	0.057	0.053
MAAP-C03-S06-internal	0.294	0.189	0.009	0.008
MAAP-C03-S06-lapel	0.272	0.134	0.064	0.027
MAAP-C03-S07-internal	0.247	0.340	0.069	0.004
MAAP-C03-S07-lapel	0.170	0.243	0.094	0.028
MAAP-C03-S08-internal	0.365	0.218	-0.063	0.025
MAAP-C03-S08-lapel	0.366	0.090	-0.055	0.045
MAAP-C03-S10-internal	0.289	0.203	0.075	0.024
MAAP-C03-S10-lapel	0.253	0.070	0.075	0.050
MAAP-C04-S01-internal	0.196	0.040	0.098	0.033
MAAP-C04-S01-lapel	0.286	0.138	0.086	0.024
MAAP-C04-S02-internal	0.249	-0.038	0.059	0.037
MAAP-C04-S02-lapel	0.257	0.100	0.086	0.005
MAAP-C04-S03-internal	0.333	0.162	0.014	0.034
MAAP-C04-S03-lapel	0.217	-0.005	0.081	0.056
MAAP-C04-S04-internal	0.239	0.086	0.063	0.030
MAAP-C04-S04-lapel	0.278	-0.044	0.026	0.052
MAAP-C04-S06-internal	0.348	0.171	0.001	0.032
MAAP-C04-S06-lapel	0.321	0.052	0.017	0.052
MAAP-C04-S07-internal	0.286	0.137	0.082	0.028

MAAP-C04-S07-lapel	0.232	0.002	0.124	0.053
MAAP-C04-S08-internal	0.232		0.124	
	0.193	0.263	0.089	0.016
MAAP-C04-S08-lapel				
MAAP-C04-S10-internal	0.352	0.134	-0.056	0.040
MAAP-C04-S10-lapel	0.298	-0.014	0.054	0.065
MAAP-C05-S01-internal	0.312	0.242	-0.042	0.017
MAAP-C05-S01-lapel	0.284	0.085	0.060	0.046
MAAP-C05-S02-internal	0.324	0.157	-0.007	0.024
MAAP-C05-S02-lapel	0.254	0.052	0.066	0.050
MAAP-C05-S03-internal	0.246	0.122	0.063	0.021
MAAP-C05-S03-lapel	0.200	-0.007	0.100	0.048
MAAP-C05-S04-internal	0.282	0.222	0.036	0.027
MAAP-C05-S04-lapel	0.221	-0.021	0.105	0.060
MAAP-C05-S05-internal	0.250	0.045	-0.081	0.046
MAAP-C05-S05-lapel	0.280	-0.035	0.004	0.060
MAAP-C06-S01-internal	0.335	0.090	-0.083	0.031
MAAP-C06-S01-lapel	0.309	-0.073	0.017	0.054
MAAP-C06-S02-internal	0.295	0.136	0.038	0.022
MAAP-C06-S02-lapel	0.306	-0.002	-0.007	0.047
MAAP-C06-S03-internal	0.356	0.131	-0.058	0.031
MAAP-C06-S03-lapel	0.185	-0.010	0.108	0.055
MAAP-C06-S04-internal	0.296	0.192	0.047	0.042
MAAP-C06-S04-lapel	0.293	0.023	0.080	0.058
MAAP-C07-S01-internal	0.257	0.432	0.007	-0.107
MAAP-C07-S01-lapel	0.194	0.392	0.051	-0.052
MAAP-C07-S02-internal	0.377	0.250	-0.163	0.009
MAAP-C07-S02-lapel	0.261	0.124	0.083	0.036
MAAP-C07-S03-internal	0.340	0.204	-0.027	0.010
MAAP-C07-S03-lapel	0.224	0.086	0.092	0.035
MAAP-C07-S04-lapel	0.306	0.144	0.055	0.019
MAAP-C07-S05-internal	0.415	0.233	-0.242	0.022
MAAP-C07-S05-lapel	0.320	0.127	0.069	0.037
MAAP-C07-S06-internal	0.391	0.272	-0.156	-0.009
MAAP-C07-S06-lapel	0.312	0.139	0.008	0.027
MAAP-C07-S07-internal	0.322	0.322	-0.035	-0.002
MAAP-C07-S07-lapel	0.249	0.239	0.075	0.033
MAAP-C08-S01-internal	0.244	-0.083	0.091	0.050
MAAP-C08-S01-lapel	0.190	0.217	0.109	0.030
MAAP-C08-S02-internal	0.190	0.016	0.031	0.044
MAAP-C08-S02-lapel	0.235	-0.088	0.062	0.068
MAAP-C08-S03-internal	0.233	0.004	0.117	0.056
MAAP-C08-S03-lapel	0.241	0.004	0.074	0.041
MAAP-C08-S04-internal	0.235	0.047	0.074	0.039
MAAP-C08-S04-lapel	0.230	-0.022	-0.019	0.065
MAAP-C08-S05-internal	0.208	0.080	0.101	0.005
MAAP-C08-S05-lapel	0.234	-0.098	0.103	0.058
MAAP-C08-S06-internal	0.323	0.118	-0.040	0.028
MAAP-C08-S06-lapel	0.288	-0.021	0.053	0.048
MAAP-C08-S07-internal	0.356	0.203	-0.014	0.022

MAAP-C08-S07-lapel	0.336	0.088	0.017	0.047
MAAP-C08-S08-internal	0.165	0.123	0.090	0.025
MAAP-C08-S08-lapel	0.105	0.031	0.111	0.023
MAAP-C08-S09-lapel	0.190	-0.055	0.070	0.064
MAAP-C08-S10-internal	0.272	0.062	0.039	0.041
MAAP-C08-S10-Internal MAAP-C08-S10-lapel	0.240	-0.026	0.039	0.041
MAAP-C08-S10-laper MAAP-C08-S11-internal	0.231	0.046	0.098	0.035
		-0.034		
MAAP-C08-S11-lapel MAAP-C09-S01-internal	0.241		0.102	0.064 0.005
	0.388	0.288		
MAAP-C09-S01-lapel	0.145	-0.118	0.098	0.039
MAAP-C09-S02-internal	0.301	0.068	0.072	0.037
MAAP-C09-S02-lapel	0.383	0.169	-0.134	0.010
MAAP-C09-S03-internal	0.286	0.182	-0.019	0.008
MAAP-C09-S03-lapel	0.271	0.135	0.054	0.040
MAAP-C09-S04-internal	0.213	0.135	0.084	0.024
MAAP-C09-S04-lapel	0.246	-0.040	0.089	0.052
MAAP-C09-S05-internal	0.328	0.218	0.009	0.022
MAAP-C09-S05-lapel	0.147	0.082	0.091	0.049
MAAP-C09-S06-internal	0.294	0.168	-0.044	0.026
MAAP-C09-S06-lapel	0.310	0.059	0.021	0.045
MAAP-C09-S07-lapel	0.281	0.177	0.092	0.029
MAAP-C09-S08-internal	0.391	0.184	-0.133	0.021
MAAP-C09-S08-lapel	0.184	0.111	0.084	0.038
MAAP-C09-S09-internal	0.365	0.134	-0.083	0.039
MAAP-C09-S09-lapel	0.180	0.055	0.090	0.049
MAAP-C09-S10-internal	0.356	0.115	-0.071	0.033
MAAP-C09-S10-lapel	0.309	-0.029	0.013	0.057
MAAP-C10-S01-internal	0.360	0.229	-0.090	0.012
MAAP-C10-S01-lapel	0.207	0.025	0.094	0.037
MAAP-C10-S02-internal	0.291	0.083	0.013	0.038
MAAP-C10-S02-lapel	0.227	-0.066	0.112	0.053
MAAP-C10-S03-internal	0.219	0.180	0.076	0.035
MAAP-C10-S03-lapel	0.263	0.021	0.059	0.045
MAAP-C10-S04-internal	0.290	0.133	0.013	0.040
MAAP-C10-S04-lapel	0.297	-0.019	0.012	0.060
MAAP-C10-S05-internal	0.358	0.108	-0.023	0.040
MAAP-C10-S05-lapel	0.285	-0.026	0.069	0.063
MAAP-C10-S06-internal	0.322	0.195	-0.184	0.033
MAAP-C10-S06-lapel	0.319	0.065	-0.026	0.056
MAAP-C10-S07-lapel	0.302	-0.045	0.040	0.052
MAAP-C10-S08-internal	0.325	0.103	-0.011	0.044
MAAP-C10-S08-lapel	0.263	-0.001	0.074	0.065
MAAP-C10-S09-internal	0.225	0.094	0.081	0.042
MAAP-C10-S09-lapel	0.246	-0.008	0.086	0.058
MAAP-C11-S01internal	0.160	0.342	0.057	-0.080
MAAP-C11-S01-lapel	0.078	0.240	0.038	-0.024
MAAP-C11-S02-internal	0.262	0.329	0.055	-0.063
MAAP-C11-S02-lapel	0.220	0.284	0.104	-0.010
MAAP-C3-S09-internal	0.403	0.278	-0.107	0.020

MAAP-C3-S09-lapel	0.230	0.159	0.079	0.042
MAAP-C4-S9-internal	0.322	0.089	-0.063	0.042
MAAP-C4-S9-lapel	0.254	-0.012	0.102	0.048
UH-C03-S01-internal	0.192	-0.102	0.083	0.048
UH-C03-S01-lapel	0.160	-0.114	0.088	0.041
UH-C04-S01-internal	0.219	-0.065	0.067	0.041
UH-C04-S01-lapel	0.123	-0.091	0.076	0.037
UH-C05-S01-internal	0.203	-0.165	0.077	0.041
UH-C05-S01-lapel	0.189	-0.189	0.105	0.049
UH-C06-S01-internal	0.189	-0.171	0.103	0.066
UH-C06-S01-lapel	0.272	-0.184	0.008	0.057
UH-C01-S02-internal	0.248	-0.184	-0.105	0.061
		-0.120		
UH-C01-S02-lapel	0.330		-0.074	0.072
UH-C04-S02-internal	0.261	-0.075	0.036	0.051
UH-C04-S02-lapel	0.292	-0.122	-0.032	0.074
UH-C05-S02-internal	0.266	-0.140	0.018	0.052
UH-C05-S02-lapel	0.242	-0.120	0.018	0.068
UH-C01-S03-internal	0.336	-0.154	-0.165	0.065
UH-C01-S03-lapel	0.303	-0.127	-0.095	0.068
UH-C03-S02-internal	0.208	-0.046	0.102	0.040
UH-C03-S02-lapel	0.200	-0.048	0.098	0.047
UH-C04-S03-internal	0.303	-0.162	0.087	0.061
UH-C04-S03-lapel	0.216	-0.156	0.073	0.069
UH-C05-S03-internal	0.074	-0.171	0.048	0.055
UH-C05-S03-lapel	0.074	-0.122	0.048	0.059
UH-C01-S04-internal	0.306	-0.154	-0.008	0.069
UH-C01-S04-lapel	0.281	-0.138	0.053	0.070
UH-C03-S03-internal	0.234	-0.149	0.085	0.048
UH-C03-S03-lapel	0.177	-0.088	0.102	0.047
UH-C04-S04-internal	0.182	-0.093	0.097	0.058
UH-C04-S04-lapel	0.112	-0.061	0.068	0.064
UH-C05-S04-internal	0.255	-0.083	0.065	0.058
UH-C05-S04-lapel	0.178	-0.061	0.098	0.061
UH-C07-S01-internal	0.227	-0.158	0.056	0.047
UH-C07-S01-lapel	0.177	-0.139	0.078	0.046