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Abstract  

Introduction: Maternal SARS-CoV-2 infection during pregnancy is associated with adverse pregnancy 

outcomes and can have effects on the placenta, even in the absence of severe disease or vertical 

transmission to the fetus. This study aimed to evaluate histopathologic and molecular effects in the 

placenta after SARS-CoV-2 infection during pregnancy.  

Methods: We performed a study of 45 pregnant participants from the Generation C prospective cohort 

study at the Mount Sinai Health System in New York City. We compared histologic features and the 

expression of 48 immune and trophoblast genes in placentas delivered from 15 SARS-CoV-2 IgG 

antibody positive and 30 IgG SARS-CoV-2 antibody negative mothers. Statistical analyses were 

performed using Fisher’s exact tests, Spearman correlations and linear regression models. 

Results: The median gestational age at the time of SARS-CoV-2 IgG serology test was 35 weeks. Two of 

the IgG positive participants also had a positive RT-PCR nasal swab at delivery. 82.2% of the infants 

were delivered at term (≥37 weeks), and gestational age at delivery did not differ between the SARS-

CoV-2 antibody positive and negative groups. No significant differences were detected between the 

groups in placental histopathology features. Differential expression analyses revealed decreased 

expression of two trophoblast genes (PSG3 and CGB3) and increased expression of three immune genes 

(CXCL10, TLR3 and DDX58) in placentas delivered from SARS-CoV-2 IgG positive participants. 

Discussion: SARS-CoV-2 infection during pregnancy is associated with gene expression changes of 

immune and trophoblast genes in the placenta at birth which could potentially contribute to long-term 

health effects in the offspring.  

Keywords: SARS-CoV-2, placenta, gene expression, NanoString. 
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1. Introduction  

 

The current pandemic of coronavirus disease 2019 (Covid-19) is caused by infection with the novel 

severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). As of January 24, 2022 approximately 

352 million infections and 5.6 million deaths have been reported worldwide [1]. The clinical 

manifestations of SARS-CoV-2 infection vary widely by age group and presence of comorbid conditions, 

ranging from asymptomatic infection to respiratory failure, multisystem organ failure, and death in 

critically ill patients [2, 3]. Although comprehensive knowledge of the factors involved in severe Covid-

19 is still needed, dysregulation of the host inflammatory and immune responses [4, 5] and thrombosis [6] 

have been implicated in Covid-19 induced tissue damage. 

During pregnancy, the maternal immune system undergoes a series of dynamic changes aimed to promote 

tolerance of the fetus, that can also influence responses to pathogens, including viruses [7]. Recent reports 

show that pregnant individuals with severe SARS-CoV-2 infection are at higher risk of intensive care unit 

admission, mechanical ventilation, extracorporeal membrane oxygenation, and mortality compared to 

non-pregnant individuals [8, 9]. Other studies show that active SARS-CoV-2 infection at delivery (mainly 

confirmed through a PCR positive test) is associated with obstetric and neonatal complications including 

increased risk of preterm birth, stillbirth, miscarriage, preeclampsia, emergency cesarean section and 

higher neonatal morbidity [8, 10-18]. However, in other reports, including ours from New York City and 

a Denmark study, SARS-CoV-2 IgG seropositivity without RT-PCR positivity at delivery was not 

associated with adverse pregnancy outcomes [19, 20]. 

The main cell entry pathway of the SARS-CoV-2 virus is dependent on the ACE2 receptor and aided by 

the TMPRSS2 proteases of the host cells [21].  Early in pregnancy, ACE2 and TMPRSS2 are expressed in 

placental cytotrophoblast and syncytiotrophoblast cells; however, the expression of these proteins is low 

in term placentas [22-24]. Recent data suggest that multiple placental cell types are susceptible to 

infection in explants and immortalized cells after exposure to SARS-CoV-2, and infection susceptibility 

is related to the levels of ACE2 expression [25-27]. Yet, existing data show that vertical transmission of 

SARS-CoV-2 is rare; only a few reports have documented presence of the virus in the fetal compartments 

of the placenta or in newborns [28-30]. Moreover, most of the histopathology studies suggest that 

placental infection with SARS-CoV-2 is also rare [31-33] and can exist in the absence of vertical 

transmission [34, 35]. Additionally, the criteria to diagnose SARS-CoV-2 placental infection have been 

inconsistent across studies [34, 36-40]. Nonspecific placental histopathologic lesions have also been 

associated with maternal SARS-CoV-2 infection; a recent meta-analysis reports increases in risk of fetal 
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vascular malperfusion, acute and chronic proinflammatory lesions, increased perivillous fibrin, and 

intervillous thrombosis [41]. These lesions could result from localized placental SARS-CoV-2 infection 

and/or inflammatory responses to the systemic maternal infection. However, most of the available reports 

evaluated placental effects of acute SARS-CoV-2 infections mainly from mothers infected at delivery 

(positive nasopharyngeal PCR test). To date, only few studies have reported changes in expression of 

immune and inflammatory genes in the placenta, also in cases of acute SARS-CoV-2 infection [42-44]. 

Understanding the impact of maternal SARS CoV-2 infection on the placenta during pregnancy, including 

among participants without active infection at delivery, is vital because these placental changes can lead 

to adverse pregnancy outcomes and long-term effects on the health of newborns [45]. The aim of this 

work was to evaluate histopathologic and gene expression changes in placentas delivered from SARS-

CoV-2 IgG positive compared to those from SARS-CoV-2 IgG negative pregnant individuals.  

2. Methods 

2.1 Study Population 

The Generation C study is a prospective pregnancy cohort study that aims to examine the impact of 

SARS-CoV-2 infection during pregnancy on obstetric and neonatal outcomes. Pregnant individuals were 

recruited at Mount Sinai Hospital (MSH) and Mount Sinai West (MSW) in New York City (NYC) 

starting April 20, 2020, and recruitment is ongoing [19]. The first COVID-19 case in NYC was officially 

confirmed on March 1, 2020. Maternal blood samples are collected at multiple time points as part of 

routine clinical care. Electronic medical record (EMR) review and serological SARS-CoV-2 IgG tests are 

used to confirm past SARS-CoV-2 infection. Serological testing for IgG antibodies against the SARS-

CoV-2 spike (S) protein (anti-S IgG) was performed using an enzyme-linked immunosorbent assay 

(ELISA) developed at the Icahn School of Medicine at Mount Sinai [46]. Placental samples are collected 

after delivery by the Mount Sinai Biorepository and Pathology Core. All participants provided written 

informed consent per the institutional review board (IRB)-approved study protocol (IRB at the Icahn 

School of Medicine at Mount Sinai, protocol IRB-20-03352, April 15, 2020). 

For this analysis, we examined a subset of Generation C participants with and without evidence of past 

SARS-CoV-2 infection with available placenta tissue blocks collected for medical pathology examination 

and consent to donate placental tissue; 15 participants were SARS-CoV-2 IgG positive and 30 were 

SARS-CoV-2 IgG negative. EMR review was conducted to obtain clinical and sociodemographic 

characteristics of mothers and infants. Participants in this analysis gave birth between May and September 

of 2020. Since widespread community transmission of SARS-CoV-2 in NYC began in March 2020, we 

theorized that IgG positive participants who gave birth before or in late September were infected at some 
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point during pregnancy. Additionally, all 45 pregnant participants delivered before the first COVID-19 

vaccine received Emergency Use Authorization by the U.S. FDA in December 2020. 

2.2 Placenta Histopathology 

After fixation, placentas were processed according to standard protocols including comprehensive gross 

tissue and histopathologic examination of the umbilical cord, chorionic membranes, and placental villi. 

Histopathologic review was performed according to the Amsterdam Placental Workshop Group 

Consensus Statement guidelines [47]. All placentas in the study were reviewed for medical pathology and 

findings were recorded in the pathology report and in the EMR.  

2.3 Targeted placental gene expression profiling 

RNA was extracted from formaldehyde-fixed paraffin embedded (FFPE) tissue blocks using the 

Maxwell® 16 LEV RNA FFPE Purification Kit (Promega, Madison, WI). RNA concentration was 

determined using the Nanodrop (Thermo Fisher Scientific, MA). Gene expression was profiled with a 

custom designed NanoString codeset (NanoString, Seattle, WA) panel with 50 probes including genes 

involved in the inflammatory and/or immune response (n=25), stress response (n=8), cell-type markers 

(n=7), SARS-CoV-2  host response (n=6), viral SARS-CoV-2 genes (nucleocapsid and envelope proteins) 

and two housekeeping genes (RPL19, RPLP0) (Supplementary Table 1). RNA (100 nanograms) was 

hybridized overnight to reporter and capture probes at 65°C. Next, unbound probes were removed, and 

purified complexes were aligned and immobilized on four NanoString cartridges using the nCounter Prep 

station. Cartridges were scanned for gene counts detection in the nCounter Digital Analyzer. All 

laboratory protocols we performed following manufacturer’s instructions. Raw gene expression counts 

were imported from RCC files using the NanoStringNorm R package (1.2.1.1) [48]. To normalize 

CodeCount technical variation we used the geometric mean. Background expression levels were 

calculated based on the mean +/- 2SD of negative control probes. Values below the background limit of 

detection (LOD) for each sample (mean +/- 2SD of negative control probes) were replaced with LOD/√2. 

We used the geometric mean of the housekeeping genes to normalize for sample RNA sample content. 

After normalization, counts were log2 transformed for statistical analyses. Samples with less than 50% of 

probes above background were excluded (n=1, SARS-CoV-2 IgG negative), and probes with counts 

below the background level in more than 50% of the samples in each study group were removed (n=9). 

We used the placental-cell gene markers in the panel to calculate cell-type scores as the average of the 

log2 normalized expression of each of the cell type gene marker (PEG10 and PEG3 for cytotrophoblasts, 

CGB3 and PSG3 for syncytiotrophoblasts, CD68 and CD163 for macrophages and PECAM1 for 

endothelial cells).  
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2.4 Statistical analyses 

We used summary statistics including median, range, or frequency tables to evaluate the distribution of 

continuous and categorical variables. We performed bivariate analyses using Fisher exact tests and 

Wilcoxon signed-rank or Kruskal–Wallis tests as appropriate to evaluate differences in clinical, 

sociodemographic, and histopathology variables between the SARS-CoV-2 IgG positive versus negative 

groups. We used principal components analyses to evaluate possible effects of technical (e.g., NanoString 

cartridge) or biological (e.g., infant sex) covariates in placental gene expression. Differential gene 

expression analysis by SARS-CoV-2 IgG status was performed using the Limma R package [49] that uses 

an empirical Bayes method to fit linear models with moderated standard errors for each gene (continuous 

outcome variable) and the study group (IgG positive versus negative) as the predictor variable. We 

considered as possible confounders covariates that could influence placenta gene expression including 

infant sex, gestational age at birth, maternal age, and gestational age at SARS-CoV-2 IgG antibody test. 

We fitted linear models adjusted for covariates and cell-type proxy scores. Sensitivity analyses were 

performed excluding two participants with acute infections at delivery to evaluate the impact of SARS-

CoV-2 PCR positivity at delivery. Statistical significance was set at p≤0.05. Analyses were performed in 

R statistical computing software version 4.1.0 [50]. 

3. Results 

3.1 Demographic, clinical and placenta histopathologic characteristics 

Table 1 displays the characteristics of the Generation C participants included in these analyses (n=45) 

stratified by study groups: SARS-CoV-2 IgG negative (n=30) and SARS-CoV-2 IgG positive (n=15). The 

median gestational age of IgG serology testing was 35 weeks with an interquartile range (IQR) between 

17.4 and 40.9 weeks. Two of the IgG positive participants were also SARS-CoV-2 PCR positive 

(nasopharyngeal swab) at the time of the labor and delivery admission. Like in the larger Generation C 

cohort [19], IgG seropositive participants had higher pre-pregnancy BMI (p=0.05) and were more often 

Hispanic, or non-Hispanic Black compared to IgG seronegative participants. In contrast, we did not 

observe differences in other maternal characteristics including age, parity, tobacco use, medical 

conditions, or obstetric conditions. 

The characteristics of the newborns are shown in Table 2. All were live births, 82.2% (n=37) delivered at 

term, and 17.8 delivered preterm. We did not detect differences in gestational age between study groups; 

median gestational age at delivery was 38.9 and 39 weeks for newborns born to IgG-negative and IgG-

positive participants, respectively (p=0.87). The distribution of newborn sex was slightly different; 66.7% 

of newborns in the seropositive group were female and 33.3% were male, while in the seronegative group 
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33.3% were female and 66.7% were male (p=0.06). No differences were noted in birthweight, delivery 

mode, intrauterine growth restriction, APGAR scores, or NICU admission rates.   

The pathology examination showed that placental weight was comparable between IgG seropositive and 

seronegative participants. Similarly, study groups were not different in other histopathology findings 

including chronic villitis, deciduitis, acute chorioamnionitis, intervillitis, intervillous thrombosis, fetal 

vascular thrombosis, decidual arteriopathy, fibrin presence, or chorangiosis (Table 3).  

 

3.2 Placenta gene expression analysis 

After preprocessing, quality control, the gene expression dataset consisted of 44 samples (IgG negative 

n=29; IgG positive n=15) and 48 genes. Nine genes were consistently below the background level in both 

study groups and were excluded from differential expression analyses. These included the nucleocapsid 

and the envelope viral SARS-CoV-2 genes, SARS-CoV-2  cell-entry genes (TMPRSS2, ACE2), and genes 

involved in the immune and stress response (IL17A, IL23A, IFNL3, IFNA1 and OPRM1). Summary 

statistics for the expression of the 39 detected genes are shown in Supplementary Table 2. We used 

principal components analyses to identify effects of biologic and technical covariates in the overall 

placental gene expression patterns, which did not reveal obvious clustering by SARS-CoV-2 IgG 

serology or nasal swab PCR status at delivery (Supplementary Fig. 1).  

Next, we performed differential expression analyses by SARS-CoV-2 IgG status adjusted for covariates 

and cell-type proxies (Figure 1). In the analyses adjusted for covariates only, three genes were 

significantly associated with SARS-CoV-2 IgG antibody status (Figure 1A, Supplementary Table 3). 

The trophoblast cell-markers PSG3 and CGB3 were downregulated (log2 fold-change [log2FC] = - 0.9, 

p=0.002 and log2FC=- 0.99, p=0.05, respectively). PSG3 and CGB3 placental expression levels were 

highly correlated (rho=0.6, p=6.1x10-5).  The chemokine CXCL10 was over-expressed (log2FC = 1.08, 

p=0.02) in the IgG positive group compared to the IgG negative group. Since placental tissues are 

heterogenous mixtures of cells, we repeated the differential expression analyses adjusting for covariates 

and expression cell-type proxies including the average expression PSG3 and CGB3 as syncytiotrophoblast 

markers. In this analysis, SARS-CoV-2 IgG positivity was associated with increased expression of three 

genes CXCL10, TLR3 and DDX58 (Figure 1B, Supplementary Table 4). The differences in placental 

gene expression between the SARS-CoV-2 IgG positive and negative groups ranged between log2 FC of 

1.19 for CXCL10 and 0.30 for DDX58 (Figure 2). Sensitivity analyses excluding samples from the two 

participants who were SARS-CoV-2 IgG positive and PCR positive at delivery showed similar results 

(Supplemental Fig. 2). 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted February 24, 2022. ; https://doi.org/10.1101/2022.02.22.22271359doi: medRxiv preprint 

https://doi.org/10.1101/2022.02.22.22271359


 

 

3. Discussion 

The effects of SARS-CoV-2 infection on the placenta are not yet well-characterized, particularly in cases 

of infection during pregnancy without active infection at delivery (i.e., SARS-CoV-2 IgG positive and 

negative PCR at the delivery admission). In this report, we investigated histopathology and molecular 

gene expression changes in placentas from 15 mother-infant pairs exposed to SARS-CoV-2 during 

pregnancy and 30 unexposed controls, part of the Generation C study in NYC. We report differences in 

the expression of trophoblast specific and immune genes in placentas between IgG positive and negative 

mothers.  

All the placentas in this study underwent medical pathology review, and we found a range of 

histopathologic findings. However, none of the findings differed significantly with respect to SARS-CoV-

2 IgG serology status, which is consistent with some studies on Covid-19 and placenta pathology [39, 51]. 

A recent systematic review and pooled analysis of case-control reports found increased risk of fetal 

vascular malperfusion, chronic inflammatory pathology, perivillous fibrin, and intervillous thrombosis 

[41], yet most of the reviewed cases in that analyses were RT-PCR positive at delivery. Our results are 

inconsistent with these findings, possibly due to limited sample size or because our study population 

consisted mostly of individuals who were infected with the virus during pregnancy without active 

infection at delivery.  

We detected significant associations between plasma SARS-CoV-2 IgG positivity and lower placental 

expression of the PSG3 and CGB3.  These placenta-specific genes locate to 19q13 and are highly 

expressed by trophoblast cells. PSG3 is part of the family of human pregnancy-specific glycoproteins 

(PSG) that are released to the maternal circulation during pregnancy and are reported to have 

immunoregulatory and angiogenic functions [52]. CGB3 encodes the beta 3 subunit of the chorionic 

gonadotropin (hCG), a glycoprotein hormone essential for pregnancy maintenance, that has also been 

involved in angiogenesis and maternal immunotolerance [53, 54]. Some studies have reported 

associations between adverse pregnancy outcomes like preeclampsia and circulating levels of PSGs and 

hCG [52, 53, 55, 56].  Importantly, PSG3 and CGB3 are involved in trophoblast syncytialization; 

alterations in expression of these genes have been described in other viral infections [57, 58]. However, to 

our knowledge, there are no studies linking past maternal SARS-CoV-2 infection to altered placental 

PSG3 or CGB3 expression or trophoblast differentiation. 

We also observed increased expression of CXCL10 in placentas delivered from participants exposed to 

SARS-CoV-2 infection during pregnancy. CXCL10 (C-X-C motif chemokine ligand 10) is a pro-

inflammatory chemokine secreted in response to interferon gamma (IFNγ) involved in the stimulation of 
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monocytes, natural killer, and T-cells. Previous investigations have also reported CXCL10 gene 

expression upregulation in bronchoalveolar lavages [57], nasopharyngeal swabs [58] and male placentas 

exposed to maternal SARS-CoV-2 infection [43]. Importantly, CXCL10 may also be a key regulator of 

the “cytokine storm” in response to SARS-CoV-2 infection and circulating levels of CXCL10 are 

reported to be positively associated with disease severity [59-61]. Two other immune genes, TLR3 and 

DDX58, were overexpressed in placentas delivered from SARS-CoV-2 IgG positive participants. TLR3 is 

a member of the toll-like receptor (TLR) family and DDX58 encodes a protein containing RNA helicase-

DEAD box motifs (also known as RIG-I). These genes are involved in recognizing double-stranded RNA 

(dsRNA) released during viral replication and activation of the innate immune response [62, 63]. To date, 

placental expression of these genes has not been linked to SARS-CoV-2 infection. However, peripheral 

blood TLR3 gene expression is reduced in patients with severe COVID-19 compared to those with mild 

forms of the disease [64] and DDX58 expression in human lung cells has been implicated in the initial 

response against SARS-CoV-2 infection [65, 66]. 

Strengths of the Generation C study include a demographically diverse population of pregnant 

participants recruited in NYC after the start of the SARS-CoV-2 pandemic. To assess SARS-CoV-2 IgG 

levels, we used a highly sensitive (95%) and specific (100%) serological assay. Also, we explored the 

effects of SARS-CoV-2 IgG seropositivity on placental histopathology and gene expression 

simultaneously. We acknowledge that our study is not without limitations. The sample size is limited, and 

the number of placentas delivered from SARS-CoV-2 IgG positive participants is small. We do not have 

information on the precise timing of SARS-CoV-2 infection, disease severity, or newborn SARS-CoV-2 

IgG levels. Given the exploratory nature of this study, we only measured expression of a small number of 

genes, and we did not account for multiple testing. Larger studies are needed to investigate the effects of 

SARS-CoV-2 infection on the whole placental transcriptome. In summary, we found evidence of an 

association between SARS-CoV-2 infection during pregnancy and placental expression of trophoblast and 

immune related genes which could potentially contribute to long-term health effects in the offspring. 

Future research should confirm the observed associations and assess potential long-term implications. 
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Table 1. Maternal characteristics stratified by SARS-CoV-2 IgG status 

  

Total   

n = 45 

SARS-CoV-2 IgG 

negative  

n = 30 

SARS-CoV-2 

IgG positive 

n = 15 

p-value* 

Maternal age 34 [27-46] 35 [28-42] 33 [27-46] 0.21 

Pre-pregnancy BMI 

25.4 [17.3-

59.7] 24.9 [17.3-59.7] 

28.3 [21.2-

39.6] 0.05 

Gestational age (wks) at IgG 

serology 

34.9 [17.4-

40.9] 35.4 [17.4-40.9] 34.1 [21-36.9] 0.24 

SARS-CoV-2 status at delivery      

   IgG-negative/PCR-negative 30 (66.7%) 30 (100%) 0 (0%)   

   IgG-positive/PCR-negative 13 (28.9%) 0 (0%) 13 (86.7%)   

   IgG-positive/PCR-positive 2 (4.4%) 0 (0%) 2 (13.3%)   

Maternal Race/Ethnicity    0.10 

   Asian 5 (11.1%) 4 (13.3%) 1 (6.7%)   

   Black, non-Hispanic 6 (13.3%) 2 (6.7%) 4 (26.7%)   

   Hispanic 3 (6.7%) 1 (3.3%) 2 (13.3%)   

   Other 9 (20%) 5 (16.7%) 4 (26.7%)   

   White, non-Hispanic 21 (46.7%) 17 (56.7%) 4 (26.7%)   

   Unknown 1 (2.2%) 1 (3.3%) 0 (0%)   

Parity    1 

   multiparous 20 (44.4%) 13 (43.3%) 7 (46.7%)   

   nulliparous 25 (55.6%) 17 (56.7%) 8 (53.3%)   

Tobacco    0.28 

   Never 41 (91.1%) 26 (86.7%) 15 (100%)   

   Quit 4 (8.9%) 4 (13.3%) 0 (0%)   

Gestational diabetes    1.00 

   No 35 (77.8%) 23 (76.7%) 12 (80%)   

   Yes 10 (22.2%) 7 (23.3%) 3 (20%)   

Gestational hypertension    0.65 

   No 39 (86.7%) 25 (83.3%) 14 (93.3%)   

   Yes 6 (13.3%) 5 (16.7%) 1 (6.7%)   

Chronic hypertension    0.59 

   No 41 (91.1%) 28 (93.3%) 13 (86.7%)   

   Yes 4 (8.9%) 2 (6.7%) 2 (13.3%)   

Asthma    0.70 

   No 37 (82.2%) 24 (80%) 13 (86.7%)   

   Yes 8 (17.8%) 6 (20%) 2 (13.3%)   

Preeclampsia    0.28 

   No 41 (91.1%) 26 (86.7%) 15 (100%)   

   Yes 4 (8.9%) 4 (13.3%) 0 (0%)   

HELLP    1.00 

   No 44 (97.8%) 29 (96.7%) 15 (100%)   

   Yes 1 (2.2%) 1 (3.3%) 0 (0%)   
Categorical variables are frequencies and percentages (%). Continuous variables summarized with median [range]. * 

Wilcoxon test for continuous variables, fisher test for categorical variables 
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Table 2. Newborn characteristics stratified by maternal SARS-CoV-2 IgG status 

  

Total   

n = 45 

SARS-CoV-2 IgG 

negative  

n = 30 

SARS-CoV-2 

IgG positive  

n = 15 

p-value* 

Birth weight (Kg) 3.38 [2.2-3.93] 3.23 [2.32-3.93] 3.44 [2.19-3.79] 0.90 

Gestational age (wks) at birth 38.9 [34-41.6] 38.9 [35.4-40.9] 39 [34-41.6] 0.87 

APGAR at 1 minute 9 [4-9] 8 [4-9] 9 [7-9] 0.31 

APGAR at 5 minute 9 [8-9] 9 [8-9] 9 [9-9] 0.14 

Infant sex    0.06 

   Female 20 (44.4%) 10 (33.3%) 10 (66.7%)   

   Male 25 (55.6%) 20 (66.7%) 5 (33.3%)   

Birth weight group    0.49 

   AGA 37 (82.2%) 23 (76.7%) 14 (93.3%)   

   LGA 4 (8.9%) 3 (10%) 1 (6.7%)   

   SGA 4 (8.9%) 4 (13.3%) 0 (0%)   

Delivery mode    0.75 

   C-Section 18 (40%) 13 (43.3%) 5 (33.3%)   

   Vaginal 27 (60%) 17 (56.7%) 10 (66.7%)   

IUGR    0.54 

   No 42 (93.3%) 27 (90%) 15 (100%)   

   Yes 3 (6.7%) 3 (10%) 0 (0%)   

Preterm birth    1 

   No 37 (82.2%) 25 (83.3%) 12 (80%)   

   Yes 8 (17.8%) 5 (16.7%) 3 (20%)   

NICU admission    0.70 

   No 36 (80%) 23 (76.7%) 13 (86.7%)   

   Yes 9 (20%) 7 (23.3%) 2 (13.3%)   

Continuous variables summarized with median [range].  

Categorical variables are frequencies and percentages (%).  

* Wilcoxon test for continuous variables, Fisher’s test for categorical variables 
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Table 3. Histopathology characteristics stratified by maternal SARS-CoV-2 IgG status 

  

Total   

n = 45 

SARS-CoV-2 IgG 

negative 

 n = 30 

SARS-CoV-2 

IgG positive 

n = 15 

p-value* 

Placental weight (g) 501 [304-644] 476 [304-644] 504 [317-568] 0.92 

Chronic villitis 2 (4.4%) 1 (3.3%) 1 (6.7%) 1 

Deciduitis 2 (4.4%) 2 (6.7%) 0 (0%) 0.55 

Acute chorioamnionitis 10 (22.2%) 6 (20%) 4 (26.7%) 0.71 

Intervillitis 1 (2.2%) 0 (0%) 1 (6.7%) 0.33 

Intervillous thrombosis 2 (4.4%) 2 (6.7%) 0 (0%) 0.55 

Fetal vascular thrombosis 1 (2.2%) 1 (3.3%) 0 (0%) 1.00 

Decidual arteriopathy 5 (11.1%) 5 (16.7%) 0 (0%) 0.15 

Fibrin 32 (71.1%) 22 (73.3%) 10 (66.7%) 0.73 

Chorangiosis 2 (4.4%) 2 (6.7%) 0 (0%) 0.55 

Any inflammatory lesion# 14 (31.3%) 7 (23.3%) 7 (46.7%) 0.17 
Continuous variables summarized with median [range]. Categorical variables are frequencies and percentages (%).  

* Wilcoxon test for continuous variables, Fisher's exact test for categorical variables.  

# Combined variable including acute chorioamnionitis, chronic villitis, intervillitis and deciduitis.
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Figure 1. Volcano plots of differential gene expression analyses in placentas from SARS-CoV-2 IgG 

positive (n=15) versus IgG negative (n=29) participants. A. Linear models adjusted for infant sex, 

birthweight, gestational age at birth and maternal age. B. Linear models adjusted for infant sex, 

birthweight, gestational age at birth and maternal age and cell-type gene expression proxies. The x-axis is 

the log2 fold change (FC) and y-axis is the –log10 P-value, the highlighted in blue are genes with p<0.05. 

The horizontal dashed line corresponds to p=0.05.  
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Figure 2. Box plots of gene expression in placentas delivered by SARS-CoV-2 IgG positive versus IgG 

negative participants. Top panel. PSG3 and CGB3 trophoblast genes. Bottom panel CXCL10, TLR3 and 

DDX58 immune genes. The y-axis is the log2 fold change (FC) and x-axis is SARS-CoV-2 IgG antibody 

group.  
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