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Abstract 

Considerable uncertainties surround the seasonality of respiratory infectious diseases. To which 
extent the observed seasonality is associated with biological reasons (e.g., virus survival rates, 
host immune dynamics) or human behavior remains unclear. Here, we investigate the association 
between temperature and human contact patterns using data collected through a contact diary-
based survey between December 24, 2017 and May 30, 2018 in Shanghai, China. We found a 
significant inverse relationship between number of contacts and temperature seasonal trend 
(p=0.003) and temperature daily variation (p=0.009), with contacts increasing from 19.6 (95%CI: 
14.9-22.2) in December to 24.4 (95%CI: 19.0-28.0) in January and declining to 10.9 (95%CI: 
10.1-11.9) in May. This seasonal trend in number of contacts translates into a seasonal trend in 
the basic reproduction number – mean number of secondary cases generated by a typical 
infector in a fully susceptible population. By setting the basic reproduction number at 1.4 on 
December 24, weekly mean estimates showed a clear increasing trend during the fall, beginning 
at 1.14 (95%CI: 0.78-1.39) in October and reaching 2.02 (95%CI: 1.60-1.35) in February and then 
remaining below 1 in the summer. Epidemic dynamics comparable with those of seasonal 
influenza are obtained through model simulations when the infection is seeded during the fall; 
however, their dynamics become more complex when seeded after February (e.g., double peaks 
or no epidemic until after the summer). Our findings indicate a distinct seasonal trend among 
human contact patterns and highlight a behavioral mechanism contributing to the seasonality of 
respiratory infectious diseases.  
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Introduction 
 
Several respiratory infectious diseases, including influenza, respiratory syncytial virus (RSV), 
measles, and coronavirus disease 2019 (COVID-19), show clear seasonal trends and cyclic 
epidemics [1-5]. Specifically, temperate regions experience highest incidence of these diseases 
during the winter seasons with fewer cases occurring during the summer months whereas other 
places with tropical climates, such as Singapore, may observe higher incidence of disease in 
warmer months or year-round [1, 5-8]. Possible explanations for the seasonality of respiratory 
infectious diseases include the variations in meteorological conditions (e.g., absolute humidity, 
temperature) that influence virus transmission, survival, and host susceptibility [7, 9, 10]. Previous 
studies found that transmission rates for influenza A increased when relative humidity was lower, 
suggesting that dynamics of relative humidity allow the airborne virus to remain viable for longer 
periods of time [9, 10]. Additionally, research on absolute humidity has indicated that influenza 
virus survival is associated with water vapor in the air, suggesting that absolute humidity might be 
better measure for seasonality because it is a measurement of water vapor regardless of 
temperature [9, 10]. Seasonal changes have also been linked to changes in host immune 
function, particularly decreases in mucosal integrity during dry seasons may increase 
susceptibility to infection [6, 8]. However, the underlying mechanisms that drive seasonality 
remain unclear.  
 
A large amount of work has been done identifying human contact patterns as a key determinant 
for infectious disease transmission [7, 11-14]. For example, contacts in locations such as schools 
and workplaces tend to have the highest rates of transmission due to close contacts [7, 15-17]. 
While contacts made in schools and workplaces are relatively consistent, human behavior adapts 
to contextual changes due to working days, weekend days, holidays, and weather conditions [7]. 
Seasonal trends in human behavior could then be one of the drivers underlying the seasonality of 
disease transmission. School openings and closures during holiday breaks reduce the number of 
contacts among school-age children which may explain why influenza is reduced during holiday 
breaks [11, 12, 15, 18]. Furthermore, people tend to spend more time indoors when temperature 
drops [7, 19], increasing an individual’s proximity to others thus impacting their likelihood of 
contracting an infectious disease [20, 21].  
 
In this work, we investigate whether human contact patterns follow seasonal trends and to what 
extent these trends can contribute to shaping the seasonal trends observed for respiratory 
infectious diseases. To this aim, a regression analysis using contact survey data and 
meteorological data from Shanghai, China before the COVID-19-pandemic was conducted to 
assess the relationship between temperature seasonal trend and its daily variations with contact 
patterns. Results showed significant associations between contact patterns and both the 
temperature seasonal trend and daily variations. We then leveraged the obtained results to 
calibrate a mathematical model of the transmission of a respiratory pathogen. The performed 
simulations provide a mechanistic explanation of the observed influenza seasonality based on 
human contact patterns data. 
 
 
Results 
 
Contact Patterns. Analyses were conducted for 965 participants using data collected through a 
diary-based contact survey [22] and daily maximum temperatures in Shanghai between 
December 24, 2017 and May 30, 2018 to investigate seasonality of human contact patterns. A 
total of 18,116 human contacts (mean = 18.7 per participant, Interquartile Range (IQR): 4.0 to 
30.0) were analyzed (Table 1). Most weeks have an average total number of contacts similar to 
the overall mean with the exception of four weeks where the number of participants was less than 
10 (Fig. 1A). Seasonality was represented through temperature seasonal trend and temperature 
daily variation. Seasonal trend was defined as a spline interpolating daily (maximum) 
temperatures, and temperature daily variation was defined as the difference between daily 
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(maximum) temperature and seasonal trend (Fig. 1B). Details are provided in the Methods 
section and the Supporting Information (SI) Appendix. 
 
Age, gender, household size, occupation type, number of years lived in Shanghai, day of the 
week (i.e., weekday or weekend) and type of day (e.g., regular day, vacation) when the contact 
diary was completed were included in the analyses to adjust for confounding factors. Descriptive 
statistics for the covariates are shown in Table 1. The study sample included slightly more female 
(50.9%) than male (49.1%) participants. Most participants were between the ages of 19 and 59 
(49.4%), were employed (41.5%), and had lived in Shanghai for more than 10 years or their entire 
life (89.3%). Adults 60 years and older reported 12.6 contacts on average (IQR: 4.0 to 16.0) 
whereas those 19-59 years had 21.4 contacts (IQR: 5.0 to 33.0) and participants 0-18 years old 
had an average of 20.5 contacts (IQR: 4.0 to 34.0). Employed persons reported a number of 
contacts similar to that of students (22.5 vs. 21.2 on average). Approximately, 73.1% of 
participants completed the diaries during a weekday (Monday-Friday) and had more contacts on 
average (mean: 20.3, IQR: 5.0 – 32.0) compared to the weekend days. Most participants (65.8%) 
completed their contact diaries on a regular day (i.e., a working day not during school vacations).  
 
Seasonality of contact patterns. A negative binomial regression model with a log link function 
was used to estimate the effects of seasonality on human contact patterns while adjusting for the 
covariates. Estimated effects were considered statistically significant at p £ 0.05. Details are 
reported in the Methods section and in the SI Appendix. 

Seasonal and daily variations in temperature were associated with a significant decrease in the 
number of contacts. Specifically, for each degree increase in seasonal temperature trend, there is 
a decrease of 0.987 (p = 0.003, 95% CI: 0.978 to 0.996) expected contacts. Likewise, for each 
degree of daily temperature variation, expected contacts decrease by 0.981 (p = 0.009, 95% CI: 
0.966 to 0.996) contact. As a result, we estimate an average of 19.6 (95%CI: 14.9-22.2) contacts 
per day in the month of December that increases to 24.4 (95%CI: 19.0-28.0) in January and 
declines to 10.9 (95%CI: 10.1-11.9) in May (Fig 2A). There is a decreasing trend in number of 
contacts as daily maximum temperature increases possibly indicating a movement from activities 
in proximity with others (i.e., indoor aggregations) to more distanced activities with lower number 
of contacts (i.e., outdoor activities).  

Estimated variation of the reproduction number. We defined the potential reproduction 
number at time t as the number of secondary cases generated by a typical infector in a 
completely susceptible population at time t. For illustrative purpose, we set the potential 
reproduction number to be 1.4 (a typical value for seasonal influenza [23]) on December 24, 2017 
(the first day of the survey) and estimate its value at any time point of the year. The estimated 
monthly mean of the potential reproduction number decreases from 1.89 (95%CI: 1.32 to 2.40) in 
January 2018 to 1.07 (95%CI: 0.81 to 1.33) in May 2018 (Fig. 2B inset). Then, the analyses were 
extended to months beyond the study period to include all seasons of the year (from October 1, 
2017 to September 30, 2018). We estimate an increasing trend through the fall and winter 
seasons, which starts from a value of 1.14 (95%CI: 0.78-1.39) in October, followed by a gradual 
decrease in average estimated contacts through the spring season, reaching 0.96 (95%CI: 0.78 
to 1.03) in June and remaining on average below the epidemic threshold throughout the summer 
(Fig. 2B). 
 
The main analysis used maximum daily temperature as a measurement for temperature seasonal 
trend and daily variation because individuals are likely to engage in activities during the warmest 
parts of the day. To assess the robustness of our findings, we carried out two sensitivity analyses 
for additional meteorological measurements: average daily temperature and absolute humidity. 
Absolute humidity  has been used in previous literature as a measurement for seasonality [9, 10]; 
therefore, it was included in this sensitivity analysis to assess consistency. Trends using average 
daily temperature reflected those in the main analysis with the estimated monthly mean potential 
reproduction number decreasing from 2.12 (95%CI: 1.66 to 2.44) in January to 0.93 (95%CI: 0.86 
to 1.02) in May (Fig. S6B). Results using absolute humidity showed a similar pattern, although 
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with lower values, with a decreasing trend from January (R0 = 1.91; 95%CI: 1.50 to 2.09) to May 
(R0 = 0.61; 95%CI: 0.50 to 0.72) (Fig. S6C).  
 
Modeling influenza spread. Among the different respiratory infectious diseases showing clear 
seasonal trends, we select influenza as an illustrative example. We calibrated a simple 
homogenous-mixing compartment model to obtain R0=1.4 on December 24 [23] and a generation 
time of 2.8 days [24]. By simulating a set of epidemics, each one seeded on the first day of each 
month, we estimated seasonal variations in key epidemiological outcomes. Simulations account 
for the estimated variability in the number of contacts for each day. The model’s details are 
reported in the Methods section. 
 
Median infection attack rates were approximately 30% with the exception of epidemics seeded in 
February (12.8%; 95%CI: 2.8 to 24.8) and March (17.5%; 95%CI: 0.1 to 44.9), although seeding 
the epidemic in the spring lead to highly variable results (Fig. 3A). Overall, the median infection 
attack rates range from 10% to 30% which is consistent with previous estimates for influenza [25-
27] . As shown in Figure 3B, median peak week incidence is highest for an epidemic beginning 
on October 1 (698 new infections per 10,000 individuals; 95%CI: 3738 to 1,101) and lowest for an 
epidemic beginning on February 1 (200 new infections per 10,000 individuals; 95%CI: 39 to 442). 
When we seed the epidemic on October 1 - a typical time for the start of influenza in the Northern 
hemisphere [25] – the simulations show a bell-shape curve with a likely peak in January-February 
(Fig. 3C). The daily net reproduction number increases from October until mid-December before 
gradually declining throughout the rest of the year (Fig. 3D). Results obtained by seeding the 
epidemic at different times of the year are reported in the SI Appendix (Fig. S9 & Fig. S10). 
 
To assess variations in these estimates, sensitivity analyses were conducted using two additional 
R0 values of 1.2 and 1.6. When R0 = 1.2 and the epidemic is seeded in October, infection attack 
rates ranged from 0.0% to 8.6% with median peak week incidence being highest in November 
(121 new infections per 10,000 individuals; 95%CI: 32 to 811) and lowest in June (0 new 
infections per 10,000 individuals; 95%CI: 0 to 327) (Fig. S11A-D). When R0 = 1.6, infection attack 
rates ranged from 20.1% to  46.8% with median peak week incidence being highest in November 
(1,227 new infections per 10,000 individuals; 95%CI: 1,026 to 1,668) and lowest in March (386 
new infections per 10,000 individuals; 95%CI: 139 to 585) (Fig. S12A-D).  
 
To evaluate differences between climates, the same approach and data were used to simulate 
epidemics in other locations assuming contact patterns being similar to those we estimated for 
Shanghai, but with changes in temperature. Specifically, Beijing and Guangzhou were chosen 
because of their climatic conditions being very different from Shanghai. Beijing has a humid, 
continental climate where summers are hot and humid and winters are cold [28] while Guangzhou 
has a humid, subtropical climate [29]. Compared to simulation results of Shanghai, both locations 
showed lower median infection attack rates where rates for Beijing were approximately 25% with 
the exception of January (16.1%; 95%CI: 3.1 to 39.5) and February (9.1%; 95%CI: 0.1 to 28.8) 
(Fig. S8A). Rates for Guangzhou were slightly lower at around 23% with the exception of January 
(11.9%; 95%CI: 2.8 to 51.2), February (8.4%; 95%CI: 0.08 to 40.4), and March (15.5%; 95%CI: 
0.01 to 36.5) (Fig. S8A). Likewise, peak week incidence was lowest for Guangzhou remaining 
below 500 new infections per 10,000 individuals with slightly higher rates in Beijing and the 
highest rates in Shanghai (Fig. S8B). Interestingly, in Guangzhou (which lies on the Tropics of 
Cancer), we estimate the potential reproduction number to be above the epidemic threshold year-
round (Fig. S7C). 
 
Discussion  
 
Results of the current study demonstrated a strong association between weather and human 
contact patterns; specifically, these findings suggest that the number of contacts is dependent on 
the season and variations in daily temperature. Similarly, the influenza transmission model 
informed with the measured contact patterns showed a marked seasonal trend, further illustrating 
this relationship as a possible driver for seasonality of respiratory viruses. While there is no 
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distinction between indoor and outdoor contacts, these patterns indicate marked human 
behavioral changes driven by seasonal changes. From being in proximity with others during the 
cold weather season to fewer close contacts during the warm season, suggesting a shift from 
indoor to outdoor activities. This would likely be the case for contacts made in community 
locations outside of usual social environments such as homes, schools, and workplaces due to 
changes in gathering/meeting contexts. To assess these associations, the current study included 
an additional analysis of the community contacts which reflected the strong associations between 
seasonal trend and contact patterns, but not for daily temperature variations (Table S3).   
 
In the main analysis, employed persons had significantly more contacts than those who were 
unemployed, and working days had significantly more contacts than weekend days, suggesting 
most contacts happen during work-related activities. Inverse associations between number of 
contacts and weekend days found in the main analysis are supported by claims in previous 
literature that people have more contacts during working days [7]. In contrast, there are 
significantly more community contacts on Sundays and Saturdays than during the weekend days, 
and unemployed persons have more community contacts than employed individuals (Table S3). 
Variations in weekend schedules and routines for unemployed people may allow for more 
opportunities to interact in the community. This may explain the significantly lower number of total 
contacts found for unemployed individuals.  
 
This research has a number of limitations surrounding the nature of the contact survey and the 
modeling work. First, data for human contact patterns was taken from a single location; therefore, 
these findings cannot be generalized to areas outside of Shanghai. However, this is one of few 
studies examining the relationship between seasonality and human contact patterns and can be 
used to guide future research on this topic. This study also made general conclusions over an 
entire year despite having only 6 months of data which was addressed by using the regression 
model to predict estimates but will need to be checked using new data that covers an entire year. 
The survey was conducted during the pre-COVID era, in the absence of national mitigation 
interventions. Consequentially, it is unknown whether these findings are upheld during or after the 
COVID-19 pandemic; therefore, future studies should examine human contact data collected after 
2019 to check whether these findings hold. Regarding the transmission model, the current study 
uses a simple, homogenous compartmental model to assess patterns of an epidemic consistent 
with influenza. We did not intend to provide a realistic model calibrated on a specific influenza 
season, considering school calendars, vaccination, age-specific transmission risks and 
susceptibility to infection. 
 
Despite the above limitations, these results may be instrumental in explaining the seasonality of 
respiratory diseases such as influenza. Multiple simulations for influenza were compared using 
different attack rates illustrating consistent variations in incidence of disease over time based on 
differences in contact patterns and starting dates of the epidemic. When seeding an epidemic on 
October 1, there is one distinct peak of mean weekly incidence and gradual decreasing trend 
after the peak date. However, when considering an epidemic that begins on March 1, there is a 
small peak of infections in June with much larger peak in January-February (Fig. S9F). There is a 
slight increasing trend in the daily net reproduction number through March before declining below 
1.0 between May and October followed by a gradual increase through the winter season (Fig. 
S10F). These patterns reflect those seen in the United Kingdom during the 2009 H1N1 pandemic 
[18]. 
 
While this study modeled simulations for influenza, these findings can be used to model any 
infectious disease that demonstrates a seasonal pattern in transmission such as RSV, measles, 
and COVID-19 [1-5]. Nonpharmacologic interventions aimed at limiting the number of contacts 
were able to reduce SARS-CoV-2 transmission [30-33], showing that seasonal trends in contact 
patterns could contribute to induce seasonality in COVID-19. In fact, despite the implementation 
of interventions contributed to mask seasonal trends in COVID-19, higher rates of SARS-CoV-2 
infection and mortality are, nevertheless, recorded during colder months [20, 34, 35]. The 
mechanism proposed in this study could potentially improve our understanding of SARS-CoV-2 
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transmission patterns year-round and help elucidating possible seasonal trends in the post-
pandemic phase. 
 
Methods 
The current study is based on data collected for 965 individuals in Shanghai, China who 
participated in a diary-based contact survey conducted from December 24, 2017 to May 30, 
2018. Individual demographic and socioeconomic information of the study participants were 
collected along with the number of persons with whom they had contact during a 24-hour period 
before the interview, the date when contacts occurred, and details of each contact (i.e., 
relationship, location, duration, and type). Meteorological data for Shanghai was obtained for the 
Hongqiao International Airport Station using an online historical archive of weather reports [36]. 
Daily temperatures for the study period were matched to the dates when participants completed 
their contact diaries.  
 
Seasonal Trend and Daily Temperature Variation. Seasonal trend was estimated by fitting a 
cubic smoothing spline to the maximum daily temperatures between December 24, 2017 and 
May 30, 2018. Daily temperature variation was defined as the difference between the maximum 
daily temperatures and the seasonal trend.  
 
Covariates. In addition to the temperature seasonal trend and daily variation, several covariates 
were included in the analysis to adjust for characteristics and sources of potential influence on 
human contact patterns. These covariates are age, gender, household size, occupation type, live 
year, weekday, and type of day the diary was completed. Interview responses indicating a 
participant did not know or was unwilling to answer were recoded as missing.  
 
Age groups were created for the descriptive analysis, stratifying participants into three age groups 
(0-18, 19-59, and 60+ years old). Age groups were chosen based on dominant social 
environments (i.e. school, work, and retirement). Gender categories included Male or Female. 
Occupation type was separated into three categories: Student, Employed, Not Employed. 
Participants attending preschool were included into the Student category and the retired 
participants into the Not Employed category. For the regression analysis, age and household size 
were normalized by calculating their overall means for each category of the occupation type. 
These means were then subtracted from the age or household size of individuals in that category 
to determine their normalized age and their normalized household size.  
 
The live year variable was defined as the number of years a participant had resided in Shanghai. 
Categories for live year included <6years, 6-10 years, or >10 years/entire life. Participants who 
were younger than the number of years they had resided in Shanghai were recategorized with a 
live year of >10 years/entire life. The weekday variable included three levels: Monday-Friday, 
Saturday, and Sunday. Type of day was defined as whether the diary was completed on a regular 
day, irregular day, or New Year holiday. The irregular day referred to days when a person had 
significant variations to their normal day schedules (e.g., day off or school holiday). New year 
holiday types of day included participants who reported completing the diaries on irregular days 
during the New Year holiday season, from January 26 to February 22, 2018.  
 
A full description of the contact survey can be found in Zhang et al. [22] and contact diaries are 
openly available on Zenodo [37]. 
 
Ethics statement. Ethics approval was received from the institutional review board of the School 
of Public Health, Fudan University (IRB no. 2018-01-0659S). Informed consent was obtained 
from all subjects (from a parent or guardian if the participant was under 18 years of age).  
 
Regression analysis. The effect of seasonal trend and daily temperature variation on total 
contacts was analyzed using negative binomial regression while adjusting for covariates 
normalized age, normalized household size, occupation type, gender, weekdays, live year, and 
type of day. Observations with a Cook’s Distance greater than 20 times the mean value were 
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considered outliers and excluded from the analysis. Incidence rate ratios were calculated by 
exponentiating the coefficients and confidence interval from the regression results (Fig. S3). 
Diagnostics were performed to assess regression assumptions (Fig. S2).  
 
Two sensitivity analyses were performed using alternative meteorological data in Shanghai. All 
methods remained the same except seasonal trend and daily variations were calculated using 
average daily temperatures or the daily maximum absolute humidity.  
 
Estimated Contacts. A new dataset was created to include observations for each day between 
December 24, 2017 and May 30, 2018 (n = 158) using the variables included in the regression. 
Occupation types, live years, weekdays, types of day, and gender were included as dummy 
variables for each category. Normalized age and normalized household size were fixed to their 
mean values, dummy variables for Saturday and Sunday were assigned a value of 1 when 
corresponding to Saturday and Sunday on the calendar respectively, all other variables were set 
to their reference group (gender = male, occupation type = Employed, live years = >10 
years/entire life), and seasonal trend and daily variation was assigned their true values for each 
day. Each observation was transformed into a matrix with 1,000 observations, each with the exact 
same values.  
 
Confidence intervals from the regression output for seasonal trend and daily temperature 
variation were used to create 1,000 multinomial samples for variable coefficients. These sample 
values were used to replace the coefficients for seasonal trend and daily variation in the 
regression model, resulting in 1,000 new model predictions for each day. Daily total contacts 
were estimated by calculating the means and 95% CI for each day from the predicted values.  
 
Variation in the reproduction number. The potential reproduction number for each day was 
calculated by multiplying the estimated number of contacts in that day by a scaling factor. The 
scaling factor was chosen so that the basic reproduction number corresponds to 1.4 on 
December 24, 2017. This process for estimating contacts and the potential reproduction number 
was repeated for every day from October 1, 2017 to September 30, 2018. Seasonal trends and 
daily temperature variations were calculated for the entire year.  
 
Infection transmission model.  
 
We use a homogenous-mixing transmission model that classified individuals into three 
compartments: susceptible (S), infectious (I), and removed (R). The following equations were 
used to simulate the transmission process: 
 

Ṡ(t) = −βc(t)
I(t)
N S(t) 

İ(t) = 	βc(t)
I(t)
N S(t) − γI(t) 

Ṙ(t) = 	γI(t) 
 
Where: 

- N represents the total number of individuals in the population and it is set to 1,000,000; 
- g represetns the recovery rate; 
- c(t) represents the number of contacts at time t; 
- b represents the per-contact transmission rate. 

 
For the simple SIR model, the recovery rate corresponds to the inverse of the generation time 
[38], which we set at 2.8 days, in agreement with influenza literature [24]. The contact rate for 
each day of the study period was derived from the analysis of the contact survey data. The 
transmission rate was set to obtain R0=1.4 (1.2. and 1.6 were used as sensitivity analyses) on 
December 24, 2017. The uncertainty on the estimated daily number of contacts was included by 
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randomly selecting 50 time series of the number of contacts c(t) predicted by the regression 
model.  
 
Infection attack rates were calculated by dividing the number of infected individuals at the end of 
each simulation by the total simulated population. Weekly incidence of new infections for each 
simulation was found by calculating the difference between the incidence at the beginning and 
end of each week and then dividing it by the total simulated population. The mean and 95% IQR 
across all simulations were calculated to obtain mean weekly incidence. Peak week incidence 
was defined as the maximum weekly incidence and calculated by obtaining the maximum weekly 
incidence for each simulation and then choosing the median values and 95% IQR. The daily net 
reproduction number was calculated as the reproduction number multiplied by the fraction of 
suscepitle population on that day. Infection attack rates, weekly incidence of new infections, peak 
week incidence, and daily net reproduction number were calculated for an epidemic beginning on 
the first day of each month.  
 
In addition to Shanghai, daily maximum temperatures for two additional locations (Guangzhou 
and Beijing, China) were included to evaluate the differences between climatic conditions. The 
climate in Shanghai is considered humid, subtropical; however, the city experiences all four 
seasons with temperate to cold, damp winters [39]. While Guangzhou also has a humid, 
subtropical climate, the winters are dry and more temperate [29]. In contrast, Beijing’s climate is 
classified as humid continental where the summers are hot and humid, and the winters are dry 
and cold, albeit brief [28]. Meteorological data was obtained from the Beijing Capital International 
Airport Station [40] and the Guangzhou Baiyun International Airport Station [41] from an online 
historical archive of weather reports. For these sensitivity analyses, the regression output from 
the main analysis was used to estimate the number of contacts and potential reproduction 
numbers based on the temperature time series in each location. Methods for calculating seasonal 
trend, estimating contacts, estimating the potential reproduction number, infection attack rates, 
and peak week incidence remained the same.  
 
Analyses were performed using R software (version 4.1.0). 
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Figures and Tables 

 
 

 
 
Figure 1. A. Average number of contacts and number of participants interviewed in Shanghai, 
China during each week from December 24, 2017 to May 30, 2018. B. Daily maximum 
temperature (°C) for each day during the study period, the seasonal trend of the temperatures, 
and the daily variation between the maximum temperature and the seasonal trend. 
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Figure 2. A. Estimated daily number of contacts for each week when seasonal trend, daily 
variation, and weekday vary while all other variables were fixed between December 24, 2017 to 
May 30, 2018. Inset shows estimated number of contacts for each day. Line and shaded area 
represent the mean and 95% CI of the daily values, respectively. B. Estimated potential 
reproduction number for each week extended over the whole year without consideration for 
differences in contact patterns during summer breaks. Inset shows the potential reproduction 
number for each day, which was set at 1.4 on December 24. Line and shaded area represent the 
mean and 95% CI of the mean daily values for each season, respectively.  
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Figure 3. A. Infection attack rate for an epidemic beginning on October 1, 2017. The boxplot 
reports quantiles 0.025, 0.25, 0.5, 0.75, and 0.975 of the distribution. B. Peak week incidence for 
an epidemic beginning on the first day of each month from October 2017 to September 2018. The 
boxplot reports quantiles 0.025, 0.25, 0.5, 0.75, and 0.975 of the distribution. C. Weekly incidence 
of new infections per 10,000 people for an epidemic seeded on October 1, 2017. Lines represent 
four randomly selected simulations. The shaded area represents the 95% IQR of the distribution. 
D. Daily net reproduction number for an epidemic beginning on October 1, 2017. Lines represent 
four randomly selected simulations. The shaded area represents the 95% IQR of the distribution. 
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Table 1. Descriptive statistics for the total contacts. 
 

    Number of Contacts 
  N (%) Mean IQR 
Total 965 (100.0) 18.73 (4.00, 30.00) 
Gender       

Female 491 (50.9) 18.54 (4.00, 29.50) 
Male 474 (49.1) 19.01 (4.25, 31.00) 

Age group       
0-18 221 (22.9) 20.49 (4.00, 34.00) 
19-59 477 (49.4) 21.44 (5.00, 33.00) 
60+ 267 (27.7) 12.58 (4.00, 16.00) 

Occupation Type       
Student 252 (26.2) 21.22 (4.00, 34.00) 
Employed 400 (41.5) 22.49 (6.00, 34.00) 
Not Employed 307 (31.8) 12.03 (3.00, 15.00) 
Missing 6 (0.6) 13.00 (3.00, 9.00) 

Live year       
< 6 years 47 (4.9) 17.68 (4.00, 22.50) 
6-10 years 52 (5.4) 20.87 (5.00, 34.50) 
>10 years/entire life 862 (89.3) 18.73 (4.00, 29.75) 
Missing 4 (0.4) 13.75 (3.75, 19.50) 

Type of Day       
Regular day 635 (65.8) 18.72 (4.00, 31.00) 
New year holiday 211 (21.9) 17.72 (5.00, 21.00) 
Irregular day 96 (9.9) 22.38 (6.75, 36.00) 
Missing 23 (2.4) 14.91 (4.00, 26.00) 

Weekday       
Monday – Friday 705 (73.1) 20.30 (5.00, 32.00) 
Sunday 143 (14.8) 15.36 (4.00, 20.5) 
Saturday 117 (12.1) 13.75 (4.00, 17.00) 

Note. IQR = Interquartile range. 
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Table 2. Negative binomial regression models of the effects of seasonal trend and daily 
temperature variation on total contacts adjusting for the covariates. 
 

Effect Number of Contacts 
Estimate Pr(>|z|) 95% CI 

Seasonal trend -0.013 0.003** (-0.022, -0.004) 
Daily temperature variation -0.019 0.009** (-0.034, -0.004) 
Normalized age 0.005 0.114 (-0.001, 0.011) 
Normalized household size 0.059 0.054 (-0.002, 0.121) 
Occupation Type    

Employed ref   
Not Employed -0.680 <0.0001*** (-0.834, -0.525) 
Students -0.010 0.198 (-0.253, 0.055) 

Live year    
>10 years/entire life ref   
< 6 years -0.177 0.224 (-0.459, 0.123) 
6-10 years 0.054 0.694 (-0.209, 0.334) 

Weekday    
Monday – Friday ref   
Saturday -0.395 <0.0001*** (-0.584, -0.199) 
Sunday -0.202 0.024* (-0.378, -0.021) 

Type of Day    
Regular day ref   
Irregular day 0.162 0.121 (-0.039, 0.372) 
New year holiday -0.183 0.056 (-0.372, 0.007) 

Gender    
Male ref   
Female 0.060 0.344 (-0.067, 0.187) 

Note. Total N = 965. df = 910. CI = Confidence Intervals. 
*p < 0.05. ** p < 0.01. ***p < 0.001. 
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