Cortico-cortical connectivity is normalised by levodopa in tremor-dominant Parkinson’s disease

Rurak, B.K.¹,² Rodrigues, J.P.⁴, Power, B.D.⁴,⁵ Drummond, P.D.¹,² Vallence, A.M.¹,²,³

Abstract

Background: Resting tremor, which involves involuntary and rhythmic movements of one or more body parts, is the most common presenting motor symptom in Parkinson’s disease. As Parkinson’s disease tremor is not associated with the severity of dopaminergic cell loss in the basal ganglia, other brain regions might play a role in its pathophysiology. The supplementary motor area is one of the main targets of the basal ganglia-thalamo-cortical circuit. In turn, the supplementary motor area has direct connections with the primary motor cortex, which is important for the execution of voluntary movement.

Objective: The aim of this study was to examine whether supplementary motor area—primary motor cortex connectivity and dopaminergic neurotransmission are implicated in Parkinson’s disease resting tremor.

Methods: Dual-site transcranial magnetic stimulation was used to measure supplementary motor area—primary motor cortex connectivity ON and OFF levodopa medication, and resting tremor was measured using electromyography and accelerometry.

Results: Stimulating the supplementary motor area had an inhibitory influence on primary motor cortex excitability OFF levodopa, which was normalised ON levodopa. The normalisation of supplementary motor area—primary motor cortex connectivity in the ON state might be mediated by an increase in dopamine levels in the basal ganglia, which reduces
SMA-M1 connectivity in Parkinson’s disease

Supplementary motor area—primary motor cortex connectivity ON medication was inhibitory rather than facilitatory in patients with the strongest resting tremor, suggesting that supplementary motor area—primary motor cortex connectivity might play an important role in resting tremor.

Discussion: The current findings contribute to our understanding of the neural networks involved in Parkinson’s disease and provide a neurophysiological basis for the development of interventions to reduce Parkinson’s disease resting tremor severity.

Author affiliations:

1. Discipline of Psychology, College of Science, Health, Engineering and Education, Western Australia, Australia
2. Centre for Healthy Ageing, Health Futures Institute, Murdoch University, Western Australia, Australia
3. Centre for Molecular Medicine and Innovative Therapeutics, Western Australia, Australia
4. Hollywood Private Hospital, Western Australia, Australia
5. School of Medicine Fremantle, University of Notre Dame, Western Australia, Australia

Correspondence to: Brittany K. Rurak

Address: Murdoch University, 90 South Street, Murdoch WA 6150

Email address: brittany.rurak@murdoch.edu.au

Glossary
SMA-M1 connectivity in Parkinson’s disease

AMT = active motor threshold; **ECR** = extensor carpi radialis; **FCR** = flexor carpi radialis; **FDI** = first dorsal interosseous; **ISI** = inter-stimulus interval; **MSO** = maximum stimulator output; **MEP** = motor evoked potential; **M1** = primary motor cortex; **SI_{1 mV}** = stimulator intensity to elicit peak-to-peak MEPs of ~1 mV; **SMA** = supplementary motor area; **TMS** = transcranial magnetic stimulation.
Introduction

Parkinson’s disease (PD) is a heterogeneous neurodegenerative disorder characterised by progressive motor and non-motor symptoms\(^1,2\). Tremor is the most common presenting motor symptom, involving involuntary and rhythmic movements of one or more body parts, which often develops early in the disease\(^3,4\). The pathological hallmark of PD is a progressive degeneration of dopaminergic neurons in the basal ganglia (specifically the substantia nigra), impacting the nigrostriatal pathway, resulting in altered function both in subcortical and cortical areas of the brain important for motor control\(^5,6\). Dopamine transporter imaging studies show associations between striatal dopamine binding and bradykinesia, but not with PD tremor\(^7,8\). Furthermore, the response of tremor to dopaminergic medication varies greatly within and between people with PD, with some individuals showing dopamine-resistant tremor\(^9,10\). Together, these results suggest that dopamine depletion in the basal ganglia cannot fully explain PD tremor; instead, it is hypothesised that functional changes in cortical regions targeted by the basal ganglia might underpin PD tremor.

The supplementary motor area (SMA) is one of the main targets of the basal ganglia-thalamocortical circuit: SMA receives input from the globus pallidus directly and indirectly via the motor thalamic nuclei\(^11-15\). The main efferent pathway from SMA is to the primary motor cortex (M1)\(^16,17\). Evidence from functional magnetic resonance imaging (fMRI) in people with PD shows increased blood-oxygen-level dependent (BOLD) activity in SMA and M1 ON compared to OFF levodopa medication during simple motor tasks, such as moving a joystick\(^18,19\), suggesting that dopamine modulates both SMA and M1 activity in PD. fMRI is useful for showing brain regions that are simultaneously active during a task, but it is unclear...
SMA-M1 connectivity in Parkinson’s disease

whether changes in the BOLD signals are due to excitation of facilitatory or inhibitory circuits, or both. Facilitatory and inhibitory circuits have been shown to have different roles in motor control (for example: 20,21,22), and might be differentially associated with PD tremor.

Transcranial magnetic stimulation (TMS) is a non-invasive brain stimulation technique that can be used to measure interactions between regions in the cortical motor network, including between SMA and M1 23-25. A single-pulse TMS protocol is used to provide a measure of corticospinal excitability: a single suprathreshold TMS pulse delivered to M1 elicits a motor-evoked potential (MEP) that is measured from the target muscle using electromyography. A dual-site TMS protocol is used to provide a measure of interactions between SMA and M1: a conditioning stimulus delivered to SMA before a test stimulus delivered to M1 with inter-stimulus intervals (ISI) of 6 ms and 7 ms facilitates the MEP amplitude compared to a test stimulus-alone (single-pulse to M1) 23-25,29,30, which is likely due to the activation of glutamatergic excitatory interactions between SMA and M117,30,31. Dual-site TMS reliably measures SMA-M1 connectivity in younger and older adults 32, but SMA-M1 connectivity has not been characterised in PD. Both SMA and M1 are implicated in resting tremor: single-pulse TMS delivered to SMA and M1 interrupts ongoing tremor activity and resets tremor to a new point in the tremor cycle 33. Therefore, it is plausible that SMA-M1 connectivity plays a role in PD resting tremor.

In the current study, the primary aim was to examine SMA-M1 connectivity in PD both ON and OFF levodopa dopaminergic medication. An exploratory aim was to examine whether SMA-M1 connectivity was associated with the severity of PD resting tremor ON and OFF levodopa. We hypothesised that the magnitude of SMA-M1 connectivity would be greater
SMA-M1 connectivity in Parkinson’s disease

ON than OFF medication, and a reduction in SMA-M1 connectivity in the OFF state would be associated with more severe resting tremor.

Methods

Participants

Eighteen people with PD (age range: 54-79 years; disease duration range: 3-13 years) recruited from a local private hospital outpatient clinic participated in this study: Table 1 shows participant characteristics. All participants were screened and excluded if they presented with contraindications to TMS, potential cognitive impairments, and advanced Parkinson’s disease progression (see Supplementary Materials section: S1.1.Screening). All participants had a clinical diagnosis of idiopathic PD by a movement disorder neurologist (J.P.R), resting tremor involving at least one upper limb, and were treated with levodopa. Patients with head tremor or severe upper limb dyskinesia were excluded to avoid technical difficulties with stable TMS coil placement. Inclusion and exclusion criteria were assessed by a neurologist (J.P.R) and neuropsychiatrist (B.D.P). The protocol was performed following the Declaration of Helsinki and approved by the Murdoch University Human Research Ethics Committee (2018/117). All participants gave written informed consent before participation.
Table 1.
Demographic and clinical characteristics of participants.

<table>
<thead>
<tr>
<th>Participant</th>
<th>Sex</th>
<th>H&Y score</th>
<th>Levodopa medication</th>
<th>Levodopa dose per day</th>
<th>Other medication</th>
<th>Levodopa equivalent daily dose 1</th>
<th>MDS-UPDRS part III 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>M</td>
<td>2</td>
<td>250 mg</td>
<td>4</td>
<td></td>
<td></td>
<td>1000</td>
</tr>
<tr>
<td>2</td>
<td>M</td>
<td>1</td>
<td>200 mg</td>
<td>3</td>
<td>Telmisartan Amlodipini: blood pressure</td>
<td>600</td>
<td>3 ON 2 OFF</td>
</tr>
<tr>
<td>3</td>
<td>M</td>
<td>1</td>
<td>200 mg</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>M</td>
<td>1</td>
<td>100 mg</td>
<td>3</td>
<td>Sifrol ER 3 mg: PD symptoms</td>
<td>600</td>
<td>1 ON 2 OFF</td>
</tr>
<tr>
<td>5</td>
<td>M</td>
<td>1</td>
<td>250 mg</td>
<td>4</td>
<td>Sifrol ER 3 mg: PD symptoms Pariet: stomach acid</td>
<td>1300</td>
<td>1 ON 5 OFF</td>
</tr>
<tr>
<td>6</td>
<td>M</td>
<td>1</td>
<td>200 mg</td>
<td>3</td>
<td></td>
<td></td>
<td>600 1 ON 1 OFF</td>
</tr>
<tr>
<td>7</td>
<td>M</td>
<td>1</td>
<td>200 mg</td>
<td>3</td>
<td>Sifrol ER 4.5 mg: PD symptoms Progout: gout Atacand: blood pressure Flomaxtra: unitary relief Lipitor: cholesterol</td>
<td>1050</td>
<td>5 ON 2 OFF</td>
</tr>
<tr>
<td>8</td>
<td>F</td>
<td>1</td>
<td>125 mg</td>
<td>3</td>
<td>Pramipexole 1.5 mg: PD symptoms</td>
<td>525</td>
<td>2 ON 3 OFF</td>
</tr>
</tbody>
</table>

1 Levodopa dose is in milligrams per day.

2 H&Y score ranges from 1 (least severe) to 5 (most severe).

<table>
<thead>
<tr>
<th>MDS-UPDRS part III</th>
<th>ON</th>
<th>OFF</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>8</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>
SMA-M1 connectivity in Parkinson’s disease

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>M</td>
<td>3</td>
<td>200 mg</td>
<td>3</td>
</tr>
<tr>
<td>10</td>
<td>M</td>
<td>1</td>
<td>100 mg</td>
<td>3</td>
</tr>
<tr>
<td>11</td>
<td>M</td>
<td>1</td>
<td>250 mg</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>M</td>
<td>1</td>
<td>250 mg</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>F</td>
<td>2</td>
<td>100 mg</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>M</td>
<td>1</td>
<td>100 mg</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>M</td>
<td>1</td>
<td>200 mg</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>F</td>
<td>1</td>
<td>50 mg</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>M</td>
<td>1</td>
<td>100 mg</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>F</td>
<td>2</td>
<td>200 mg</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>M</td>
<td>1</td>
<td>250 mg</td>
<td>3</td>
</tr>
</tbody>
</table>

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>M</td>
<td>3</td>
<td>200 mg</td>
<td>3</td>
</tr>
<tr>
<td>10</td>
<td>M</td>
<td>1</td>
<td>100 mg</td>
<td>3</td>
</tr>
<tr>
<td>11</td>
<td>M</td>
<td>1</td>
<td>250 mg</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>M</td>
<td>1</td>
<td>250 mg</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>F</td>
<td>2</td>
<td>100 mg</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>M</td>
<td>1</td>
<td>100 mg</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>M</td>
<td>1</td>
<td>200 mg</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>F</td>
<td>1</td>
<td>50 mg</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>M</td>
<td>1</td>
<td>100 mg</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>F</td>
<td>2</td>
<td>200 mg</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>M</td>
<td>1</td>
<td>250 mg</td>
<td>3</td>
</tr>
</tbody>
</table>

*Sifrol ER 1.5 mg: PD symptoms
Atozet: cholesterol

F, female; M, male; PD, Parkinson’s disease; H&Y, Hoehn & Yahr; 1, a sum of each Parkinsonian medication converted into levodopa equivalent dose
2, sum of tremor scores from the MDS-UPDRS subitems for resting tremor amplitude (item 17) and constancy (item 18) in the affected upper-limb.
SMA-M1 connectivity in Parkinson’s disease

TMS

During the TMS procedure, participants were seated in a comfortable chair with both of their forearms resting on the arms of the chair. Electromyographic (EMG) activity was recorded from the relaxed first dorsal interosseous (FDI) of the hand and the extensor carpi radialis (ECR) of the forearm of the most affected arm using Ag-AgCl surface electrodes placed in a belly-tendon montage. EMG activity was amplified using a CED 1902 at a gain of 1000, bandpass filtered at 5-1000 Hz, and digitised using a CED 1401 with a sampling rate of 5 kHz. Dual-site TMS was delivered using two figure-of-eight coils (50-mm diameter), each connected to a Magstim 200 stimulator (Magstim Co., Whitland, Dyfed, UK).

Neuronavigation software (Brainsight TMS, Rogue Research, Montreal, Canada) was used to monitor coil positioning in both sessions.

The procedure for M1 stimulation is reported in the Supplementary Materials (see *SI.2.M1 stimulation site*). SMA stimulation was delivered with the coil placed on the midline using a lateral orientation (see Figure 1B in main manuscript; 5,6-9). The site of SMA stimulation was 4 cm anterior to Cz, which is the midpoint between the nasion-inion and interaural plane Cz as defined by the International 10-20 System; 5,6,9.

SI\textsubscript{1mV} intensity, SI\textsubscript{1mV}-alone MEP, AMT

M1 TMS intensity was set as the intensity (as a percentage of maximum stimulator output; %MSO) that elicited peak-to-peak MEP amplitudes of ~1 mV in the resting FDI, defined as ‘SI\textsubscript{1mV}’ 23-25,29,32. MEP amplitude elicited from single-pulse trials using the SI\textsubscript{1mV} intensity delivered to M1 was defined as ‘SI\textsubscript{1mV}-alone’ MEP amplitude (see Figure 1A). Active motor threshold (AMT) was defined as the minimum TMS intensity (%MSO) that elicited MEPs in the FDI of at least 0.2 mV from at least five out of ten consecutive trials during an isometric
SMA-M1 connectivity in Parkinson’s disease

contraction of 10% maximum voluntary contraction35. AMT was used to set the intensity of SMA stimulation. TMS intensities were determined in both sessions. The analyses performed to examine differences in TMS parameters are reported in the Supplementary Materials (see S1.3.1. Data analysis; S1.3.2. Results).

Experimental Protocol

Figure 1E shows the experimental procedure. Each participant completed two 2-hour experimental sessions: one session ON, defined as starting the experimental session within one hour of taking levodopa (range: 60-75 minutes), and one session OFF, defined as starting the experimental session a minimum of 12 hours after overnight withdrawal from dopaminergic medication (range: 12-15.5 hours). The sessions were counterbalanced across participants, separated by at least 7 days (first session was on average 7.67±1.45 days before the second session), and completed in the morning (range: 6:00-10.30 a.m.) to coincide with the individual patient dosing times and to allow for a minimum 12-hour withdrawal from medication.
Figure 1. SMA-M1 connectivity was assessed by delivering \(\text{SI}_{\text{IMV}}\)-alone and dual-site trials. Panel A shows the coil placement and current flow direction (indicated by the arrow) for \(\text{SI}_{\text{IMV}}\)-alone trials delivered to M1, and Panel C shows an example MEP elicited by \(\text{SI}_{\text{IMV}}\)-alone trials to M1 (~1mV MEP amplitude). Panel B shows the coil placement for dual-site trials: the grey coil represents the SMA stimulation site, and the black coil represents the M1 stimulation site, with arrows indicating current flow direction. The site of SMA stimulation was 4 cm anterior to Cz; this site has been shown to correspond to the anatomical representation of SMA identified using individual structural MRI in younger adults \(^5\,^6\). Panel D shows an example MEP amplitude elicited by dual-site TMS which involves delivering a conditioning stimulus to SMA (140% AMT) 7 ms before a test stimulus to M1. All measures were obtained from the tremor-affected limb. EMG and tri-axial accelerometer measures of tremor were counterbalanced across sessions and participants. SMA-M1 connectivity was quantified as the mean dual-site MEP amplitude as a ratio of the mean \(\text{SI}_{\text{IMV}}\)-alone MEP amplitude. Panel E shows the experimental procedure for ON and OFF medication: experimental sessions were separated by a minimum of 7 days.
SMA-M1 connectivity in Parkinson’s disease

SMA-M1 connectivity

SMA-M1 connectivity was assessed by delivering SI$_{1mV}$-alone (see Figure 1A) and dual-site trials (see Figure 1B). For dual-site trials, a conditioning pulse delivered to SMA (140% AMT) preceded a test pulse delivered to M1 (SI$_{1mV}$) by an inter-stimulus interval (ISI) of 7 ms. Dual-site TMS measures of SMA-M1 connectivity have been shown to be moderately reliable using an ISI of 7 ms in younger and older adults 32. The timing of the TMS pulses was controlled using a custom-developed Signal software (version 6.02) script and the digital output of a Cambridge Electronic Design analogue-digital converter (Micro 1401). The custom-developed Signal script triggered SI$_{1mV}$-alone and dual-site TMS pulses if EMG activity was below an individually determined EMG activity threshold for 50 ms, indicating no tremor at the time of TMS delivery (see Figure 2A). If EMG activity was not below the EMG activity threshold for 50 ms, TMS triggered after ~5 seconds (\pm2%), indicating some EMG activity at the time of TMS delivery (see Figure 2B): these trials were excluded from the analysis. See Supplementary Materials for more details of the custom-developed Signal script (see SI.4.Custom-developed script). Signal software was also used to pseudo-randomise trial conditions with an inter-trial interval of 5 s (\pm10%).
SMA-M1 connectivity in Parkinson’s disease

Figure 2. Example EMG traces from a participant OFF medication. SI₁mV-alone and dual-site trials were delivered after 50 ms of EMG activity below an EMG activity threshold determined for each participant (A) or if a period of ~5 seconds passed without EMG activity below the determined EMG activity threshold (B; these trials were removed from analysis). (B) shows the last 0.300 seconds of the 5 second period. The two horizontal dotted lines reflect the predetermined threshold; EMG activity within these lines indicates resting EMG activity (indicative of the absence of tremor). Thresholds (i.e., peak amplitudes; mV) were established for each participant before TMS.

Two experimental blocks each consisting of 30 trials were delivered: 15 SI₁mV-alone trials (delivered to M1) and 15 dual-site trials. Blocks lasted ~4 minutes with a 1-2-minute break.
SMA-M1 connectivity in Parkinson’s disease

between the blocks. Participants were instructed to remain quiet, not suppress tremor activity, keep their eyes open and stay awake and alert during the experimental blocks. SMA-M1 connectivity was quantified by expressing the mean dual-site MEP amplitude as a ratio of the mean SI_{1mV}-alone MEP amplitude. Ratios greater than 1.0 indicate a facilitatory effect of SMA stimulation on M1, whereas ratios less than 1.0 indicate an inhibitory effect of SMA stimulation on M1. Although stimulation parameters were optimised for the FDI, MEPs were simultaneously recorded from both FDI and ECR and, therefore, SMA-M1 connectivity was quantified separately from FDI and ECR MEPs.

Measures of PD tremor

Resting, postural and action tremor were measured using the Movement Disorder Society Unified Parkinson’s Disease Rating Scale (MDS-UPDRS), a tri-axial accelerometer, and EMG, and recorded from the most affected upper limb (n=4 left arm). Measures of resting tremor are reported here and measures of postural and action tremor are reported in the Supplementary Materials (see S2. Postural and action tremor). For resting tremor, participants were instructed to relax their forearm on the armrest of the chair without their hand touching the chair or their knee. MDS-UPDRS was assessed at the beginning of each session and completed ~35 minutes before TMS setup began. EMG and accelerometer measures of tremor were assessed ~5 minutes before and again ~5 minutes after TMS blocks to identify whether tremor changed throughout the two-hour experimental session.

MDS-UPDRS

Items 17 and 18 from the MDS-UPDRS part III were used to assess the severity of resting tremor using a 5-point scale (0: normal, 1: slight, 2: mild, 3: moderate, 4: severe). The MDS-UPDRS was rated by the experimenter (certified MDS-UPDRS assessor).
SMA-M1 connectivity in Parkinson’s disease

EMG tremor

Surface EMG was used to measure the muscular activity involved in tremor and was recorded from the FDI, ECR and flexor carpi radialis (FCR) using Ag-AgCl surface electrodes placed in a belly-tendon montage. The EMG signal was amplified (x1000; CED 1902 amplifier), bandpass filtered (10-500 Hz) and digitized at a sampling rate of 5 kHz (CED 1401 interface).

Acceleration tremor

A tri-axial accelerometer (Arduino GY-61 ADXL335; length: 21mm; width: 15 mm; height 11 mm) was used to measure tremor changes in acceleration in three dimensions (x, y, and z planes) and was placed on the proximal phalanx of the index finger, which was secured to the finger with tape. The accelerometry signal was amplified (x1000; CED 1902 amplifier), bandpass filtered (2-30 Hz) and digitized at a sampling rate of 5 kHz (CED 1401 interface). Acceleration was not measured for two participants because of technical issues with the accelerometer.

Data processing and analysis

All analyses were performed using R (version 4.1.0). Shapiro-Wilk’s test for normality was violated for one condition: SMA-M1 connectivity OFF. Normality was assumed for all t-tests and ANOVAs given that these analyses are robust to moderate violations of normality. Mauchly’s test of sphericity was not violated and, therefore, sphericity was assumed. Unless stated otherwise, all tests were two-tailed, values are expressed as mean and standard deviation, and statistical significance was accepted at an alpha level of $P<0.05$.

Resting tremor
SMA-M1 connectivity in Parkinson’s disease

Paired-sample t-tests were performed to examine differences in the MDS-UPDRS resting tremor severity score ON and OFF medication. Repeated-measures ANOVAs were performed to examine differences in mean EMG amplitude (mV) between muscles (within-subject factor: FDI, ECR, FCR), medication state (within-subject factor: ON, OFF) and time (within-subject factor: before TMS, after TMS). Repeated-measures ANOVAs were also performed to examine differences in mean acceleration amplitude (m/s²) between medication state (within-subject factor: ON, OFF) and time (within-subjects factor: before TMS, after TMS).

Relationship between resting tremor and SMA-M1 connectivity

As a first step to examine the role of SMA-M1 connectivity in PD resting tremor, exploratory Pearson’s product-moment correlation coefficients were performed to examine the relationship between SMA-M1 connectivity (FDI, ECR) and tremor measures (EMG, acceleration). This was performed separately for medication (ON, OFF), tremor measures (before and after TMS), SMA-M1 connectivity recorded from FDI and EMG recorded from FDI and SMA-M1 connectivity recorded from ECR and EMG recorded from the ECR.

Data availability

The data supporting the findings of this study are available from the corresponding author upon reasonable request.

Results

Resting tremor

Figure 3 shows column scatter plots of MDS-UPDRS (Fig 3A), mean EMG amplitude (mV; Fig 3B) and mean acceleration amplitude (m/s²; Fig 3C) for resting tremor ON and OFF
SMA-M1 connectivity in Parkinson’s disease

medication. Paired-sample t-tests showed a significant difference in resting tremor severity scores measured using MDS-UPDRS ON and OFF medication ($t_{17} = -3.25$, $P = 0.005$, $d = 0.77$). A repeated-measures ANOVA performed on mean EMG amplitude showed no significant main effect of Time ($F_{1, 17} = 0.68$, $P = 0.420$, $\eta_p^2 = 0.04$), Medication ($F_{1, 17} = 1.19$, $P = 0.291$, $\eta_p^2 = 0.07$), Muscle ($F_{2, 17} = 3.40$, $P = 0.057$, $\eta_p^2 = 0.17$), and no significant interactions (all $F < 2.68$, all $P > 0.120$, all $\eta_p^2 < 0.14$). A repeated-measures ANOVA performed on the mean acceleration amplitude showed no significant main effect of Time ($F_{1, 15} = 2.77$, $P = 0.117$, $\eta_p^2 = 0.16$), Medication ($F_{1, 15} = 0.25$, $P = 0.621$, $\eta_p^2 = 0.02$), and no significant Time*Medication interaction ($F_{1, 15} = 0.12$, $P = 0.732$, $\eta_p^2 = 0.01$).
SMA-M1 connectivity in Parkinson’s disease

Figure 3. Resting tremor recorded from the MDS-UPDRS tremor severity score (A), EMG mean amplitude (mV) (B), and acceleration mean amplitude (m/s²) ON (black circles) and OFF (grey circles) medication. EMG and acceleration were measured before and after TMS. *P<0.05.
SMA-M1 connectivity in Parkinson’s disease

Figure 4 shows SMA-M1 connectivity ratios quantified from FDI MEPs (Figure 4A) and ECR MEPs (Figure 4B). Paired-samples t-tests showed that SMA-M1 connectivity ratios were significantly greater ON than OFF medication for FDI ($t_{17}=2.39$, $P=0.029$, $d=0.56$) and ECR ($t_{17}=3.43$, $P=0.003$, $d=0.81$). ON medication, SMA-M1 connectivity ratios were not significantly different from 1.0 when quantified from FDI MEPs ($t_{17}=0.51$, $P=0.62$, $d=0.25$) or ECR MEPs ($t_{17}=1.89$, $P=0.077$, $d=0.18$). OFF medication, SMA-M1 connectivity ratios from both FDI MEPs ($t_{17}=-4.57$, $P<0.001$, $d=0.25$) and ECR MEPs ($t_{17}=-4.03$, $P=0.001$, $d=0.20$) were significantly smaller than 1.0, suggesting a conditioning stimulus to SMA had an inhibitory influence on M1 excitability when individuals were OFF medication.

Figure 4. Column scatterplots show SMA-M1 connectivity quantified from FDI MEPs (A) and ECR MEPs (B) ON (black circles) and OFF medication (grey circles). SMA-M1 ratios greater than 1.0 indicate a facilitatory effect of SMA on M1 excitability, whereas SMA-M1 ratios less than 1.0 indicate an inhibitory effect of SMA on M1 excitability. *$P<0.05$.
SMA-M1 connectivity in Parkinson’s disease

SMA-M1 connectivity and tremor

Table 2 shows results for all exploratory correlations performed to examine relationships between SMA-M1 connectivity ratios (FDI, ECR) and mean amplitude (EMG, acceleration) for resting tremor. Figures 5 and 6 show the relationship between SMA-M1 connectivity recorded from FDI and tremor amplitude measured using EMG recorded from FDI (Fig 5) and acceleration (Fig 6). Scatterplots showing (1) ECR SMA-M1 connectivity and resting tremor; (2) FDI and ECR SMA-M1 connectivity and postural and action tremor are presented in the Supplementary Materials (see S3. **Relationship between postural and action tremor and SMA-M1 connectivity** and S4. **Relationship between resting tremor and ECR SMA-M1 connectivity**). ON medication, greater FDI SMA-M1 connectivity was significantly associated with less severe tremor amplitude recorded using EMG from FDI (Fig 5) and acceleration (Fig 6) before and after TMS. Additionally, ON medication, greater ECR SMA-M1 connectivity was significantly associated with less severe tremor amplitude recorded using EMG from ECR before and after TMS. No other significant associations were found between SMA-M1 connectivity and resting tremor.
SMA-M1 connectivity in Parkinson’s disease

Table 2.
Results of correlations between SMA-M1 connectivity (FDI, ECR) and resting tremor severity (EMG, acceleration). SMA-M1 connectivity was only correlated with the corresponding muscles recorded using EMG (i.e., FDI SMA-M1 and FDI EMG; ECR SMA-M1 and ECR EMG). Significant correlations are bolded.

<table>
<thead>
<tr>
<th></th>
<th>EMG</th>
<th></th>
<th>Acceleration</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ON</td>
<td>OFF</td>
<td>ON</td>
<td>OFF</td>
</tr>
<tr>
<td></td>
<td>Before</td>
<td>After</td>
<td>Before</td>
<td>After</td>
</tr>
<tr>
<td>FDI</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SMA-M1 connectivity</td>
<td>-0.59 (0.001)</td>
<td>-0.56 (0.015)</td>
<td>0.11 (0.656)</td>
<td>0.21 (0.407)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-0.74 (0.001)</td>
<td>-0.52 (0.037)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.43 (0.096)</td>
<td>0.05 (0.861)</td>
</tr>
<tr>
<td>ECR</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SMA-M1 connectivity</td>
<td>-0.48 (0.042)</td>
<td>-0.48 (0.045)</td>
<td>0.21 (0.407)</td>
<td>0.20 (0.430)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-0.12 (0.648)</td>
<td>-0.10 (0.701)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-0.10 (0.625)</td>
<td>-0.13 (0.481)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

EMG, electromyography; FDI, first dorsal interosseous; ECR, extensor carpi radialis; Recordings of resting tremor using EMG and acceleration were performed immediately before and after TMS measures. All significant findings are bolded.
SMA-M1 connectivity in Parkinson’s disease

Figure 5. Scatterplots show the relationship between the magnitude of FDI SMA-M1 connectivity ratios and FDI resting tremor amplitude (mV) ON medication (A; black circles) and OFF medication (B; grey circles). This figure shows tremor amplitude measured using EMG before but not after TMS, as there was no significant difference in tremor measured at the two time points. *P<0.05.
SMA-M1 connectivity in Parkinson’s disease

Figure 6. Scatterplots show the relationship between the magnitude of FDI SMA-M1 connectivity ratios and resting tremor acceleration (m/s²) ON medication (A; black circles) and OFF medication (B; grey circles). This figure shows tremor amplitude measured using acceleration before but not after TMS, as there was no significant difference in tremor measured at the two time points. *P<0.05.

Discussion

The aim of this study was to examine SMA-M1 connectivity using dual-site TMS in people with PD ON and OFF levodopa medication. There were two main findings. First, there was an inhibitory influence of SMA stimulation on M1 excitability OFF medication, which was reduced ON medication. Second, ON medication, individuals who showed SMA-M1 facilitation had reduced tremor amplitude while those with SMA-M1 inhibition had an increased tremor amplitude.
SMA-M1 connectivity in Parkinson’s disease

OFF medication: Inhibitory influence of SMA on M1 excitability

This is the first study to measure SMA-M1 connectivity using dual-site TMS in PD. We found that MEP amplitude in FDI was significantly smaller for dual-site stimulation targeting SMA and M1 compared to M1 stimulation alone, suggesting a significant inhibitory influence of SMA stimulation on M1 excitability. Stimulation parameters were optimised for FDI but MEPs were elicited simultaneously from both FDI and ECR (described below); results from ECR show significantly smaller MEP amplitudes for dual-site TMS targeting SMA and M1 compared to M1 stimulation alone, replicating the results found in FDI. This finding of an inhibitory influence of SMA stimulation on M1 excitability in PD OFF medication likely reflects physiological disease-related changes; that is, alterations in the basal ganglia-thalamo-cortical circuit because of a loss in dopaminergic cells. Anatomical studies of non-human primates indicate that the basal ganglia nuclei, namely the internal globus pallidus, have direct connections to SMA. Although dopamine transporter imaging studies show no association between striatal dopamine and PD tremor, growing evidence suggests a role of the globus pallidus in the pathophysiology of tremor: a combined EMG-fMRI study using dynamic causal modelling showed PD tremor amplitude OFF medication was driven by globus pallidus activity. In addition to SMA receiving direct inhibitory efferent connections from the basal ganglia, studies in non-human primates indicate that SMA also receives efferent input from motor thalamic nuclei targeted by the basal ganglia, suggesting a basal ganglia-thalamo-SMA circuit. In PD, the main output nuclei within the basal ganglia elicit nett inhibition of the motor thalamic nuclei and decreases cerebral cortex excitability. Together, the inhibitory drive from the internal globus pallidus and/or motor thalamic nuclei might reduce SMA excitability and underpin the SMA-M1 inhibition found in the current study.
SMA-M1 connectivity in Parkinson’s disease

SMA-M1 inhibition found in PD OFF medication might also be due to alterations in the cerebello-thalamo-cortical circuit, which is implicated in tremor-dominant PD. The cerebellum has anatomical connections to both SMA and M1 via the motor thalamic nuclei. A diffusion tensor MRI study showed greater neural transmission (measured as an increase in diffusion) along the cerebello-thalamo-cortical white matter tract in tremor-dominant PD OFF medication compared to healthy controls. fMRI research has shown increased cerebellar BOLD activity in PD OFF medication compared to healthy controls, suggesting hyperactivity within the cerebellum of PD. Increased cerebellar BOLD activity in PD OFF medication fits with dual-site TMS research showing less cerebello-thalamo-cortical activity, namely cerebellar brain inhibition, in PD OFF medication compared to healthy controls. At the group level, atypical cerebellar facilitation of M1 excitability was found in PD (i.e., cerebellar-M1 ratios greater than 1.0). It is worth noting, however, that poor test re-test reliability of dual-site TMS measures of cerebellar brain inhibition has been reported in older adults and reliability has not been established in PD. Although speculative, alterations in the cerebello-thalamo-cortical circuit might influence the thalamic inhibitory drive and, subsequently, influence SMA excitability and underpin the SMA-M1 inhibition found in the current study OFF medication.

Altered SMA activity from motor thalamic nuclei (targeted by the basal ganglia and cerebellum) might influence facilitatory and inhibitory intracortical circuits within M1. The influence of SMA on intracortical circuits in M1 could be investigated using a triple TMS pulse protocol: a conditioning stimulus to SMA preceding paired-pulse TMS to M1 with stimulus parameters set to measure short-interval intracortical inhibition (SICI) and short-interval intracortical facilitation (SICF). SICI is mediated by GABA_A receptor activity, and SICF reflects the nett result of a complex descending corticospinal volley comprising a
SMA-M1 connectivity in Parkinson’s disease

series of direct and indirect waves\(^6\). Results from a triple-pulse TMS study in healthy younger adults showed that a conditioning stimulus to SMA had no influence on the excitability of SICI circuits but increased SICF when compared to TMS given to M1 alone, suggesting that SICF circuits might contribute to the facilitatory effect of SMA stimulation on M1 excitability. There is no research investigating SICF and SICI using paired-pulse TMS in tremor-dominant PD OFF medication and it remains unclear whether the excitability within these circuits is altered compared to healthy controls. However, paired-pulse TMS research examining intracortical excitability in different PD subtypes (e.g., akinetic-rigid symptoms, levodopa-induced dyskinesia, drug-naïve individuals) has shown increased SICF\(^6\text{I}-\text{6}\text{3}\) and reduced SICI\(^6\text{4}-\text{6}\text{7}\) in PD OFF medication compared to healthy age- and sex-matched controls. It is difficult to draw any firm conclusions from previous paired-pulse TMS studies because tremor-dominant PD is thought to have a different pathophysiology to other non-tremor PD subtypes\(^6\text{8}\) but, based on the above mentioned studies, it is unlikely that SMA-M1 inhibition found in the current study was mediated by intracortical processes in M1.

SMA-M1 connectivity normalised ON compared to OFF medication

The current study provides the first report of SMA-M1 connectivity in PD both ON and OFF medication: SMA-M1 inhibition OFF medication was reduced ON medication for MEPs measured from both the FDI and ECR. This finding suggests that, at the group level, levodopa ‘normalises’ the atypical SMA-M1 inhibition observed OFF medication. Evidence from photon emission tomography research showed an increase in SMA cerebral blood flow activity ON compared to OFF medication in patients with PD during simple motor tasks\(^8\text{1,8}\text{2}\). Similarly, fMRI research has shown an increase in BOLD activity in both the SMA and M1 ON compared to OFF medication while performing simple motor tasks, such as an auditory-paced finger-opposition task\(^1\text{8,1}\text{9}\). This is thought to be due to levodopa ‘normalising’ cortical
SMA-M1 connectivity in Parkinson’s disease

activity: levodopa increases dopamine levels in the basal ganglia, which reduces nett inhibition of the motor thalamic nuclei and increases excitation of the cerebral cortex \(^{45,46}\).

Our findings show a similar trend to neuroimaging research; however, it is difficult to make direct comparisons with previous neuroimaging research as these studies investigated non-tremor-dominant PD (i.e., akinetic PD) and investigated the effects of medication on cortical activity during motor tasks rather than at rest.

Relationship between SMA-M1 connectivity and resting tremor

ON medication, SMA-M1 connectivity (FDI, ECR) was weakest in patients with the greatest tremor severity recorded using EMG from both FDI and ECR. This is the first report showing that the excitatory influence of SMA on M1 excitability was associated with tremor ON medication: SMA-M1 facilitation was associated with reduced tremor amplitude, whereas SMA-M1 inhibition was associated with increased tremor amplitude. Both SMA and M1 are implicated in PD resting tremor OFF medication: delivering single-pulse TMS to SMA and M1 interrupts ongoing resting tremor activity and resets tremor to a new point in its cycle \(^{33}\).

Less is known about the role of SMA or M1 activity ON medication for resting tremor, with most of the neuroimaging and TMS research focusing on neural activity OFF medication. The negative association between SMA-M1 connectivity and resting tremor ON medication in the current study suggests that the magnitude of SMA-M1 facilitation might play a functional role in modulating tremor amplitude.

SMA-M1 connectivity quantified from FDI, but not ECR, was also weakest in patients with the greatest tremor severity recorded using acceleration. It is unclear why SMA-M1 connectivity quantified from FDI was associated with both measures of tremor (EMG,
SMA-M1 connectivity in Parkinson’s disease

acceleration), but SMA-M1 connectivity quantified from ECR was only associated with one measure of tremor (EMG). In the current study, the stimulation parameters were optimised for FDI and not ECR; it would be interesting to determine whether optimising stimulation parameters for ECR reveals a relationship with both measures of tremor (EMG, acceleration). However, this might not be practical as the cortical target for ECR is closer to the midline than the cortical target for FDI: the two TMS coils used to target SMA and M1 might not fit on the head.

No significant associations were found between SMA-M1 connectivity and tremor severity OFF medication. A previous fMRI study showed increased functional connectivity in SMA and M1 activity in tremor-dominant PD OFF medication compared to healthy controls, and the increase in M1 but not SMA activity was associated with increased clinical resting tremor scores. These findings suggest that alterations in SMA activity OFF medication do not influence resting tremor severity. Our findings, in part, extend this previous research by showing that the excitatory influence of SMA stimulation on M1 excitability OFF medication was not associated with PD resting tremor severity. SMA-M1 inhibition OFF medication might act as a neural substrate for resting tremor such that an individual who shows SMA-M1 inhibition will likely present with resting tremor, but the magnitude of SMA-M1 inhibition is not involved in modulating tremor amplitude.

Limitations

In the present study, the OFF state was defined as a withdrawal from levodopa for a minimum of 12 hours (range: 12-15.5 hours), which is a sufficient wash-out period for the short-duration effect of levodopa and is consistent with previous research. However, some individuals were taking long acting dopaminergic agonist medication (n = 8), which
SMA-M1 connectivity in Parkinson’s disease requires a withdrawal period of at least 72 hours. Another aspect that we did not control for was the ‘wearing-off’ effect, whereby levodopa wears off after a few hours and is restored shortly after taking another dose of medication. Most participants required a second dose of levodopa in the afternoon, meaning that these individuals would experience a wearing-off effect ~4 hours after taking their first dose of levodopa. In the current study, the ON experimental session started one hour after participants took their first dose of levodopa, which meant that single-pulse and dual-site TMS measures of SMA-M1 connectivity were recorded ~two hours after taking levodopa medication. Even so, effects of levodopa on SMA-M1 connectivity might have started to wear off for some of the participants in the current study. Controlling for the withdrawal periods, wearing-off periods, doses, and types of antiparkinsonian drugs is an important consideration for future research.

Conclusions and implications

This is the first study to characterise SMA-M1 connectivity measured using dual-site TMS in people with PD ON and OFF levodopa medication. Findings from this study suggest that levodopa medication normalises SMA-M1 connectivity ON compared to OFF medication: the inhibitory influence of SMA on M1 excitability found OFF medication was reduced ON medication. ON medication, a facilitatory influence of SMA on M1 excitability was associated with reduced tremor amplitude whereas an inhibitory influence of SMA on M1 excitability was associated with increased tremor amplitude. Together, these findings add to our understanding of neural networks implicated in PD and provide a neurophysiological platform to develop interventions to reduce tremor severity. For example, cortical paired associative stimulation (cPAS) could be used to modulate cortico-cortical activity, as cPAS has previously shown to strengthen connectivity (via long-term potentiation-like plasticity) or weaken connectivity (via long-term depression-like plasticity) between motor brain areas.
SMA-M1 connectivity in Parkinson’s disease

96. cPAS has been used to transiently strengthen the facilitatory connection between SMA and M1 in young adults 24 and, therefore, cPAS could be used in PD to strengthen SMA-M1 facilitation which might improve tremor severity.

Competing interests

The authors declare no competing interests and no conflicts of interest.

Author contributions

This study was performed at Murdoch University, Western Australia, Australia. B.K.R., J.P.R., B.D.P., P.D.D., and A.M.V conceived and designed the experiment; B.K.R. performed the experiments; B.K.R., P.D.D. and A.M.V. analysed the data; B.K.R. drafted the manuscript; P.D.D., and A.M.V. critically revised the manuscript; J.P.R., B.D.P., P.D.D., and A.M.V. provided supervision. All authors have approved the final version of the manuscript and agree to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved. All persons designated as authors qualify for authorship, and all those who qualify for authorship are listed.

Funding

Brittany Rurak was supported by an Australian Government Research Training Program scholarship and the Graduate Women (WA) Inc. Education Trust - Barbara Mary Hale Bursary. Dr Ann-Maree Vallence was supported by an Australian Research Council Discovery Early Career Researcher Award (DE190100694).
SMA-M1 connectivity in Parkinson’s disease

Figure legends

Figure 1. SMA-M1 connectivity was assessed by delivering SI_{1mV}-alone and dual-site trials. Panel A shows the coil placement and current flow direction (indicated by the arrow) for SI_{1mV}-alone trials delivered to M1, and Panel C shows an example MEP elicited by SI_{1mV}-alone trials to M1 (~1mV MEP amplitude). Panel B shows the coil placement for dual-site trials: the grey coil represents the SMA stimulation site, and the black coil represents the M1 stimulation site, with arrows indicating current flow direction. The site of SMA stimulation was 4 cm anterior to Cz; this site has been shown to correspond to the anatomical representation of SMA identified using individual structural MRI in younger adults. Panel D shows an example MEP amplitude elicited by dual-site TMS which involves delivering a conditioning stimulus to SMA (140% AMT) 7 ms before a test stimulus to M1. All measures were obtained from the tremor-affected limb. EMG and tri-axial accelerometer measures of tremor were counterbalanced across sessions and participants. SMA-M1 connectivity was quantified as the mean dual-site MEP amplitude as a ratio of the mean SI_{1mV}-alone MEP amplitude. Panel E shows the experimental procedure for ON and OFF medication: experimental sessions were separated by a minimum of 7 days.

Figure 2. Example EMG traces from a participant OFF medication. SI_{1mV}-alone and dual-site trials were delivered after 50 ms of EMG activity below an EMG activity threshold determined for each participant (A) or if a period of ~5 seconds passed without EMG activity below the determined EMG activity threshold (B; these trials were removed from analysis). (B) shows the last 0.300 seconds of the 5 second period. The two horizontal dotted lines reflect the predetermined threshold; EMG activity within these lines indicates resting EMG activity (indicative of the absence of tremor). Thresholds (i.e., peak amplitudes; mV) were established for each participant before TMS.

Figure 3. Resting tremor recorded from the MDS-UPDRS tremor severity score (A), EMG mean amplitude (mV) (B), and acceleration mean amplitude (m/s^2) ON (black circles) and OFF (grey circles) medication. EMG and acceleration were measured before and after TMS. *P<0.05.

Figure 4. Column scatterplots show SMA-M1 connectivity quantified from FDI MEPs (A) and ECR MEPs (B) ON (black circles) and OFF medication (grey circles). SMA-M1 ratios greater than 1.0 indicate a facilitatory effect of SMA on M1 excitability, whereas SMA-M1 ratios less than 1.0 indicate an inhibitory effect of SMA on M1 excitability. *P<0.05.

Figure 5. Scatterplots show the relationship between the magnitude of FDI SMA-M1 connectivity ratios and FDI resting tremor amplitude (mV) ON medication (A; black circles) and OFF medication (B; grey circles). This figure shows tremor amplitude
SMA-M1 connectivity in Parkinson’s disease measured using EMG before but not after TMS, as there was no significant difference in tremor measured at the two time points. *\(P<0.05\).

Figure 6. Scatterplots show the relationship between the magnitude of FDI SMA-M1 connectivity ratios and resting tremor acceleration (m/s\(^2\)) ON medication (A; black circles) and OFF medication (B; grey circles). This figure shows tremor amplitude measured using acceleration before but not after TMS, as there was no significant difference in tremor measured at the two time points. *\(P<0.05\).

Table legend

Table 1.

Demographic and clinical characteristics of participants.

*Note. Eighteen individuals participated in this study. Three additional individuals consented to take part in this study but SMA-M1 connectivity could not be obtained because the placement of the two TMS coils on the head was not possible (n=2) or the individual was unable to attend both sessions (n=1); F, female; M, male; PD, Parkinson’s disease; H&Y, Hoehn & Yahr; 1, a sum of each Parkinsonian medication converted into levodopa equivalent dose \(^6\); 2, sum of tremor scores from the MDS-UPDRS subitems for resting tremor amplitude (item 17) and constancy (item 18) in the affected upper-limb.

Table 2.

Results of correlations between SMA-M1 connectivity (FDI, ECR) and resting tremor severity (EMG, acceleration). SMA-M1 connectivity was only correlated with the corresponding muscles recorded using EMG (i.e., FDI SMA-M1 and FDI EMG; ECR SMA-M1 and ECR EMG). Significant correlations are bolded.

*Note. EMG, electromyography; FDI, first dorsal interosseous; ECR, extensor carpi radialis; Recordings of resting tremor using EMG and acceleration were performed immediately before and after TMS measures. All significant findings are bolded.

SMA-M1 connectivity in Parkinson’s disease

A S_{1mV}-alone coil placement

- **M1 stimulation site:** optimal M1 site to elicit ~ 1 mV MEP amplitude in the resting FDI

B Dual-site coil placement

- **SMA stimulation site:** 4 cm anterior to Cz

C S_{1mV}-alone trial

- $M1$: S_{1mV} intensity
- MEP amplitude

D Dual-site trial

- SMA: 140% AMT
- $M1$: S_{1mV} intensity
- 7 ms ISI

E Experimental procedure for session 1 and session 2

<table>
<thead>
<tr>
<th>Screening</th>
<th>Motor and non-motor measures</th>
<th>Tremor</th>
<th>TMS setup</th>
<th>Dual-site TMS</th>
<th>Tremor</th>
</tr>
</thead>
<tbody>
<tr>
<td>TMS safety screen</td>
<td>BDI-II</td>
<td>S_{1mV}-alone</td>
<td>Resting</td>
<td>SMA-M1 connectivity</td>
<td>Resting</td>
</tr>
<tr>
<td>Informed consent</td>
<td>PHQ-9</td>
<td>stimulation intensity</td>
<td>Postural</td>
<td>140% AMT</td>
<td>Postural</td>
</tr>
<tr>
<td>MoCA</td>
<td>MDS-UPDRS-II</td>
<td>SI$_{1mV}$ intensity</td>
<td>Action</td>
<td></td>
<td>Action</td>
</tr>
<tr>
<td>H&Y</td>
<td>MDS-UPDRS-III</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- $M1$, primary motor cortex; MEP, motor evoked potential; FDI, first dorsal interosseous; SMA, supplementary motor area; SI_{1mV}, stimulation intensity; SI_{1mV}-alone, stimulation intensity that elicited ~ 1mV peak-to-peak MEPs; ISI, inter-stimulus interval; MoCA, Montreal Cognitive Assessment; H&Y, Hoehn & Yahr Scale; BDI, Beck Depression Index; PHQ, Patient Health Questionnaire; MDS-UPDRS, Movement Disorder Society-Unified PD Rating Scale; EMG, electromyography; Acc, accelerometer.
(A) TMS delivered after a window of 50 ms below a defined threshold.

(B) TMS delivered after a period of ~5 s without a window of 50 ms below a defined threshold.
Resting tremor measured using EMG

(A) ON medication, before TMS

(B) OFF medication, before TMS

- FDI SMA-M1 connectivity ratio vs. FDI EMG mean amplitude (mV)
- \(r = -0.59, p = 0.0099^* \)
- \(r = 0.11, p = 0.656 \)
Resting tremor measured using acceleration

(A) ON medication, before TMS

(B) OFF medication, before TMS

$F_{DI, SMA-M1} = \frac{1}{r^2} (0.5, 0.5)$

$r = -0.74, p = 0.0011^*$

$r = 0.43, p = 0.096$