Four doses of the inactivated SARS-CoV-2 vaccine redistribute humoral immune responses away from the Receptor Binding Domain

Ji Wang¹,²*, Caiguangxi Deng², Ming Liu², Yihao Liu³, Liubing Li⁴, Zhangping Huang⁴, Liru Shang², Juan Jiang², Yongyong Li², Ruohui Mo³, Hui Zhang²,⁵, Min Liu⁴, Sui Peng²,³*, Haipeng Xiao¹**

¹Department of Endocrinology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, People’s Republic of China
²Institute of Precision Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, People’s Republic of China
³Clinical Trials Unit, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, People’s Republic of China
⁴Department of Laboratory Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, People’s Republic of China
⁵Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, People’s Republic of China

*These authors contributed equally to this work.

*Correspondence to Dr. Haipeng Xiao, xiaohp@mail.sysu.edu.cn; Dr. Sui Peng, pengsui@vip.163.com; Dr. Ji Wang, wangj683@mail.sysu.edu.cn

& Lead contact
Abstract

A recent MMWR reported that the effectiveness of a 3rd dose of SARS-CoV-2 mRNA vaccine waned quickly in the Omicron-predominant period. Similarly, a substantial decline of immune responses induced by a 3rd dose of inactivated vaccines was also observed in our study. In response to the fast waning immune response and the great threat of Omicron variant of concern (VOC) to frontline healthcare workers (HCWs), 38 HCWs who were in our previous cohort investigating responses to the first three doses of inactivated vaccines participated in the current study and volunteered to receive a 4th homologous booster. Here, we demonstrated that the 4th dose is safe and capable of recalling waned immune responses 6 months after the 3rd dose. However, a greater suppression on the induction of overall Neutralizing antibodies (NAbs) and NAbs targeting the receptor-binding domain (RBD) was found in participants with stronger immune responses after the 3rd dose. As a result, a stepwise elevation of RBD-NAbs from the 1st to the 3rd vaccination achieved a “turning point”. The peak RBD-NAbs level induced by the 4th dose was inferior to the peak of the 3rd dose. Accompanied with reduced induction of RBD-NAbs, the immune system shifted responses to the nucleocapsid protein (NP) and the N-terminal domain (NTD) of the spike protein. Although NTD directed antibodies are capable of neutralization, they only compensated the loss of RBD-NAbs to ancestral SARS-CoV-2 virus but not to the Omicron variant due to a substantial conformational change of Omicron NTD.

This longitudinal clinical study monitored the immune response of the same cohort for every doses, shaping a relationship between the trajectory of immune focus and the dynamics of the neutralizing potency against the evolving virus. Our data reveal that immune responses could not be endlessly elevated, while suppression of heightened immune responses focusing on one subunit together with a shift of immune responses to other subunits would occur after repeated vaccination. Thus, an updated vaccine with more diverse epitopes capable of inducing NAbs against VOCs would be a future direction for boosters.
Introduction

Vaccination is one of the most cost-effective ways to prevent infectious diseases, including COVID-19. Billions of vaccine doses have been distributed worldwide and showed promising effectiveness against SARS-CoV-2 infection and related hospitalization. However, the vaccine-induced immune responses waned rapidly after receiving two doses of mRNA vaccines. Our previous study also showed humoral immune responses elicited by inactivated SARS-CoV-2 vaccines declined quickly within 6 months after a standard two-dose vaccination regimen. In addition to the fading immune response, frequent emerging of mutated SARS-CoV-2 viruses, especially those variants of concern (VOC), further challenges the vaccination system based on the ancestral viral strain.

Therefore, a booster or a 3rd dose of vaccines were provided globally. Our studies and others have demonstrated that the 3rd dose elevated both humoral and cellular immune responses to a much greater level from the two-dose regimen, equipping the population with potent protection not only for ancestral virus but also for VOCs, such as Delta. Unfortunately, recently emerged VOC Omicron carries more than 30 mutations, rendering an overwhelming capability of escaping immune responses established by vaccination or natural infection. Numerous breakthrough infections have been reported worldwide. While antibodies induced by the 3rd dose of vaccines do neutralize Omicron to some extent and T cell responses are cross-reactive, preliminary data have shown that the protection provided by the booster were not complete and also waned at a fast pace. A recent report from US CDC revealed that the vaccine efficiency against emergency department and urgent care encounters in people who had received 3 doses of mRNA vaccines declined from 87% to 66% within 4 months, and further dropped to 31% after 5 months in the Omicron-predominant period. Thus, in early January, Israel began to provide a 4th dose of vaccines to the most vulnerable populations, including Healthcare workers (HCWs).

In this study, we continued to monitor our established cohort compose of frontline HCWs for the immune responses induced by a 3rd dose of inactivated SARS-CoV-2 vaccine. Given that only 15% humoral immune responses remained after 6 months and a great threat of Omicron...
to HCWs, a 4th dose of inactivated vaccines was subsequently provided. The immune responses against both ancestral SARS-CoV-2 strain (Wuhan-Hu-1 reference strain) and Omicron variant were monitored along with a longitudinal assessment of humoral responses to multiple antigens and domains.

Results

The immune response induced by the 3rd dose of inactivated vaccine waned rapidly

We have previously conducted a non-randomized trial and recruited HCWs from a prospective cohort. They received a primary 2-dose series of the inactivated SARS-CoV-2 vaccine (BBIBP-CorV, Sinopharm, Beijing) and a 3rd dose booster of the same vaccine 5 months later. In this study, we first monitored the longevity of immune responses after the 3rd dose. Thirty-eight HCWs from the previous cohort volunteered in the current non-randomized trial. Serum neutralizing antibodies (NAbs) against an ancestral SARS-CoV-2 viral strain (Wuhan-Hu-1), named wildtype (WT) hereafter, or the Omicron variant were measured by a pseudovirus assay and quantified as half pseudovirus neutralization titers (PVNT50). The geometric mean of neutralization titers (GMNT) against WT drastically decreased by 85% 26 weeks (wks) after the 3rd dose, as compared to GMNT at 2 wks after the 3rd dose (**Fig. 1a, blue circles in 1st and 2nd panels**). As expected, GMNT against Omicron was much lower than that against WT at these two time points, though the immune response against Omicron seemed to dropped at a slower pace (**Fig. 1a, orange triangles in 1st and 2nd panels**). GMNT against Omicron decreased by 53% within 6 months. No significant difference was observed between male and female HCWs at any time point (**Supplementary Fig. 1a and b**).

A 4th dose of vaccination recalled the waned immune response

Since Omicron had been threatening the healthcare systems by the end of the previous trial and the waned immune responses were unlikely to provide sufficient protection against infection to HCWs, especially in the context of Omicron, the same cohort of 38 HCWs volunteered in a new non-randomized trial (ChiCTR2200055564) to investigate the potential benefit of a 4th dose. No severe side effects related to vaccination were recorded during the trial (**Table 1**). The 4th dose robustly recalled NAbs titers against WT by 19 folds (**Fig. 1a, blue circles in 3rd panel**).
Cross-reactive NAbs to Omicron were successfully also recalled despite to a lesser extent, 2.9 folds (Fig. 1a, orange triangles in 3rd panel).

Immune responses induced by the 3rd dose negatively affected the outcome of the 4th dose

As SARS-CoV-2 continuously circulates globally waves by waves, multiple vaccinations are needed. Thus, it is of great importance to know the impact of previous vaccination on the following booster. We first analyzed the correlation between NAb titers at various time points, finding that neither titers at 3rd 2wks nor 3rd 26wks correlated with titers at 4th 2wks (Supplementary Fig. 2a and b). Surprisingly, a reverse correlation between NAb titers at 2wks after the 3rd dose (3rd 2wks) and the fold change from the 3rd peak to the 4th peak (4th 2wks/3rd 2wks) was observed ($R^2=0.80$, $p<0.0001$), indicating whether or not the peak humoral response of the 4th vaccination could be further elevated depended on the peak of the previous vaccination (Fig. 1b). In contrast, residual immune responses at 3rd 26wks, the immune responses right before the 4th vaccination, had little impact on the outcome of the 4th dose (Supplementary Fig. 2c). Collectively, these data demonstrated that it is the peak response after the 3rd vaccination that determined whether a breakthrough from the previous peak would take place after the 4th dose.

As a result of this negative correlation, inferior titers at 4th 2wks to those at 3rd 2wks were always detected among the top 25% participants with the highest NAb titers at 3rd 2wks (Fig. 1c). Conversely, the bottom 25% participants who had a low immune response benefited most from a drastic increase in NAb titers after the 4th vaccination (Fig. 1d). These results suggest that individuals who respond less well to the first 3 doses are preferable for the 4th dose. The indicator is the peak response after the 3rd dose, whose cut-off value is a PVNT50 of 1×10^4 in our pseudovirus system (Fig. 1b).

The 4th dose had distinct effects on WT virus and Omicron variant

As mentioned above, the elevation from 3rd 26wks to 4th 2wks was much greater for WT than that for Omicron (19-fold vs 2.9-fold) (Fig. 1a). We next compared peak NAb titers after the 3rd dose and the 4th dose. GMNT increased by 2.8-fold for WT, whereas no significant change...
was observed for Omicron (Fig. 1e and f). This data indicated that whilst the 4th vaccination further enhanced WT-specific immune responses, the cross-neutralizing immune response was not equally strengthened. As a result, the GMNT ratio between two viral strains dropped from 0.05 to 0.025 after the 4th dose (Fig. 1a, 1st and 3rd panels). To further validate the different effects of the 4th dose on two strains, linear regression analysis was performed between NAb titers against WT and Omicron at various time points. As expected, a significant albeit moderate correlation (p=0.0005) was seen at 3rd 2wks, but gradually lost over time and was disrupted (p=0.40) after the 4th dose (Fig. 1g-i). Taken together, these results suggested a shift of immune responses from shared epitopes to non-cross-reactive ones after the 4th vaccination.

Repeated vaccination of inactivated vaccines shifted humoral immune responses to Nucleocapsids

The inactivated SARS-CoV-2 vaccine contains all viral structure proteins, among which Spike protein (S), Nucleocapsid (NP), Envelope (E) are immunogenic as revealed by our previous study 2. Among these immunogenic viral proteins, only S protein plays the pivotal role in inducing NAbs, while the contribution of other proteins may be minimal 14. Thus, we next investigated whether the 4th dose altered the distribution of humoral immune responses to various antigens. As expected, anti-S and anti-NP antibody titers decreased in a large portion of participants between 2 and 26 weeks after the 3rd dose (Fig. 2a, 1st and 2nd bars), except for anti-E antibody titers which increased in >50% participants in this period (Fig. 2a, 3rd bar). Unexpectedly, the 4th dose did not effectively recall anti-S and anti-E antibodies in a majority of participants, while it did successfully recall anti-NP antibodies in >50% individuals of the same population (Fig. 2b, 2nd bar).

As a result, most participants had inferior peak anti-S antibody titers after the 4th dose as compared to peak titers after the 3rd dose (Fig. 2c, 1st bar), in sharp contrast to anti-NP antibodies whose peak titers were further elevated by the 4th dose in >50% of individuals (Fig. 2c, 2nd bar). Anti-S antibody titers significantly dropped from 2wks to 26wks after the 3rd dose, but did not raised after the 4th dose (Fig. 2d, blue circles). In contrast, anti-NP antibody titers only dropped slightly before the 4th dose but greatly raised thereafter (Fig. 2d, orange
triangles). As a result, the ratio of peak antibody titers between anti-NP and anti-S was reversed by the 4th dose. Anti-NP was 40% lower than anti-S right after the 3rd dose, but became 2.8-fold higher after the 4th dose (Fig. 2d, 1st and 3rd panels).

Antibodies against E, another immunogenic antigen in the vaccine, showed an increasing trend from the 3rd to the 4th dose (Fig. 2e). However, the impact of this change on anti-S antibodies and the protection remained elusive since anti-E antibody titers were one magnitude lower than that of anti-S or anti-NP antibodies (Fig. 2d and e). We further measured cross-reactive antibodies to Omicron Spike protein (S-Omicron), observing a similar decreasing trend as ancestral S protein albeit titers were slightly lower (Fig. 2a-c, f). Distinct trends of anti-NP and anti-S titers suggested that the immune system began to focus on a more immunodominant antigen, such as NP, after repeated vaccination of the inactivated vaccines that comprise multiple viral proteins. Unfortunately, humoral immune responses against NP, a protein hiding inside the virus and infected cells, are less likely to mediate protection.

The 4th dose redistributed the humoral immune response away from the receptor-binding domain (RBD)

Reduced efficacy of the 4th dose on elevating anti-S antibodies partially explained why the 4th did not dramatically elevate the peak of NAbs as the 3rd dose did, but did not explain why the NAbs to WT still increased slightly while those to Omicron did not (Fig. 1e and f). To explore this aspect, we further investigated humoral responses to various domains on S, including S1 and S2. The S1 could be further divided into the N-terminal domain (NTD) and RBD. As expected, antibody titers against these domains decreased in most participants after 3rd dose (Fig. 3a). Anti-S1 and anti-S2 antibodies showed similar trends compared to anti-S antibodies, and no significant bias was observed for these two domains (Fig. 3a-d). However, the 4th dose had different effects on antibodies to sub-domains in S1. In detail, anti-NTD titers increased in >90% of participants (Fig. 3b, 3rd bar), whereas anti-RBD titers only increased in <40% of individuals (Fig. 3b, 4th bar). The overall effect is that ~50% of participants had increased anti-NTD titers while others remained unchanged between the 3rd peak and the 4th peak (Fig. 3c, 3rd bar). In sharp contrast, >50% of participants exhibited a reduced anti-RBD titer (Fig. 3c, 4th
Both geometric mean titers of anti-RBD and anti-NTD IgG significantly dropped at 3rd 26wks, but were boosted by the 4th dose at different slopes. Anti-NTD titers increased by 8-fold after the 4th dose, whereas the increase for anti-RBD was only 1.9-fold (Fig. 3e, 2nd and 3rd panels). Because of such a huge difference in response to the 4th dose, the ratio of anti-NTD/anti-RBD vigorously increased from 0.2 to 1.4 (Fig. 3e, 1st and 3rd panels). In another word, while anti-NTD titers were much lower than anti-RBD titers after the 3rd dose, they were boosted to a comparable or even slightly higher level over anti-RBD after receiving the 4th dose. The geometric mean titer of anti-NTD at 4th 2wks was higher than that at 3rd 2wks (Fig. 3e, orange triangles). In contrast, anti-RBD titers declined from 3rd 2wks to 4th 2wks (Fig. 3e, blue circles). Change of cross-reactive antibodies to RBD-Omicron after the 3rd and the 4th dose showed a similar trend as those to WT RBD (orange dashed line) albeit titers of anti-RBD-Omicron were lower at all time points (Fig. 2f).

For WT virus, NAbs could be induced by both NTD and RBD. However, recent studies have demonstrated that most cross-neutralizing antibodies against Omicron target majorly to RBD rather than other domains in S, such as NTD. A biased increment on anti-NTD rather than anti-RBD antibodies after the 4th dose was in line with our neutralizing data that the 4th dose profoundly enhanced neutralization to WT virus but not Omicron.

Robust immune responses elicited by the 3rd dose attenuated induction of RBD-NAbs after the 4th dose

In addition to binding antibodies to RBD, we further investigated whether NAbs to RBD also decreased. Thus, a one-step competitive Chemiluminescent immunoassay was used to detect the concentration of NAbs that compete with ACE2 binding to RBD. Whilst the 3rd dose induced robust immune responses at 2 and 4 weeks after immunization, the RBD-NAbs waned quickly (Fig. 4a). An average drop of 60% from the peak was observed within 3 months after the 3rd dose (Fig. 4b). Although only 25% of immune responses remained after 6 months, residual immune responses were still significantly higher than that at 5 months after the 2nd dose (Supplementary Fig. 3). The 4th dose effectively elevated RBD-NAbs in all vaccinees, whose geometric mean RBD-NAbs level increased by 2.7-fold within 2 weeks after
immunization as compared to those at 6 months after the 3rd dose (Fig. 4b). The 4th dose was equally effective for both genders in inducing RBD-NAbs (Supplementary Fig. 4). However, the immune responses induced by the 4th dose seemed to wane at a faster pace than that induced by the 3rd dose. Geometric mean RBD-NAbs remained comparable between 3rd 2wks and 3rd 4wks, but a significant decrease was found unexpectedly at 4th 4wks (Fig. 4b).

Whilst the first three doses resulted in a stepwise elevation of peak RBD-NAbs, the 4th dose did not. The 2nd and 3rd dose enhanced RBD-NAbs by 3.1-fold and 2.5-fold to the previous peak, respectively (Fig. 4c). However, the 4th dose did not further elevate the peak value of RBD-NAbs, but an 18% decrease was found instead (Fig. 4c). The inferior peak value after the 4th dose did not happen sporadically. In 63% (24/38) of participants, the peak RBD-NAbs after the 4th dose was 20% lower than that after the 3rd dose, whereas only 18% (7/38) increased by >20% (Fig. 4d, 3rd bar). In sharp contrast, >90% of participants (37/38 and 35/38) benefited from each booster shot of the 2nd and the 3rd dose (Fig. 4d, 1st and 2nd bars).

As indicated by our pseudovirus neutralization data, immune responses induced by the previous vaccination may negatively affect NAbs induced by the following dose (Fig. 1b and c). However, neutralization assay involved antibodies induced by multiple antigens or domains. Here, we explored whether it is true for the immune response to a single domain as well. A significant negative correlation between fold-change of peak values and the values of previous peaks was observed after the 4th dose in participants with decreased peak RBD-NAbs, indicating that potent immune responses elicited by the 3rd dose did suppress the induction of RBD-NAbs after the 4th dose (Fig. 4e).

NAds to RBD mediated cross-neutralization against Omicron

Our pseudovirus neutralization assay and ELISA suggested that the distinct effect of the 4th dose on WT virus and Omicron variant depended on antibodies to RBD. A reduced peak RBD-NAds after the 4th dose coincided with pseudovirus neutralization and ELISA results. Lastly, the evidence for the contribution of RBD-NAds was investigated. A series of linear regression was performed on the fold change of peak values (FCP) between 3rd and 4th doses to eliminate
the effect of other factors, such as the contribution of NAbs outside RBD. A positive correlation was found between RBD-NAbs FCP and FCP of RBD-OMicron binding antibodies, enabling us to further investigate the relationship between NAbs against OMicron in pseudovirus neutralization assay (PVNT-OMicron) and RBD-NAbs (Fig. 4f). There was no significant correlation between FCPs of PVNT-OMicron and RBD-NAbs when taking the population as a whole, but strong correlations were observed in the increased group ($R^2=0.43$, $p=0.0017$) and the decreased group ($R^2=0.77$, $p<0.0001$) respectively (Fig. 4g and h). Two groups were defined as PVNT-OMicron FCP increased or decreased compared to the RBD-NAb FCP respectively, taking PVNT-OMicron FCP/ RBD-NAb FCP >2 as the threshold. Two different models of the action were likely involved in these groups. Nevertheless, these data revealed that RBD-NAbs contributed to the cross-neutralization against OMicron in immune responses induced by inactivated SARS-CoV-2 vaccines.

Discussion

In this study, we investigated the safety and effectiveness of the 4th dose of inactivated SARS-CoV-2 vaccine in HCW volunteers when a great loss of protective humoral immune responses was found for both ancestral SARS-CoV-2 and OMicron variant 6 months after the 3rd dose. At the moment, OMicron is continuously threatening the healthcare system in which HCWs are the most vulnerable population. Our results demonstrated that the inactivated SARS-CoV-2 vaccine had an acceptable safety profile that no severe side effect was found after the 4th dose despite a higher onset of adverse events (18.4%) occurring as compared to the 3rd dose (12%). When taking the immunity 6 months after the 3rd dose as the benchmark, the 4th dose is meaningful. It successfully recalled the waned immune responses against both ancestral virus and OMicron variant with a low cost of safety. However, when taking the four doses of vaccination together, several implications on immunology and vaccinology are provided by the current study.

It is a consensus that immune responses could not be endlessly boosted. A plateau or even a “turning point” would occur after repeated vaccination, but such a phenomenon has been rarely evidenced by a well-designed clinical study involving multiple administration of the same
vaccine without any interference of pre-existing immunity and asymptomatic infections during the study. Many studies as well as ours all revealed a stepwise elevation of peak immune responses from 1st to 3rd dose of SARS-CoV-2 vaccines. No sign of a plateau or a turning point was observed before the current study enrolling a 4th dose. Our data indicated that the 3rd dose is the “turning point” for repeated vaccination of inactivated SARS-CoV-2 vaccines made from the ancestral viral strain. We observed a clear suppression of humoral response to the 4th dose by a heightened immune response after the 3rd dose, confirmed by two different assays—pseudovirus neutralization assay and RBD-NAbs assay (Fig. 1b and Fig. 4e). As the result of such suppression, peak levels of S-binding, RBD-binding and RBD-NAbs were all inferior to their counterparts after the 3rd dose (Fig. 2d, Fig. 3e and Fig. 4d).

A recent study revealed that induction of hemagglutination inhibition (HI) antibodies, similar to RBD-NAbs in SARS-CoV-2, by a second homologous dose of influenza vaccines was attenuated by the previous dose. However, the small group size of participants receiving two doses in that study (n=3-8) and unknown history of natural infections prevented the study from establishing a reliable quantitative correlation. In contrast, our study enrolled a relatively large number of participants (n=38) who were tested for SARS-CoV-2 weekly and had never been infected before or during the study. Thus, pre-existing immunity or occasional infection during the study which is always a concern for clinical influenza vaccine studies, would not perturb the results of this study. Taking the advantage of acceptable group size and clear immunological background, we are able to draw a clear picture that humoral immune responses to a certain region of antigens, such as RBD, were elevated dose by dose till the maximal capacity is achieved (Fig. 4c). After that, immune responses were down-regulated by a ratio tightly associate with the maximal response induced by the previous vaccination (Fig.1b and Fig. 4e). The timing for the plateau may vary depending on the nature of antigens and adjuvants. For inactivated SARS-CoV-2 vaccine used in this study, the turning point is 3rd dose for most participants. Interestingly, we found the PVNT50 of 1×10^4 is a critical point indicating whether the peak of immune responses could be further elevated by the 4th dose. Despite most vaccinees experiencing suppression, for those participants with a poor response to the 3rd dose, the 4th dose was still very effective (Fig. 1d). Of note, this cut-off value may vary from lab to lab and
depend on the assay used.

Mechanisms underlying the down-regulation of immune responses are unclear yet. Since our data have shown that it was the peak NAb level after the 3rd dose rather than the NAb level right before the 4th dose determined the depth of the down-regulation, we speculate that atypical memory B cells or B cell exhaustion which is always induced by repeated antigen exposure during chronic viral infection may contribute majorly, rather than other mechanisms such as epitope masking. Recent studies, as well as our unpublished data, revealed that a 3rd dose of inactivated vaccine or mRNA vaccine could induce a higher level of cross-neutralizing antibodies against Omicron. Strikingly, data in the current study indicated that neutralization breadth was not further increased by the 4th dose, but even narrowed (Fig. 1a, g and i). Down-regulation of overheated immune responses against one domain epitope leaves room for inducing immune responses to other epitopes, facilitating the immune system to establish a more diverse immunity which is always beneficial. However, it is not the case for the induction of cross-NAbs against Omicron by inactivated SARS-CoV-2 vaccines composed of a full-length S protein and other structural viral proteins. An increase of humoral immune responses to NP protein and NTD domain was observed after the 4th dose accompanied with down-regulation of humoral response to RBD (Fig. 2d and Fig. 3e). Unfortunately, increased humoral immune response to NP is less likely to be protective since access of antibodies to NP is prohibited by viral or cell membranes. On the other hand, whilst a large number of NTD-directed antibodies do neutralize WT virus, few numbers of such antibodies could cross-neutralize Omicron variant since mutations induced a substantial conformational change in NTD antigenic supersite which is the target of most NTD-directed neutralizing antibodies. Conversely, some RBD-induced antibodies still have cross-neutralizing capabilities which are also revealed by our analysis (Fig. 4g and h). Therefore, upregulation of NTD-induced antibodies compensated the loss of RBD-directed neutralizing activity for WT virus but not for Omicron (Fig. 1a, g and i).

While these results were obtained from repeated vaccination of whole inactivated SARS-CoV-
2 vaccines, it will be interesting and important to know, whether down-regulation of RBD-NAbs would occur in other types of vaccines comprising RBD, and shifting of humoral response to other domains would also happen in vaccines comprising the whole sequence of S protein, such as mRNA-1273 and BNT162b. It is important to note, however, that widely used cross-sectional cohorts are less capable of characterizing the dynamics of neutralizing breadth and humoral responses to multiple epitopes. Instead, a longitudinal cohort, such as the cohort used in the current study, is preferred.

Nevertheless, a very recent report on the 4th dose of mRNA vaccines supported our findings. The study demonstrated that a 4th dose of mRNA vaccines only restored the antibody titers to peak titers after the 3rd dose, and the fold-increase of Omicron-NAbs was inferior to that of WT-NAbs (7.2 vs 11.4) after the 4th dose of mRNA1273. For BNT162b2, the neutralization breadth seemed to be narrowed too. Fold-difference of VNT50 between WT and Omicron was enlarged from 6.3 (after the 3rd dose) to 11.3 (after the 4th dose), despite that data came from live virus neutralization assays from two studies. These results are in line with our data.

Our results may provide several implications for the booster dose aiming to strengthen the protection against VOCs, such as Omicron. First, an urgent use of current inactivated vaccines for the 4th booster is feasible but not ideal. Second, other types of vaccines may also suffer from RBD-NAbs suppression and shift of immune responses after repeated vaccination if the sequence keeps unchanged. Third, a recombinant S protein vaccine or mRNA vaccine based on the sequence of VOCs would be a good alternative for further boost, since mutated RBD may not be suppressed significantly by previous vaccination based on ancestral RBD. Even if that happened, mutated NTD capable of inducing NAbs against VOCs could compensate the loss of RBD-NAbs.

Our study has several limitations. First, the result came from a cohort of young HCWs. The effect of the 4th dose on very young and elderly populations may be different. Second, only a pseudovirus neutralization assay was used in the current study. Nevertheless, our neutralization results regarding the ratio of NAb titers between WT and Omicron are in line
with results from pseudovirus neutralization assay or authentic virus neutralization assay from other groups \(^8,16,20\). Third, we did not assess other aspects of humoral immune responses such as antibody-dependent cellular cytotoxicity (ADCC) or the cellular arm of immunity. They may contribute to disease prevention even in the absence of NAbs.

In conclusion, our study demonstrated that the 4\(^{th}\) dose of inactivated SARS-CoV-2 vaccine is safe but the ability to further strengthen the protection against Omicron is compromised by suppression of RBD-NAbs and a further shift of humoral response away from RBD. Updated vaccines based on VOC sequences that take the advantage of RBD, NTD, and other antigenic domains would be an ideal alternative for future boosters.
Methods

Human subjects

In this study, we conducted a non-randomized trial and recruited participants from a prospective cohort at the First Affiliated Hospital of Sun Yat-sen University (FAH-SYSU) in Guangzhou, China. Sixty-three HCWs received a standard two-dose regimen of the inactivated SARS-CoV-2 vaccine (BBIBP-CorV, Sinopharm, Beijing). Five months after the second dose, 50 of the 63 HCWs volunteered to receive a third dose of BBIBP-CorV. Thirty-eight of them volunteered for the current study aiming to investigate the safety and effectiveness of a fourth dose, at the moment when healthcare systems were challenged by Omicron variant and the immune response induced by the third vaccination waned substantially. They received a fourth homologous booster shot of the inactivated vaccine 6 months after the third vaccination. Blood samples were collected right before the booster dose, 14 days, and 28 days after the boost. All studies were approved by the Institutional Review Board of FAH-SYSU and written consent was obtained from all participants. The prospective cohort and the trial were registered to the Chinese Clinical Trial Registry (ChiCTR2100042222, ChiCTR2200055564).

Blood samples

For serum collection, blood samples were allowed to clot at room temperature and subsequently centrifuged at 3000×g for 10 min. Sera were transferred into 0.5 ml aliquots in polypropylene tubes and stored at −80°C. To isolate peripheral blood mononuclear cells (PBMCs), blood samples were collected into the heparinized tubes. PBMCs were isolated by density-gradient centrifugation. Briefly, blood samples were diluted with PBS at a 1:1 ratio to 30 ml and loaded on top of 15 ml Lymphoprep™ (StemCell) in the 50 ml centrifugation tube and centrifuged at 800 rpm for 30 minutes. The medium cell layer was collected and washed with PBS once, followed by centrifugation at 400 rpm for 10 minutes. Pelleted PBMCs were cryopreserved in Bambanker (StemCell) immediately at -80°C.

Cell lines and plasmids

Human ACE2 over-express HEK293T (hACE2-293T, PackGene Biotech) were cultured in DMEM (10-013-CVRC, Corning) supplemented with 10% fetal bovine serum (FBS, FSP500,
ExCellBio), non-essential amino acids (NEAA, 11140-050, Gibco), 100 U/ml penicillin and 100 μg/ml streptomycin (SV30010, HyClone). Jurkat-Lucia™ NFAT-CD16 Cells (jktl-nfat-cd16, InvivoGen) was cultured in IMDM (BL312A, Biosharp) supplemented with 10% FBS, NEAA, 100 U/ml penicillin and 100 μg/ml streptomycin, 100 μg/ml Zeocin (ST-1450, Beyotime) and 10 μg/ml Blasticidin S (ST-018, Beyotime). All cell lines were passaged less than 15 generations and examined the mycoplasma by PCR and fluorescence labeling methods.

The plasmid pcDNA3.1-2019-nCoV-Spike is a gift from Dr. Lu Lu at Fudan University, encoding the spike protein from an ancestral SARS-CoV-2 reference strain (Wuhan-Hu-1) which is called as wild type (WT) throughout the manuscript. The plasmid pcDNA3.1(+)-Omicron-spike (JD20211214001R, Kidan Bio) encodes the spike protein from the Omicron variant (B1.1.529). The plasmid pcDNA3.1(+)-Envelope encodes envelope protein from WT was full-genome synthesized by Genewiz China according to the reference sequence NC_045512.2 in NCBI. Plasmids pSPAX2 and pLenti-CMV-Puro-Luc (168w-1) were a gift from Dr. Jianping Guo and purchased from MiaolingBio (P1216), respectively.

ELISA

All SARS-CoV2 recombinant proteins were purchased from Sino Biological (Beijing, China). For ELISA, 200 ng/well of WT SARS-CoV2 spike (40589-V08B1), spike S1 subunit (40591-V08H), spike S2 subunit (40590-V08B), RBD (40592-V08H), nucleocapsid (40588-V08B) and envelope (40609-V10E3), Omicron spike (40589-V08H26), spike S1 subunit (40591-V08H41), RBD (40592-V08H121) and nucleocapsid (40588-V07E34) were coated on the 96-well ELISA plate (655061, Greiner Bio-one) using coating buffer (G3022, Saint Bio) overnight at 4 °C, respectively. Plates were washed by PBS supplemented with 0.5% Tween-20 (PBST) for three times, followed by blocking with 5% BSA in PBST (blocking buffer) for 1 hour at room temperature. Sera were firstly diluted 40-fold, followed by 4-fold serial dilution and incubation at 4°C overnight. Plates were washed 5 times by PBST, and incubated with 100 μl/well goat HRP conjugated anti-human IgG antibody (2040-05, SouthernBiotech, 1:3000) in PBST at room temperature for 30 min. After washing 5 times with PBST, 100 μl/well 3,3',5,5'-Tetramethylbenzidine substrate (P0209, Beyotime) was added to each well for 15 min, stopped
by the stopping buffer (P0215, Beyotime). OD450 was measured by Varioskan Lux Microplate Reader (Thermo Fisher).

Pseudovirus neutralization assay

Pseudovirus production and neutralization assay were performed following a previous study. To generate WT SARS-CoV-2-Spike (Wuhan-Hu-1) pseudovirus, pcDNA3.1-2019-nCoV-Spike, pSPAX2 and pLenti-CMV-puro-Luc (168w-1) were co-transfected to HEK293T using Lipo8000 (C0533, Beyotime) according to the manufacturer’s instruction. For the generation of the B.1.1.529 Omicron-variant spike pseudovirus, pcDNA3.1(+)-Omicron-spke, pSPAX2 and pLenti-CMV-puro-Luc (168w-1) were co-transfected to HEK293T using Lipo8000. The virus-containing supernatant was harvested after 72 h and stored at −80°C until use. The hACE2-293T at 2×10⁴/well were seeded on the black flat-bottom 96-well plate (655090, Greiner Bio-one) for 16 h in advance. Sera were firstly diluted 10-fold then 4-fold serial diluted subsequently in DMEM, then co-incubated with pseudovirus at 37°C for 1 h. The co-incubated samples, together with samples without sera or pseudovirus as controls, were subjected with 10 μg/ml polybrene (C0351, Beyotime) to the hACE2-293T for 6-hour absorption. The culture medium was replaced and incubated for another 42 h at 37°C. Infected cells were lysed by firefly luciferase lysis buffer (RG126M, Beyotime), then the luciferase substrate (RG058M, Beyotime) was applied for the luciferase assay according to the manufacturer’s instruction. The relative light unit (RLU) was measured by Varioskan Lux Microplate Reader (Thermo Fisher). The 50% pseudovirus neutralization titer (PVNT50) was determined by a four-parameter nonlinear regression curve (GraphPad Prism).

Statistical analysis

Statistical analysis was performed using Graphpad Prism. Comparisons were assessed using Wilcoxon matched-pairs signed-rank test, paired Student’s t-test, Friedman test followed by Dunn’s multiple comparisons test, or RM One-way ANOVA as indicated. P values < 0.05 were considered as statistically significant.
Acknowledgment

We thank Dr. Lu Lu at Fudan University for plasmids and kind help in pseudovirus neutralization assay. The work is supported by The Talent Program of the First Affiliated Hospital, Sun Yat-sen University (Y70311), The Hundred Talent Program of Sun Yat-sen University (Y61224), and the Science and Technology Program of Guangzhou (202103000076).

Author Contributions

HX, SP and JW supervised the study. HX, SP and JW conceived and designed the study. YL, RM, CD and ML recruited participants in the trial and collected blood samples. CD, ML, YL, ZH, LS, JJ, LL and YLi performed the experiments and collected data. JW performed the statistical analysis. JW and CD drafted the manuscript, HX, SP, HZ and MinL made a critical revision. All authors approved the final version before submission.

Conflict interests: The authors have no conflicts of interest to disclose.

References

<table>
<thead>
<tr>
<th>Demographics and vaccination-related adverse events</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Participants, N</td>
<td>38</td>
</tr>
<tr>
<td>Age, mean (SD)</td>
<td>27.63(6.70)</td>
</tr>
<tr>
<td>Gender, male (%)</td>
<td>18 (47.4)</td>
</tr>
<tr>
<td>Adverse events</td>
<td></td>
</tr>
<tr>
<td>Injection site symptoms</td>
<td></td>
</tr>
<tr>
<td>Pruritus, N (%)</td>
<td>2(5.3)</td>
</tr>
<tr>
<td>Swollen, N (%)</td>
<td>1(2.6)</td>
</tr>
<tr>
<td>Systematic symptoms</td>
<td></td>
</tr>
<tr>
<td>Rash, N (%)</td>
<td>1(2.6)</td>
</tr>
<tr>
<td>Dizziness, N (%)</td>
<td>2(5.3)</td>
</tr>
<tr>
<td>Nausea, N (%)</td>
<td>1(2.6)</td>
</tr>
<tr>
<td>Fatigue, N (%)</td>
<td>1(2.6)</td>
</tr>
</tbody>
</table>
Figure 1 A 4th dose of inactivated SARS-CoV-2 vaccine boosted NAbs against wildtype (WT) virus but not Omicron

Thirty-eight HCWs who have already received 3 doses of inactivated SARS-CoV-2 vaccine volunteered in this clinical study and received a 4th homologous dose 6 months (26 wks) after the 3rd dose. (a) Neutralization assays were performed to measure NAbs titers against pseudoviruses with S protein from a WT strain (blue circle) or Omicron variant (orange triangle). (b) Linear regression was performed on the fold-change of PVNT50 from 3rd 2wks to 4th 2wks and PVNT50 at 3rd 2wks. (c) The change of NAbs was shown for participants with the top 25% highest PVNT50 against WT virus. (d) The change of NAbs was shown for participants with the lowest (bottom 25%) PVNT50 against WT virus. NAbs at 3rd 2wks and 4th 2wks against WT virus (e) or Omicron variant (f) were compared respectively. A series of Linear regression was performed between PVNT50 to WT or Omicron at 3rd 2wks (g), 3rd 26wks (h), and 4th 2wks (i). Data were shown as Geometric mean ± 95% confidence level (CI). Wilcoxon matched-pairs signed rank test was used for (c-f).

Figure 2 Humoral immune responses shifted from S protein to NP

Anti-S, NP, E and S-Omicron antibodies were measured by ELISA at 2 weeks after the 3rd dose (3rd 2wks), 26 weeks after the 3rd dose (3rd 26wks) or 2 weeks after the 4th dose (4th 2wks). (a-c) Antibody titers for each protein were compared between 3rd 2wks and 26wks (a), 4th 2wks and 3rd 26wks (b), 4th 2wks and 3rd 2wks (c), respectively. Percentage of Participants with increased titers (former/later >1, orange), decreased titers (former/later <1, blue) or unchanged titers (former/later =1, green) were summarized. (d) Anti-S (blue circle) and anti-NP (orange triangle) antibody titers were compared between each time point. (e) Anti-E antibody titers at each time point were compared. (f) Antibody titers for S-Omicron. Data were shown as Geometric mean ± 95% CI. Friedman test followed by Dunn’s multiple comparisons test was used for d-f. * p<0.05.

Figure 3 The S protein directed antibody responses shifted from RBD to NTD
Anti-S1, S2, NTD, RBD and RBD-Omicron antibodies were measured by ELISA at 3rd 2wks, 3rd 26wks or 4th 2wks. (a-c) Antibody titers for each protein were compared between 3rd 2wks and 26wks, 4th 2wks and 3rd 26wks, 4th 2wks and 3rd 2wks, respectively. Percentage of participants with increased titers (former/later >1, orange), decreased titers (former/later <1, blue) or unchanged titers (former/later =1, green) were shown. (d) Anti-S1 (blue circle) and anti-S2 (orange triangle) antibody titers were compared between each time point. (e) Anti-RBD (blue circle) and anti-NTD (orange triangle) antibody titers at each time point were compared. (d) Antibody titers for S-Omicron. The orange dashed line represents the kinetics of the geometric mean titer of anti-S IgG. Data were shown as Geometric mean ± 95% CI. Friedman test followed by Dunn’s multiple comparisons test was used for d-f. * p<0.05, **p<0.01, ***p<0.001, ****p<0.0001. ns, not significant.

Figure 4 Potent immune responses elicited by the 3rd dose suppressed the induction of RBD-NAbs after the 4th dose

(a) NAbs to RBD (RBD-NAbs) were measured by a one-step competitive Chemiluminescent immunoassay for sera collected at various time points after 1st, 2nd, 3rd, and 4th doses. The kinetic of RBD-NAbs was shown for each participant. (b) RBD-NAbs were compared among various time points, including 3rd 2wks, 3rd 4wks, 3rd 13wks, 3rd 26wks, 4th 2wks, and 4th 4wks. (c) Peak values of RBD-NAbs after each vaccination were compared. (d) Percentage of participants with increased peak value (increased >20%, orange), decreased value (decreased >20%, blue), or unchanged (±20%, green) as compared to the previous peak were summarized. (e) Linear regression was performed between the peak value after the 3rd dose and the fold change of peak value from the 3rd to the 4th dose in the decreased group shown in (d). (f) Correlation between fold-change of peak values (FCP) of RBD-NAbs and FCP of anti-RBD-Omicron IgG was analyzed by linear regression. (g, h) Participants were separated into an increased group or a decreased group, defined as PVNT-Omicron FCP increased or decreased compared to the RBD-NAb FCP respectively, taking PVNT-Omicron FCP/ RBD-NAb FCP >2 as the threshold. Linear regression was performed between FCP of PVNT50 to Omicron and FCP of RBD-NAb in each group. Data were shown as Geometric mean ± 95% CI. RM one-way ANOVA was used for b and c. * p<0.05, **p<0.01, ***p<0.001, ****p<0.0001. ns, not significant.
Supplementary Figure 1 NAbs in males and females
Neutralization assays were performed to measure NAbs titers against pseudoviruses with S protein from a WT strain or Omicron variant. (a) NAb titers for WT virus in males (blue circle) or females (orange triangle) were compared. (b) NAb titers for Omicron variant were similarly compared between males (blue circle) or females (orange triangle). Data were shown as Geometric mean ± 95% CI.

Supplementary Figure 2 Correlation between NAb levels at various time points
Linear regressions were performed to reveal the potential correlation between NAb levels at 3rd 2wks and 4th 2wks (a), or NAb levels between 3rd 26wks and 4th 2wks (b), or fold change of peak values and NAb level at 3rd 26wks (c).

Supplementary Figure 3 Comparison of RBD-NAbs at 2nd 21wks and 3rd 26wks
RBD-NAbs were measured by a one-step competitive Chemiluminescent immunoassay. RBD-NAbs at 2nd 21wks and 3rd 26wks were compared. Data were shown as Geometric mean ± 95% CI. Paired t-test was used. ****p<0.0001.

Supplementary Figure 4 RBD-NAbs in males and females
RBD-NAbs were measured by a one-step competitive Chemiluminescent immunoassay. RBD-NAb titers in males (blue circle) or females (orange triangle) at 3rd 26wks or 4th 2wks were compared. Data were shown as Geometric mean ± 95% CI. Data were shown as Geometric mean ± 95% CI. RM one-way ANOVA was used. * p<0.05, **p<0.01. ns, not significant.
Figure 1 A 4th dose of inactivated SARS-CoV-2 vaccine boosted NAbs against wildtype (WT) virus but not Omicron

Thirty-eight HCWs who have already received 3 doses of inactivated SARS-CoV-2 vaccine volunteered in this clinical study and received a 4th homologous dose 6 months (26 wks) after the 3rd dose. (a) Neutralization assays were performed to measure NAbs titers against pseudoviruses with S protein from a WT strain (blue circle) or Omicron variant (orange triangle). (b) Linear regression was performed on the fold-change of PVNT50 from 3rd 2wks to 4th 2wks and PVNT50 at 3rd 2wks. (c) The change of NAbs was shown for participants with the top 25% highest PVNT50 against WT virus. (d) The change of NAbs was shown for participants with the lowest (bottom 25%) PVNT50 against WT virus. NAbs at 3rd 2wks and 4th 2wks against WT virus (e) or Omicron variant (f) were compared respectively. A series of Linear regression was performed between PVNT50 to WT or Omicron at 3rd 2wks (g), 3rd 26wks (h), and 4th 2wks (i). Data were shown as Geometric mean ± 95% confidence level (CI). Wilcoxon matched-pairs signed rank test was used for (c-f).
Figure 2 Humoral immune responses shifted from S protein to NP

Anti-S, NP, E and S-Omicron antibodies were measured by ELISA at 2 weeks after the 3rd dose (3rd 2wks), 26 weeks after the 3rd dose (3rd 26wks) or 2 weeks after the 4th dose (4th 2wks). (a-c) Antibody titers for each protein were compared between 3rd 2wks and 26wks (a), 4th 2wks and 3rd 26wks (b), 4th 2wks and 3rd 2wks (c), respectively. Percentage of participants with increased titers (former/later >1, orange), decreased titers (former/later <1, blue) or unchanged titers (former/later =1, green) were summarized. (d) Anti-S (blue circle) and anti-NP (orange triangle) antibody titers were compared between each time point. (e) Anti-E antibody titers at each time point were compared. (f) Antibody titers for S-Omicron. Data were shown as Geometric mean ± 95% CI. Friedman test followed by Dunn’s multiple comparisons test was used for d-f. * p<0.05.
Figure 3 The S protein directed antibody responses shifted from RBD to NTD

Anti-S1, S2, NTD, RBD and RBD-Omicron antibodies were measured by ELISA at 3rd 2wks, 3rd 26wks or 4th 2wks. (a-c) Antibody titers for each protein were compared between 3rd 2wks and 26wks, 4th 2wks and 3rd 26wks, 4th 2wks and 3rd 2wks, respectively. Percentage of participants with increased titers (former/later >1, orange), decreased titers (former/later <1, blue) or unchanged titers (former/later =1, green) were shown. (d) Anti-S1 (blue circle) and anti-S2 (orange triangle) antibody titers were compared between each time point. (e) Anti-RBD (blue circle) and anti-NTD (orange triangle) antibody titers at each time point were compared. (d) Antibody titers for S-Omicron. The orange dashed line represents the kinetics of the geometric mean titer of anti-S IgG. Data were shown as Geometric mean ± 95% CI. Friedman test followed by Dunn’s multiple comparisons test was used for d-f. * p<0.05, **p<0.01, ***p<0.001, ****p<0.0001. ns, not significant.
Figure 4 Potent immune responses elicited by the 3rd dose suppressed the induction of RBD-NAbs after the 4th dose

(a) NAbs to RBD (RBD-NAbs) were measured by a one-step competitive Chemiluminescent immunoassay for sera collected at various time points after 1st, 2nd, 3rd, and 4th doses. The kinetic of RBD-NAbs was shown for each participant. (b) RBD-NAbs were compared among various time points, including 3rd 2wks, 3rd 4wks, 3rd 13wks, 3rd 26wks, 4th 2wks, and 4th 4wks. (c) Peak values of RBD-NAbs after each vaccination were compared. (d) Percentage of participants with increased peak value (increased >20%, orange), decreased value (decreased >20%, blue), or unchanged (±20%, green) as compared to the previous peak were summarized. (e) Linear regression was performed between the peak value after the 3rd dose and the fold change of peak value from the 3rd to the 4th dose in the decreased group shown in (d). (f) Correlation between fold-change of peak values (FCP) of RBD-NAbs and FCP of
anti-RBD-Omicron IgG was analyzed by linear regression. (g, h) Participants were separated into an increased group or a decreased group, defined as PVNT-Omicron FCP increased or decreased compared to the RBD-NAb FCP respectively, taking PVNT-Omicron FCP/RBD-NAb FCP >2 as the threshold. Linear regression was performed between FCP of PVNT50 to Omicron and FCP of RBD-NAb in each group. Data were shown as Geometric mean ± 95% CI. RM one-way ANOVA was used for b and c. * p<0.05, **p<0.01, ***p<0.001, ****p<0.0001. ns, not significant.
Supplementary Figure 1 NAbT in males and females

Neutralization assays were performed to measure NAbT titers against pseudoviruses with S protein from a WT strain or Omicron variant. (a) NAbT titers for WT virus in males (blue circle) or females (orange triangle) were compared. (b) NAbT titers for Omicron variant were similarly compared between males (blue circle) or females (orange triangle). Data were shown as Geometric mean ± 95% CI.
Supplementary Figure 2 Correlation between NAb levels at various time points

Linear regressions were performed to reveal the potential correlation between NAb levels at 3rd 2wks and 4th 2wks (a), or NAb levels between 3rd 26wks and 4th 2wks (b), or fold change of peak values and NAb level at 3rd 26wks (c).
Supplementary Figure 3 Comparison of RBD-NAbs at 2nd 21wks and 3rd 26wks

RBD-NAbs were measured by a one-step competitive Chemiluminescent immunoassay. RBD-NAbs at 2nd 21wks and 3rd 26wks were compared. Data were shown as Geometric mean ± 95% CI. Paired t-test was used. ****p<0.0001.
Supplementary Figure 4 RBD-NAbs in males and females

RBD-NAbs were measured by a one-step competitive Chemiluminescent immunoassay. RBD-NAb titers in males (blue circle) or females (orange triangle) at 3rd 26wks or 4th 2wks were compared. Data were shown as Geomean ± 95% CI. Data were shown as Geometric mean ± 95% CI. RM one-way ANOVA was used. * p<0.05. **p<0.01. ns, not significant.