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Abstract 

Acute lymphoblastic leukemia (ALL) is the most common childhood cancer and comprises multiple 

genetically distinguishable subtypes. To detect subtypes, current pipelines include fusion calling, 

polymorphisms, candidate gene copy numbers and cytogenetics but these approaches have 

limitations. RNA-seq provides a functional genome-wide snapshot that enables classification of ALL 

subtypes, however, typical mRNA-seq clustering analyses lack the rigor of quantitative modelling. 

Furthermore, high-dimensional gene expression data across cohorts and countries contain biases 

that previous transcriptomics studies have not addressed. Our aim was to integrate easy-to-

interpret reliable transcriptome-wide biomarkers into subtyping pipelines. We analyzed 2,046 

samples from two continents, carefully adjusted for biases and applied a rigorous machine learning 

design with independent replication. Six ALL subtypes that covered 32% of patients were robustly 

detected by mRNA-seq (PPV ≥ 87%). Five other frequent subtypes were distinguishable in 40% of 

patients, although overlapping transcriptional profiles led to lower accuracy (52% ≤ PPV ≤ 73%). 

Based on these findings, we developed the Allspice tool that predicts ALL subtypes and driver genes 

from unadjusted mRNA-seq read counts as encountered in real-world settings. Allspice also includes 

quantitative classification and safety metrics to help determine the most plausible genetic drivers 

for cases where other findings are inconclusive.  
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Background 

Acute lymphoblastic leukemia (ALL) is characterized by abnormal differentiation and proliferation 

of malignant lymphoid precursors in blood and bone marrow [1,2]. Usually, the disease manifests 

as abnormal proliferation of B-cells while less than a quarter of patients present with a T-cell 

malignancy. The incidence rate is the highest in children under the age of 10 and in adults over the 

age of 65 with an average age-adjusted global annual incidence of 0.85 per 100,000 individuals [3]. 

Despite recent progress in molecular phenotyping, ALL remains a life-threatening disease, and 

advanced age (beyond paediatric) and certain subtypes are predictive of poor outcomes [1,2,4–7]. 

For these reasons, there is a compelling rationale for improving diagnostic tools and for pursuing 

deeper biological insight into ALL through new emerging technologies. 

Cytogenetic testing, immunophenotyping and molecular assays are essential for the diagnosis and 

further stratification of the disease into subtypes with different biological characteristics and 

prognosis [8–10]. Transcriptomic profiling of lymphoblastic cells is a recent addition to the 

diagnostic toolbox and it has led to the detection of new ALL subtypes [11–15]. Standard cytogenetic 

testing (G-banded karyotype) with adjunctive fluorescence in situ hybridization (FISH) can detect 

aneuploidy and chromosomal translocations such as BCR-ABL1, ETV6-RUNX1 and TCF3-PBX1 fusions 

[8,16]. KMT2A lesions, intrachromosomal amplification of chromosome 21 (iAMP21) and IGH-CRLF2 

and P2RY8-CRLF2 fusions are also detectable. Other subtypes are identified only through additional 

analysis such as real-time PCR, single nucleotide polymorphisms and RNA sequencing. Subtypes 

such as DUX4 rearrangements, ETV6-RUNX1-like and PAX5 alterations are examples where the 

underlying genomic alterations are difficult to detect using standard of care laboratory methods and 

RNA-seq profiling has emerged as an important diagnostic support [11,13,17]. For these reasons, 

understanding the information carried by transcriptomes in relation to the genome alterations in 

ALL is important, particularly for those patients for whom a conclusive genomic driver cannot be 

determined by current molecular diagnostics. 

The high volume of RNA sequencing data per individual makes it necessary to employ machine 

learning techniques to process the raw information for the identification of subtypes [7,11,12,18–

20]. In one such study, Gu et al. used clustering algorithms to characterize the transcriptional 

landscape of ALL [12]; the clusters were further investigated against identifiable genomic lesions to 

classify individual patients and to refine the taxonomy of ALL. Using the taxonomy, the authors were 

able to assign subtypes for 94% of the study subjects. Recently, Schmidt et al. used the taxonomy 

to classify patients in multiple datasets [11,21]. Encouraged by these successes, we set out to 
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leverage gene expression data within our transcriptomic analysis pipeline of B-cell ALL to improve 

diagnoses and to gain biological insight into the transcriptional landscape of ALL. 

Several issues related to mRNA-seq profiling of ALL have not yet been addressed. Firstly, clustering 

analyses of mRNA-seq data should be subjected to the rigorous adjustment of biases that is standard 

practice in epidemiology [22–24], instead, most studies opt to (mis)use methods such as surrogate 

variable analysis that may cause artefacts if the data batches and biological characteristics are 

correlated (as they tend to be in most multi-cohort collections). These artefacts will be further 

amplified by clustering algorithms and machine learning models. Cohort biases may explain why 

gene signatures of subtypes derived from gene expression clusters such as Ph-like have been 

difficult to consolidate between different studies without additional experiments and analyses [25–

27]. 

Secondly, a taxonomy that is based on gene expression profiles should not be used when fitting a 

machine learning model to RNA-seq read counts. Under the worst-case scenario, a transcriptome 

dataset affected by cohort bias leads to artificial clustering; the same artificial clustering of gene 

expression is then captured by machine learning and passed on as a falsely distinct subtype. Instead, 

we propose that gene expression classifiers should be trained with directly observable sequence 

variants or otherwise independently distinguishable subtypes or with longitudinal data on clinical 

outcomes and treatment effects. 

The aim of this study is to introduce a reliable ALL classifier that can be integrated into current 

transcriptomic analyses with minimal additional resources and that can reliably classify ALL cases in 

an unbiased manner. To achieve reliability, we use new techniques to adjust for cohort and RNA-

seq platform biases in a set of n = 1,279 North American patients and then validate the predictions 

in an independent cohort of n = 767 Australian patients. To achieve easy integration into existing 

workflows, we introduce the Allspice R package with extensive documentation, small programmatic 

footprint and additional features for predicting genomic drivers and for confirming the tissue-

identity of the biological samples. The tool is also easy to train for any other disease or classification 

problem or to update with improved models of ALL in the future.  
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Results 

Cohort characteristics and study design 

The distribution of ALL subtypes across cohorts is shown in Table 1. Note the definition of genomic 

subtypes: we excluded categories such as Ph-like due to the technical reasons described in Methods 

and in Supplement Figure S1. The most common subtypes included CRLF2 (between 3.0% and 18.4% 

of cohort participants), ETV6-RUNX1 (≥9.9% of pediatric patients), Hyperdiploid (≥9.8% of pediatric 

patients), KMT2A (between 2.2% and 13.4%) and Ph+ (between 2.4% and 21.5%). There were 

differences between the cohorts regarding age (P ≤ 7.6 × 10−11) and several subtypes including 

pediatric CRLF2 (P = 8.4 × 10−12), pediatric ETV6-RUNX1 (P = 2.3 × 10−8), KMT2A across both age 

categories (P ≤ 3.2 × 10−7) and non-pediatric Ph+ (P = 0.00016). The percentage of undefined samples 

was between 8.7% in the St Jude cohort and 33.1% in the Australian paediatric cohort. 

The RNA data were filtered and normalized separately for the North American and Australian 

samples (Figure 1A,B) and the training data were adjusted for technical and cohort confounders 

(Figure 1C). We also saved the unadjusted RNA data and compared it against the adjusted data to 

remove the most confounded genes (Figure 1D). In the next step, we created an internal training 

and testing set by splitting the North American data into two random subsets (Figure 1E). These two 

subsets were used as the initial material for selecting features and controlling for the complexity of 

machine learning models via hyperparameters. For the full models, we used all North American 

samples for training and the Australian dataset as an independent external validation set (Figure 1F). 

Adjustments for confounders 

Confounding factors were mitigated first by surrogate variable analysis within pre-defined cohort 

batches (details in Methods and in Supplement Figure S2), and batch differences between the 

cohorts were then adjusted with a new algorithm we recently developed for time-series 

metabolomics data (manuscript in revision). The adjustments removed correlations between gene 

expression and RNA library format (Figure 2A,D) and between the two continents of origin (Figure 

2B,E) but did not influence the correlations between gene expression and ALL subtypes (Figure 2C,F; 

Supplement Figures S5-S7). 

To verify that the data processing was technically sound, we constructed a visual layout of the 

individuals according to the North American data (Figure 3A), and then projected the unadjusted 

American and Australian datasets onto the layout using the same statistical model (Figure 3B). The 

use of unadjusted data is important here since it provides a more realistic picture of how new 
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previously unseen samples would behave in a diagnostic pipeline. Clusters of the most frequent ALL 

subtypes were observable and there was a high degree of concordance between the training and 

validation cohorts. A visualization of all subtypes and undefined samples is available in Supplement 

Figures S8. For convenience, we organized the subtypes into a central supergroup (CRLF2, 

hyperdiploid, hypodiploid, PAX5 alterations and Ph+) and distinct subtypes on the periphery (DUX4, 

ETV6-RUNX1, KMT2A, PAX5 P80R, TCF3-PBX1 and ZNF384). 

Classification of B-cell ALL subtypes based on RNA-seq profiling 

Positive predictive values (PPV) of machine learning models are visualized in Figure 4 and complete 

performance metrics are available in Supplement Tables S1-S3. We used three different types of 

models (centroids, PLS and random forest, details in Methods) to exclude any artefacts that may be 

specific to a particular algorithm. Hyperparameters are listed in Supplement Table S4. We focused 

on the external validation set as the primary benchmark of accuracy. Furthermore, all performance 

metrics were calculated for standardized but unadjusted data to simulate a scenario where new 

samples are analysed one at a time without the opportunity to adjust for cohort effects. 

Overall, differences between the three methods were negligible when considering the confidence 

intervals of the performance estimates (Figure 4). Accurate classification models were achieved for 

DUX4 (PPV ≥ 95% in the external validation cohort across the three methods), ETV6-RUNX1 (PPV ≥ 

91%), KMT2A (PPV ≥ 84%), PAX5 P80R (PPV ≥ 85%), TCF3-PBX1 (PPV ≥ 92%) and ZNF384 (PPV ≥ 96%). 

Together, 186 individuals (24%) of the Australian participants had one of these genomic subtypes 

(Figure 4D). More varied PPVs were observed in the central supergroup, including the CRLF2 subtype 

(PPV ≥ 83%, Figure 4B), hyperdiploid (PPV ≥ 72%), hypodiploid (PPV ≥ 54%), PAX5 alterations (PPV ≥ 

33%) and Ph+ (PPV ≥ 90%). Collectively, corresponding genomic subtypes were observed in 304 

individuals or 40% of Australian participants (Figure 4D). Medium to high accuracy was achieved for 

rare subtypes such as IKZF1 N159Y (PPV = 100%, Figure 4C), however, the small number of cases 

resulted in substantial statistical uncertainty. 

Allspice classifier 

Based on the results, we concluded that the centroid model of 45 prioritized genes is the preferred 

choice as the practical classifier due to its comparable performance to the other methods and 

technical simplicity. The centroids were also robust against overfitting as indicated by the flattening 

of internal training and testing performance when the number of inputs was increased (Supplement 

Figure S9). The robustness against overfitting enabled us to modify the study design to extract the 

maximum information from the available data (Supplement Figure S4). In the new design, the 
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centroid model was fitted to the combined adjusted American and Australian data. We also added 

an extra step to account for sex and age that may carry important predictive information. 

The results for a Ph+ patient are depicted in Figure 5. The classifier identifies the subtype centroid 

that is the most similar to the observed RNA expression profile (Figure 5A). The display includes the 

frequency of the subtype in the training data versus. any other subtype given the patient’s RNA 

profile (Figure 5B). Allspice also provides more detailed information on how the patient fits to the 

transcriptional landscape of ALL (technical details in Methods). The left panel shows the proximity 

of the patient to each subtype, respectively (Figure 5C). The ETV6-RUNX1 subtype is an example of 

a genomic lesion that manifests as a clearly observable signature (Supplement Figure S10). On the 

other hand, there is more overlap within the central supergroup and subtypes such as hypodiploid 

can manifest simultaneous transcriptional proximity to multiple subtypes (Supplement Figure S11). 

If this overlap is too great, i.e. if it is uncertain statistically which subtype is the closest match, the 

patient is classified as having an ambiguous transcriptional profile (Supplement Figure S12). 

The middle panel contains information on which combination of lesion-harbouring genes best fits 

with the observed RNA profile (Figure 5D). In this case, the gene expression profile is compatible 

with the classical BCR-ABL1 fusion without other strong signals. In the release version of Allspice, 

we have included only mutually exclusive gene combinations with at least five cases in the training 

set since rarer combinations could be difficult to confirm statistically. Matching genomic alterations 

directly with RNA profiles may provide additional clues for samples where other diagnostic results 

are inconclusive (Supplement Figure S11 and S12). 

The right-hand panel shows the proximity of the RNA profile to typical B-cell ALL versus other cell 

types from public sources (Figure 5E). For example, the Australian cohorts include patients that were 

recruited from routine practice, some of whom had low leukemia burden (Supplement Figure S13). 

For these individuals, the RNA data is closer to healthy blood and will be indicated by this panel. This 

feature is useful in circumstances where the sequence analyst has limited clinical information 

available. 

Classifier performance 

The overall classification results are shown in Figure 6 and in Table 2. Of 2,046 transcriptomes, 483 

(24%) were designated ambiguous and 89 (4.4%) were not classified due to poor proximity to any 

subtype. Performance was estimated first for all samples, including those with undefined genomic 

subtype. Since not all B-cell ALL cases can currently be attributed to a specific genomic lesion, these 
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numbers are conservative estimates for the accuracy of the gene expression profile as an indicator 

of the underlying genomic lesion. Distinct subtypes were detected with high confidence (PPV ≥ 87%), 

whereas there were more ambiguous and unclassified samples in the central supergroup (see 

Supplement Figure S14 for a detailed break-down). 

The second set of results were calculated for 1,598 patients that had a confirmed genomic subtype. 

Strong performance was observed for distinct subtypes (PPV ≥ 97%) and moderate accuracy for the 

central supergroup (PPV ≥ 75%). This scenario captures the statistical accuracy of the classifier in 

ideal conditions. Thirdly, when samples that failed the proximity or exclusivity thresholds were 

excluded, further improvements in PPV were seen across subtypes (10 out of 18 subtypes showed 

PPV = 100%). This shows how assessing the sample quality will help to avoid misclassification of 

borderline cases. Of note, a high proportion of samples (56%) that were classified as having 

BCL2/MYC gene expression subtype were also identified as not originating from ALL B-cells in the 

tissue classifier (Supplement Figure S15) which may explain why it was the most difficult subtype to 

predict.  
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Discussion 

B-cell ALL remains a life-threating disease particularly for adult patients of specific genomic subtypes 

[1–3,9]. Recently, rapid progress has been made in detecting ALL subtypes by RNA sequencing [12–

15,19] and in subtype-specific treatments [6,20]. In this study, we present new data from a large 

Australian dataset and new findings from rigorous statistical and practical considerations to better 

leverage gene expression profiling in the diagnosis of ALL subtypes. We confirmed six genomically 

defined subtypes in a third of patients that produce highly predictable mRNA profiles (PPV ≥ 89%). 

Further 40% of individuals were distinguishable by mRNA-seq expression levels, although the 

associations between specific genomic lesions and transcriptomic profiles were less certain. To 

dissect the biological ambiguity, we developed a proof-of-concept classifier that aggregates 

genome-wide mRNA-seq read counts into simplified RNA biomarker scores that indicate how well 

and where a patient’s RNA profile fits in the landscape of B-cell ALL subtypes. 

Definition of ALL subtypes 

We used simpler definitions of genomic ALL subtypes compared to some of the previous reports 

[12,21]. The streamlined presentation provided multiple benefits although trade-offs were 

unavoidable. Firstly, it allowed for sufficient group sizes for robust statistics and a statistically 

meaningful overview of the transcriptional landscape (e.g. Figure 3). On the other hand, more 

granular information on the exact nature of sequence alterations may be of high clinical importance 

but not captured by our subtype definitions. To gain better mechanistic insight, the Allspice classifier 

includes a feature that indicates genes that may harbour a driver mutation (Figure 5D) and further 

development of this concept may enable accurate diagnostics for targetable gene expression 

abnormalities. We also designed Allspice to support subtype definitions that are not mutually 

exclusive, thus providing flexibility for future updates. 

The second rationale for the streamlined ALL taxonomy was to ensure a rigorous study design for 

machine learning. Previous studies have classified patients according to the way their RNA-seq 

expression profiles cluster (examples include the Ph-like and ETV6-RUNX1-like subtypes [12,13]). 

However, these definitions are problematic for the training of RNA profiling classifiers – the same 

gene expression levels should not be used to first define and then predict a subtype. Instead, we 

relied on observable sequence abnormalities or other information that was not derived from gene 

expression levels (except for DUX4). As a trade-off, the size of the training set decreased and the 

number of individuals with undefined genomic subtypes increased, however, such uncertainty is to 
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be expected in real-world datasets that manifest substantial biological variation in how genomic 

lesions drive altered gene expression profiles. 

Classification performance and utility 

Overall, B-cell ALL subtypes that could be identified by fusion callers and cytogenetics had distinctive 

mRNA-seq read count profiles (Allspice classified 90% of samples with a defined genomic subtype 

correctly). In a recent study that used mostly the same datasets, correct classification rate was 

between 82% and 93% [21] and similar rates have been reported in other machine learning studies 

of ALL [11,19,28–30]. Therefore, the performance of the Allspice tool is within the range of other 

similar classifiers, which demonstrates the rich biological information available from RNA-seq data 

and the stability of the predictions across multiple types and implementations of classifiers. 

If a patient tests positive by Allspice for one of the six distinct subtypes (DUX4, ETV6-RUNX1, KMT2A, 

PAX5 P80R, TCF3-PBX1 and ZNF384), our findings suggest that the subtype can be validated by 

deeper exploration of the sequencing reads in the same RNA-seq dataset or by molecular 

diagnostics for at least 89% and up to 99% of cases depending on the subtype. Both the sequencing 

and molecular analyses can be time-consuming and inconclusive, whereas mRNA expression levels 

(i.e. inputs to Allspice) can be reproducibly calculated using highly standardized algorithms. This will 

shorten the time to diagnosis for the vast majority of ALL cases with the aforementioned recurrent 

lesions, and significantly shorten the time to delivering care in the clinical setting. Identification of 

other lesions such as CRLF2, hyperdiploid, hypodiploid, PAX5 alterations and Ph+ are less definitive, 

though this may improve with further algorithm training and refinement. There may be clinical 

utility for the Allspice biomarker panels as RNA risk factors for adverse outcomes in patients that 

show abnormal karyotypes. 

A total of 448 of patients lacked a definitive genomic subtype under the streamlined taxonomy we 

used in this study. Diagnostics for this patient subpopulation is where we expect mRNA-seq profiling 

to provide the best added value. In this respect, Allspice is a unique tool since it also provides 

quantitative RNA biomarkers for the most likely driver lesions and for the deviation from the healthy 

blood transcriptome. These features are particularly useful when the ALL subtype is difficult to 

establish due to the absence of identifiable sequence alterations or inconclusive cytogenetic 

findings. Based on the RNA data, we assigned a transcriptionally compatible ALL subtype to 207 

patients (41% of 448) – these are conceptually similar to the Ph-like and ETV6-RUNX1-like gene 

expression profiles from previous studies. The same concept can be extended to genomic drivers. 

For example, there were 90 (20%) patients with simultaneous alterations in CRLF2 and P2RY8 and 
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79 (18%) patients with alterations in both IGH and BCL2 among the undefined subpopulation. Given 

the sizes of these secondary subgroups, they may be considered as additions or replacements for 

historical subtypes as genomic ALL datasets get larger and better phenotyped. The gene expression 

profiles of 57 (13%) patients could not be matched with any typical ALL subtype and we suspect 

many of these were individuals with a low leukemia burden. 

Strengths and weaknesses 

The large sample size (statistical power), diversity of data sources, careful mitigation of potential 

confounding factors and comparisons between three classes of machine learning algorithms make 

this study strong from a methodological perspective. Notably, the Australian samples were collected 

from routine health care settings, which provides a realistic spread of sample quality and leukemia 

burden as encountered in clinical practice. Furthermore, we used additional datasets to help assess 

the quality of the samples and safety against misclassification, which is an important practical 

consideration outside research settings [31]. The data were obtained from three Western countries, 

and caution is warranted if applying the findings in different ethnic or socioeconomic context. Due 

to the careful analyses and robust performance, we anticipate that the classifier we created 

captured biological information that reflects the causal mechanisms of ALL, and it is therefore likely 

to work well for most patient populations. 

Practical considerations 

Allspice is open source, easy to install on the popular R programming environment via the 

Comprehensive R Archive Network and it comes with extensive documentation. It accepts raw read 

count data as produced by standard RNA sequencing pipelines, which is an advantage in clinical 

settings that may lack a dedicated bioinformatician. The R environment already includes tools for 

visual clustering of transcriptomes using algorithms such as t-SNE [32], but clustering results can be 

difficult to interpret for individual cases. Rather than relying on visual proximity in a scatter plot, 

Allspice uses quantitative probabilistic metrics to indicate the certainty of the predicted subtype. 

Furthermore, the ability to analyse one sample at a time is important: t-SNE or hierarchical cluster 

analysis are designed for the research space where large cohorts of labelled samples are readily 

available, whereas Allspice was designed for a single sample from the beginning. 

We included two examples with unusual lesions where Allspice helped to assign a (transcriptional) 

subtype. The first case was an individual with an undefined genomic subtype that Allspice classified 

as having an RNA profile compatible with an ETV6-RUNX1 fusion. Uncommon ETV6 fusions were 

discovered by detailed investigations (Supplement Figure S16). Another individual was classified as 
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having a ZNF384-like transcriptional profile while the exact causal lesion remained uncertain 

(Supplement Figure S17). These examples highlight how the additional information from Allspice 

can guide diagnostic efforts for patients with unusual genomic lesions.  
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Conclusions 

We observed strong associations between genomic alterations and lymphoblast transcriptome-

wide expression profiles in paediatric and adult patients of B-cell ALL. For a third of patients, these 

associations are unambiguous and provide diagnostic information that is often quicker and easier 

to obtain compared to fusion callers or cytogenetic tests. For the rest of the patients, gene 

expression analyses may provide insight that is not available from other methods. An RNA-based 

ALL biomarker can inform sequence analysts where to look for lesions manually if automatic fusion 

callers failed or read counts were too low for statistical certainty. In both scenarios, Allspice can help 

oncologists to determine the most likely causal drivers with greater confidence and identify 

potential therapeutic targets in a shorter time frame.  

 . CC-BY-NC 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted February 19, 2022. ; https://doi.org/10.1101/2022.02.17.22270919doi: medRxiv preprint 

https://doi.org/10.1101/2022.02.17.22270919
http://creativecommons.org/licenses/by-nc/4.0/


14 
 

Methods 

North American participants 

A total of 649 males, 541 females and 89 patients without gender information were from St Jude 

Children’s Research Hospital (St Jude); Children’s Oncology Group (COG); ECOG-AGRIN Cancer 

Research Group (ECOG-AGRIN); MD Anderson Cancer Center (MDACC); the Alliance of Clinical Trials 

in Oncology, Cancer and Leukemia Group B (CALGB) and University of Toronto (Toronto). Detailed 

clinical information for each case and listings of clinical trial numbers have been previously 

published [12]. RNA-seq data files were obtained from the European Genome-Phenome Archive 

(EGAD00001004461 and EGAD00001004463). The patients who participated in this study have 

provided written informed consent, assent (as appropriate), or parental consent (as appropriate) as 

part of enrolment protocols, for research, including genetic research. All relevant ethical regulations 

were followed during this study. 

Australian participants 

A total of 387 males, 278 females and 102 patients without gender information were investigated 

through the Australasian Leukaemia and Lymphoma Group (ALLG) National Blood Cancer Registry 

and the associated Regalia project (ACTRN12612000337875), Australian & New Zealand Children’s 

Haematology/Oncology Group Acute Lymphoblastic Leukaemia Study 8 (ACTRN12607000302459) 

and Study 9 (ACTRN12611001233910). All protocols had been approved by relevant human research 

ethics committees. 

Supporting RNA data 

RNA data were sourced from a previously published study of 660 lymphoblast cell lines [33] and 

from the Genotype-Tissue Expression (GTEx) project release 8 [34]. The GTEx includes RNA-seq data 

from 948 donors and 54 tissues. In this study, we organized the data into 31 organ groups, of which 

those that contained at least 500 samples were selected, including whole blood as the most relevant 

tissue type for ALL. 

RNA sequencing and pre-processing 

RNA analyses of the North American samples have been described previously [12]. Briefly, RNA-seq 

was performed using TruSeq library preparation and HiSeq 2000 and 2500 sequencers (Illumina Inc, 

San Diego, CA, USA). All sequence reads were paired-end and were obtained from total RNA and 

stranded RNA-seq (75 or 100 base-pair reads) and polyA-selected mRNA (50, 75 or 100 base-pair 

reads). In Australia, library preparation for mRNA sequencing was performed using either Truseq 
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Stranded mRNA LT Kit (Illumina, CA, USA) or Universal Plus mRNA-Seq with NuQuant (Tecan, CA, 

USA) from 1 g of total RNA as per manufacturer's instructions.  Samples were sequenced by either 

Illumina HiSeq 2000 or NextSeq 500 platforms producing 75b length paired-end (PE) reads with 

median read depth of 65M reads. 

Raw reads from all cohorts were aligned and mapped to the GRCh37 reference genome with the 

STAR software version 2.4.2a and above using the two-pass mode [35]. Raw gene counts were 

generated from BAM files using featureCounts [36]. We defined a gene to be usable as a potential 

biomarker if it had a read count of ≥100 in at least 1% of samples in both the North American and 

Australian datasets, respectively. In total, 18,923 genes were included in the study. Expression 

counts were normalized using the DESeq2 algorithm [37] and the normalized counts were 

transformed using the formula log2(count + 1) before statistical analyses.  

Genomic subtyping 

In the text, we use the term ‘genomic ALL subtype’ when the subtype is assigned according to a DNA 

or RNA sequence abnormality or a clinical biomarker independently of gene expression levels. The 

detection of genomic alterations and subsequent subtyping of ALL cases were based on the 

previously published analyses of the North American samples [12] and a preliminary definition of a 

recently discovered rare CDX2 subtype [38]. We were not able to define the DUX4 subtype 

independently of mRNA expression levels due to its cryptic nature. 

Genomic alterations in the Australian samples were detected as follows. FusionCatcher [39], 

SOAPfuse [40] and JAFFA [41] were utilised to identify clinically relevant gene fusions. Only fusions 

reported by multiple fusion calling algorithms were considered with the exception of 

rearrangements involving the IGH locus (IGH-DUX4), which were confirmed by high levels of DUX4 

expression [42] or by manual inspection of the fusion and accompanying expression data. Single 

nucleotide variants were identified with GATK-haplotype caller [43] following the best practices 

workflow. Copy number alterations were detected by multiplex ligation-dependent probe 

amplification using two SALSA Reference kits (P335 and P202, MRC-Holland, Amsterdam, 

Netherlands) according to the manufacturer’s instructions. 

To harmonize subtype definitions between the cohorts and to include only the most confident 

classifications, we relabelled subtypes for the statistical analyses (Supplement Table S1, Supplement 

Figure S1). In addition to the pre-defined subtypes, we also determined every gene and 

combinations of genes that harboured an alteration for any individual. These mutational profiles 
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were then used for creating genetically matched subsets to allow for more accurate batch 

adjustments (details below). 

Adjustments for confounders 

We divided the data into five batches according to country of origin and age of the patients (Table 

1). We then used statistical adjustments to mitigate the potentially confounding associations 

between data sources and ALL subtypes. Firstly, we used Surrogate Variable Analysis [44] to reduce 

undesired variation in normalized read counts within each batch, respectively. Next, we used 

genetically matched subsets and the Numero R package [45] to remove potentially confounding 

variation between the batches (Supplement Figure S2). Genes that were perfectly aligned with a 

batch were excluded, which left 18,503 adjusted genes (98%) for statistical analyses. We then 

calculated correlations between unadjusted and adjusted versions of gene expression and excluded 

unstable genes that showed a Pearson correlation of R < 0.9 (Supplement Figure S3). A total of 6,673 

genes were considered stable and included as inputs to classification models. 

Machine learning 

We chose a random forest approach [46] as an example of a supervised non-linear machine learning 

technique that can predict multi-class outcomes from complex input data. We also created 

Projections to Latent Structures (PLS) for each ALL subtype separately as an example of a linear 

factorization method [47]. Separate PLS models were fitted to each subtype versus other samples. 

The third type of modelling was based on neighbour distances: we calculated mean RNA profiles 

(centroids) for every ALL subtype and classified individuals based on the nearest centroid in data 

space. Unsupervised clustering was achieved with the Uniform Manifold Approximation and 

Projection (UMAP) algorithm [48] to gain qualitative visual insight into the RNA-based segregation 

of ALL subtypes. 

Input data were standardized the same way for each model using the default settings of the function 

‘numero.prepare()’ in the Numero R package [45]. This is a refined version of the empirical Z-score 

with protections in place for outliers and skewed distributions. Normalization and standardization 

parameters were determined for the training dataset and applied independently to the external 

validation set to simulate a scenario where new unseen data are analysed one sample at a time and 

thus must be pre-processed using pre-defined parameters. 
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Pruning of correlated input features 

To improve the performance of UMAP and nearest centroids, the full list of detectable genes was 

pruned using an approach similar to clumping in genetics [49] and the pruned set of genes was used 

as input features. First, we calculated Welch’s t-statistics for each gene and ALL subtype and 

converted them to Z-scores using the cumulative t-distribution and inverse cumulative Normal 

distribution. Next, we calculated the variance of the Z-scores for each gene as an aggregate measure 

of how well a gene segregated between ALL subtypes. Genes were then sorted from large to small 

variance. In the final step, the sorted list was traversed while checking if the next gene was 

correlated (R ≤ −0.3 or R ≥ 0.3) with any of the already selected. The Australian data were excluded 

from the pruning procedure to ensure independent external validation. 

Training, testing, external validation and performance metrics 

The division of data for the evaluation of classification performance is shown in Figure 1. To 

determine the optimal model complexity (hyperparameters), North American participants were 

divided into two randomized subsets that were used as internal training and testing sets. The 

randomization was done separately for each subtype to ensure matching subtype frequencies. Next, 

models were fitted to one of the subsets (internal training set) and classification performance was 

evaluated in the other (internal testing set). Classification performance in the testing set was used 

to determine optimal hyperparameter settings (Figure 1E). 

Full models were trained with the full North American dataset and validated externally in the 

Australian dataset. We focused on positive predictive value (PPV) as the primary performance 

metric due to its suitability for the low case frequencies of most ALL subtypes. Negative predictive 

values, sensitivity, specificity and the area under the receiver operating characteristic curve were 

also calculated. 

Proximity and exclusivity  

The open-source classification tool Allspice is available in the Comprehensive R Archive network 

(URL: https://cran.r-project.org). It includes a visual display of the classification results (Supplement 

figure S4, Box F) and two quality measures to help decide if an RNA profile indicates a specific ALL 

subtype. The proximity measure is the output value from the probit regression step in the Allspice 

modelling design (Supplement figure S4, Box E) and it represents the likelihood of observing the 

subtype in the training population when balanced for group sizes and given the observed RNA 

biomarker value and covariates. We chose 50% as the threshold for acceptable proximity. To 
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identify samples with mixed subtype characteristics (designated as ‘Ambiguous’), we defined 

exclusivity as the difference in the proximity scores between the best and the second-best matching 

subtype centroids. The χ2-distribution with one degree of freedom was used to convert the 

difference into a probability. We chose 50% as the default threshold for acceptable exclusivity.  
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Table 1 

Patient characteristics and frequencies (%) of ALL subtypes according to known genetic alterations. 

The participants were grouped primarily by the recruiting institute and secondarily by age (>99% of 

participants in the pediatric cohorts were below 20 years of age). Mean and standard deviation are 

shown for age. P-values for cohort differences were calculated by the χ2-test. 

 Pediatric cohorts Adult and general cohorts 

COG St Jude Australia P-value 

ECOG-ACRIN, 
Toronto, MDACC, 

CALGB Australia P-value 

Male 177 221 83 4.4 × 10−6 251 304 0.021 

Female 120 188 73 0.016 233 205 0.013 

Unknown 27 52 89 1.8 × 10−21 10 13 0.77 

Age (years) 9.2 ±5.7 6.4 ±4.4 7.4 ±4.0 7.6 × 10−11 45.1 ±14.8 35.7 ±22.6 3.6 × 10−13 

BCL2/MYC 0.0 0.4 0.4 0.50 2.8 0.8 0.024 

CDX2 hi-exp 0.3 0.0 0.0 0.34 0.6 0.6 1.0 

CRLF2 7.4 3.0 18.4 8.4 × 10−12 13.2 8.4 0.020 

DUX4 7.4 7.4 2.0 0.0096 4.9 6.9 0.21 

ETV6-RUNX1 9.9 26.7 18.0 2.3 × 10−8 1.0 2.3 0.18 

HLF 0.0 0.4 0.4 0.50 0.6 0.6 1.0 

Hyperdiploid 21.0 21.3 9.8 0.00034 4.0 5.7 0.27 

Hypodiploid 1.2 0.7 0.8 0.68 11.5 3.6 3.1 × 10−6 

iAMP21 6.5 0.4 0.8 0.72 × 10−8 0.2 0.4 1.0 

IKZF1 N159Y 0.3 0.0 1.3 0.043 0.4 0.6 1.0 

KMT2A 2.2 10.8 2.9 2.0 × 10−7 13.4 4.4 3.2 × 10−7 

MEF2D 2.2 1.1 0.0 0.058 2.0 1.1 0.39 

NUTM1 0.3 1.1 0.4 0.36 0.0 0.2 1.0 

PAX5 Alt 4.0 5.9 3.7 0.32 8.3 1.9 6.4 × 10−6 

PAX5 P80R 0.9 1.1 0.8 0.94 3.4 2.9 0.74 

Ph+ 5.6 2.4 4.1 0.070 12.3 21.5 1.6 × 10−4 

TCF3-PBX1 2.2 6.7 1.2 0.00023 3.0 2.3 0.59 

ZNF384 1.9 2.0 2.0 0.99 2.8 4.4 0.24 

Undefined 27.2 8.7 33.1 1.7 × 10−16 15.6 31.2 7.0 × 10−9 
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Table 2 

Positive predictive values for correct classification into genetically defined B-cell ALL subtypes. The 

values are presented as the percentages of samples for which the best matching RNA centroid was 

the same as the genetic subtype if defined. Quality control was set at ≥50% proximity and ≥50% 

exclusivity  (details in Methods). 

 
All samples 

Samples with 
defined subtypes 

Samples with defined subtypes 
that passed quality control 

Number of samples 2,046 1,598 1,292 

DUX4 (%) 96.8 100.0 100.0 

ETV6-RUNX1 (%) 86.6 97.7 98.6 

KMT2A (%) 91.1 96.6 100.0 

PAX5 P80R (%) 95.2 97.6 100.0 

TCF3-PBX1 (%) 98.5 98.5 100.0 

ZNF384 (%) 89.1 96.6 100.0 

CRLF2 (%) 62.0 91.2 97.6 

Hyperdiploid (%) 69.8 92.1 99.0 

Hypodiploid (%) 64.2 79.0 89.2 

PAX5 Alt (%) 52.1 74.8 92.7 

Ph+ (%) 67.2 84.8 96.6 

BCL2/MYC (%) 17.5 54.1 66.7 

CDX2 hi-exp (%) 38.9 77.8 100.0 

HLF (%) 64.3 75.0 90.0 

iAMP21 (%) 27.9 66.7 100.0 

IKZF1 N159Y (%) 64.3 90.0 100.0 

MEF2D (%) 72.2 78.8 100.0 

NUTM1 (%) 40.0 66.7 100.0 
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Figure 1 

 

Study design. A,B) RNA-seq pre-processing was applied separately for North American and 

Australian datasets. C) Non-biological differences due to technical artifacts and cohort effects were 

adjusted according to genetically matched subsets (details in Methods). D) Correlation coefficients 

were calculated between unadjusted and adjusted expression levels to exclude genes that were 

heavily influenced by confounders. A total of 6,673 stable genes with R ≥ 0.9 were included for 

subtype modelling. E) Internal training and testing sets were randomly chosen from the North 

American participants as initial material to evaluate machine learning models and to determine 

hyperparameters. The randomization was done separately for each subtype to ensure matching 

subtype frequencies, which explains the small difference in set sizes. F) Final machine learning 

models were trained with the full North American dataset and validated in the Australian dataset.  
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Figure 2 

 

Impact of confounder adjustments. Pearson correlation coefficients were calculated between 

18,503 log-transformed genes and a technical or clinical variable before and after gene expression 

levels were adjusted as described in Methods. A wide histogram indicates substantial covariation 

across the transcriptome while a narrow histogram indicates successful removal of covariance. A,D) 

The North American cohorts included 204 (16%) RNA samples that were sequenced with an 

unstranded library. B,E) Strandedness and other technical differences manifested as substantial co-

variation between the transcriptome and the continent of origin. C,F) Covariation between gene 

expression and ALL subtypes such as ETV6-RUNX1 was preserved.  
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Figure 3 

 

Transcriptional landscape of the most frequent ALL subtypes. Clustering structure in the North 

American data was modelled by the Uniform Manifold Approximation and Projection (UMAP) 

algorithm and using the same genes that were prioritized and pre-processed for the centroid 

classifier. A) Standardized but unadjusted gene expression values were used for re-projecting the 

North American samples onto the UMAP layout. We use the unadjusted expression profiles here 

since in practical settings where patients arrive one-by-one, adjustments for batch effects that 

would be available in research settings cannot be done. B) Unadjusted Australian data were 

projected onto the same UMAP layout as an independent external validation set.  
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Figure 4 

 

Comparison of three machine learning algorithms. Each model was fit to the batch corrected North 

American data (training set n = 1,078) and then evaluated in unadjusted Australian data (external 

validation set n = 520). Samples with undefined genetic subtypes were excluded from the analyses. 

The forest plots show 95% confidence intervals that reflect the statistical uncertainty due to finite 

category sizes. The percentages written in the plots indicate the prevalence of the genetic subtype 

in the Australian dataset.  
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Figure 5 

 

Example of a report card from the Allspice classifier for an adult male patient from North America 

with Ph+ genetic B-cell ALL subtype. A) The sample identifier and predicted subtype based on RNA 

data are written on the top-left corner. B) The report shows the frequency of the corresponding 

genetic subtype in the training data, given the observed gene expression profile. In this case, there 

is a 77% chance that sequence and cytogenetics analyses would confirm the presence of the 

Philadelphia chromosome. C) Visualization of how similar the sample is to each ALL subtype profile. 

The display can be interpreted as a panel of RNA “biomarkers” that are specific to each subtype. In 

this case, the high value for Ph+ indicates that the gene expression profile is compatible with a 

typical patient with the Philadelphia chromosome. D) Allspice also indicates how similar the sample 

is to the RNA profiles associated with genetic alterations. In this case, the gene expression profile 

matches the typical profile of patients with independently verified BCR-ABL1 fusion (i.e. the 

hallmark of Ph+). E) Samples with high leukemia burden will typically produce a strong B-cell ALL 

signal in the tissue panel. F) Minimal example of how to generate the report in the R programming 

environment.  
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Figure 6 

 

Classification performance of the Allspice centroid classifier. A) The bars show positive predictive 

values for all samples including those with undefined genetic subtypes. They represent conservative 

estimates on how likely it is that the subtype predicted by mRNA-seq expression levels can be 

confirmed as a specific sequence alteration or is also indicated by cytogenetics. B) Proportions of 

genetic subtypes in the dataset.  
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Supplement Figure S1 

 

Re-definition of subtypes that were derived predominantly from clustering of gene expression data. 

From a machine learning perspective, it would be problematic to first define a subtype using gene 

expression profiles, and then predict the subtype using the same data (circular design). To preserve 

sound design for this study, the Ph-like subtype was not used as the target for prediction by RNA-seq 

data. A) Overlap between RNA-based “like” subtypes (vertical) and combinations of gene alterations 

(horizontal). B) Patients that were Ph-like or otherwise derived from RNA-seq clustering were 

assigned to the CRLF2 subtype if they harboured alterations involving the CRLF2 gene as this was 

the most frequent genetic lesion within these patients.  
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Supplement Figure S2 

 

Schematic illustration of batch corrections. The RNA-seq datasets contained undesirable correlations 

between gene expression and multiple potential confounders including library strandedness, subtype 

prevalence across different locations and other cohort effects. To prevent the classification models 

from fitting to these patterns, we first applied surrogate variable analysis (SVA) to remove variation 

that was not related to the traits of interest within each batch. Note that applying SVA to the entire 

dataset could lead to over-optimistic classifiers, since it would amplify existing correlations between 

batch membership and the subtypes that arise from the cohort structure. To remove the correlations 

between batch membership and biological subtypes, we created matched subsets from each batch that 

had pair-wise identical age, sex, genetic subtype and known lesion profile. It thus became safe to do 

standard batch correction using the Numero library for these subsets. Lastly, the adjustment 

parameters from the subset analysis were used for adjusting the batch effects of the original data. 
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Supplement Figure S3 

 

A summary of the impact of batch correction on gene expression levels. The histogram shows Pearson 

correlations for each gene between original log transformed read counts and read counts after batch 

correction. We then defined acceptable stability as R > 0.9, which led to the inclusion of 6,249 genes 

out of 18,515 for further statistical analyses.  
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Supplement Figure S4 

 

Centroid classifier as trained for the Allspice R library. All available samples that had a verified 

genetic subtype were used as a training set. Altogether 45 inputs out of 6,673 stable genes were 

prioritized according to the clumping algorithm described in Methods. The model was trained with 

batch corrected data and performance metrics were calculated from unadjusted expression levels.  
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Supplement Figure S5 

 

Comparison of Pearson correlations between log-transformed read counts and patient meta-data 

before and after batch correction. Age was not used as a matching criterion in those batch correction 

steps that involved comparisons between pediatric and non-pediatric batches.  
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Supplement Figure S6 

 

Comparison of Pearson correlations between log-transformed read counts and patient meta-data 

before and after batch correction. Age was not used as a matching criterion in those batch correction 

steps that involved comparisons between pediatric and non-pediatric batches.  
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Supplement Figure S7 

 

Comparison of Pearson correlations between log-transformed read counts and patient meta-data 

before and after batch correction.  
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Supplement Figure S8 

 

Uniform Manifold Approximation and Projection (UMAP) trained with batch corrected North 

American data and using genes that were optimised the centroid classifier. The scatter plot was 

produced by applying the UMAP to the unadjusted North American dataset and Australian datasets, 

respectively. The grey symbols represent undefined genetic subtypes.  
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Supplement Figure S9 

 

Optimization of a hyperparameter (number of input genes) for the centroid classifier. The model was 

trained with half the batch corrected North American dataset and tested with the other half. The curves 

depict overall positive predictive values that were calculated by applying the centroid models with 

different numbers of inputs to unadjusted North American data. We chose K = 45 as the final 

hyperparameter value. 
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Supplement Figure S10 

ETV6-RUNX1 case study from a North American cohort. This is an example of a patient with a 

distinct gene expression profile associated with a directly observable driver fusion. 
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Supplement Figure S11 

Hypodiploid case study from the North American dataset. Patients with chromosomal alterations are 

easy to detect via karyotyping, however, the extensive genetic alterations may affect multiple genes 

and pathways which may make it difficult to ascertain specific targets for molecular therapies. In this 

example, the RNA-seq profile suggests that the transcriptional consequences are compatible with a 

broad group of individuals that have BCL2, KMT2A and/or PAX5 lesions. The additional information 

from RNA-seq provides clues on the combination of genomic drivers that may be specific to this 

patient. 
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Supplement Figure S12 

Ambiguous case study from the North American dataset. It is possible for a patient to exhibit multiple 

genetic lesions that drive ALL. Furthermore, the transcriptional consequences from different lesions 

may converge to similar profiles, which means that some patients will exhibit mixed gene expression 

characteristics. In this example, the transcriptional profile is in between the MEF2D and TCF3-PBX1 

subtypes. The secondary analysis of driver genes (middle panel) suggests the combined lesion of 

MEF2D and BCL9 may be an important factor for this individual. 
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Supplement Figure S13 

Unclassified case study from the Australian dataset. An unusual gene expression profile can represent 

a previously unknown subtype, however, it is more likely that the patient either had low leukemia 

burden or that incidental factors such as instrument failures or sample handling accidents had affected 

the sample quality. In Allspice, atypical samples are characterised by the lack of signals across the 

subtypes and genetic drivers. Here, there is also indication that leukemia burden may be low (see the 

tissue panel on the right). 
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Supplement Figure S14 

 

Detailed breakdown of the Allspice classifier performance with respect to subtypes and sample 

quality. A) Samples classified as one of the distinct subtypes exhibited high accuracy and a low 

proportion of undefined genetic subtypes. The central subgroup was less clear with lower accuracy 

overall. B) Samples that passed quality control (proximity ≥ 50%) were accurately classified. 

Ambiguous and unclassified samples included a high proportion of undefined subtypes. C-E) 

Samples classified by Allspice into specific subtypes, stratified into quality groups. 
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Supplement Figure S15 

 

Application of a secondary tissue classifier contained within the Allspice package. The numbers of 

B-cell ALL samples are shown (total 2,046). The color intensity indicates deviation from the expected 

category distribution given the category sizes. Substantial classification of the ALL patient samples 

as whole blood or ambiguous source were observed for the BCL2/MYC subtype (35 out of 63). 
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Supplement Figure S16 

 

A case study of a patient who was tested at our study center in South Australia. The sample arrived 

after Allspice was finished and it was not used anywhere else in this manuscript. No ETV6-RUNX1 

fusion was identified by molecular genetics (Karyotype, FISH, SNParray) or within the RNA-seq 

data. RNA-seq identified the following fusions (appear to be consistent with complex 3-way 

translocation idicated by FISH): ETV6 (chr 12, exon 7) - HDAC9 (chr 7, exon 13), HDAC9-ETV6 

(3’ UTR exon 13 - intron 1), UBE4B (chr 1, exon 2) - ETV6 (chr 12, exon 8), ETV6 (chr 12, exon 8) 

- IKZF1 (chr 7, exon 3). However, the transcriptional profile was consistent with ETV6-RUNX1 and 

the patient was subsequently classified as ETV6-RUNX1-like. 
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Supplement Figure S17 

 

A case study of a patient who was tested at our study center in South Australia. The sample arrived 

after Allspice was finished and it was not used anywhere else in this manuscript. No known ZNF384 

fusions identified by molecular genetics or RNA-seq. FISH performed with ZNF384 Break Apart 

Probe, no rearrangement found. Detailed search of sequence data identified an AHSA2-ZNF382 

fusion called by 9 reads by fusion catcher only. In UCSC Genomic coordinates maps to intron 78 of 

USP34 and the intragenic region between ZNF383 and ZNF461. The patient was classified as 

ZNF384-like based on the transcriptional phenotype. 
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