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Abstract 52 

Background 53 

Cell-free DNA (cfDNA) analysis holds great promise for non-invasive cancer screening, 54 

diagnosis and monitoring. We hypothesized that mining the patterns of big datasets of shallow 55 

whole genome sequencing cfDNA from cancer patients could improve cancer detection. 56 

Methods 57 

 By applying unsupervised clustering and supervised machine learning on large shallow whole-58 

genome sequencing cfDNA datasets from healthy individuals (n=367), patients with different 59 

hematological (n=238) and solid malignancies (n=320), we identify cfDNA signatures that 60 

enable cancer detection and typing. 61 

Results 62 

Unsupervised clustering revealed cancer-type-specific sub-grouping. Classification using 63 

supervised machine learning model yielded an overall accuracy of 81.62% in discriminating 64 

malignant from control samples. The accuracy of disease type prediction was 85% and 70% 65 

for the hematological and solid cancers, respectively. We demonstrate the clinical utility of our 66 

approach by classifying benign from invasive and borderline adnexal masses with an AUC of 67 

0.8656 and 0.7388, respectively.  68 

Conclusions 69 

This approach provides a generic and cost-effective strategy for non-invasive pan-cancer 70 

detection.  71 

 72 

key words: liquid biopsy, cfDNA, ctDNA, hematological malignancies, solid tumors, ovarian 73 

tumors, machine learning  74 
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Introduction 75 

Cell-free DNA (cfDNA) is a promising non-invasive biomarker in liquid biopsy for cancer 76 

management. Shallow whole-genome sequencing (sWGS) of cfDNA can identify cancer-77 

specific copy number aberrations (CNAs) in cancer patients (1,2). Using genome-wide cfDNA 78 

sequencing data to profile genomic imbalances, we reported that CNAs in the asymptomatic 79 

population can be indicative of incipient tumors and has potential as a cancer screening tool 80 

(3). 81 

 82 

In addition to CNAs, sequencing of cfDNA provides a unique view on the genome-wide 83 

cfDNA fragmentation profile (4,5). CfDNA fragments carry tissue-associated nucleosome and 84 

preferred end position information (6,7), reflecting tissue-specific degradation, chromatin 85 

accessibility and nucleosome organization of its cellular origin (8,9). In healthy individuals, 86 

plasma cfDNA comprises DNA fragments that are mainly resulting from apoptotic release of 87 

DNA from the cells of hematopoietic origin (10). In plasma of cancer patients, circulating 88 

tumor DNA (ctDNA) has decreased fragment sizes and signatures of the tissue of origin (8,11). 89 

Consequently, fragmentomics is emerging as an approach to reveal cfDNA properties, 90 

broadening the potential of cfDNA as a biomarker (4,12). 91 

 92 

Increasing availability of cfDNA sWGS data from large-scale liquid biopsy projects offer 93 

unique opportunities to explore the cfDNA profiles by machine learning. We hypothesized that 94 

mining variation between sWGS profiles may uncover distinct patterns that can be associated 95 

with different pathological or physiological states. Hence, we applied an unsupervised 96 

clustering analysis and supervised machine learning workflow, which we term GIPXplore, on 97 

a large number of genome-wide sWGS cfDNA profiles from cancer patients with different 98 

hematological and solid tumors and unveiled cancer-type-specific and also shared tumor-99 
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associated signatures that are absent in healthy individuals. This approach enables accurate 100 

detection of different cancers and allows prediction of the cancer types.101 
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Materials and Methods 102 

Patients and clinical data 103 

The study was approved by the ethical committee of the University Hospitals Leuven (S57999, 104 

S62285, S62795, S50623, S56534, S63240, S51375, S59207, S64205 and S64035). Samples 105 

and consents were obtained from healthy controls and cancer patients. Blood was collected 106 

either into Streck Cell-Free DNA BCT or Roche Cell-Free DNA Collection Tubes. Plasma was 107 

isolated via a standard, two-step centrifugation procedure and stored at -80°C. Previously 108 

published sequencing data from 260 healthy subjects (3) and 177 patients with Hodgkin’s 109 

lymphoma (13) were included in the study. 110 

 111 

sWGS Analysis 112 

cfDNA was extracted from plasma using standard processing procedures and sWGS 113 

sequencing (14) (details described in the Supplemental Materials). Each sample ended with 114 

57509 autosome bin features from standard processing. Principal component analysis (PCA) 115 

was used for dimension reduction to transform data from high dimension to low dimension. 116 

We performed the supervised learning on both the original data space and PCA transformed 117 

space and found marginal gains of performance in the majority of analyses with the original 118 

data space. As the computational time was much higher using the original data space, we used 119 

PCA features in the main analyses such that features being used in both unsupervised and 120 

supervised learning were consistent.  121 

 122 

GIPXplore 123 

As illustrated in Fig. 1, we developed GIPXplore to mine sWGS cfDNA data for identification 124 

of signatures. We utilized unsupervised clustering and supervised machine learning. For 125 

unsupervised clustering, we evaluated the variance being explained from principal components 126 
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(PCs) in the tumor data. Overall, the top 30, 50 and 100 PCs explained above 80%, 85% and 127 

90% of the variance in the data, respectively. While there is no absolute optimal number of 128 

PCs to be used for further analysis, non-trivial components - 50 PCs (Supplemental 129 

Materials) were determined as a default number for downstream analyses in the results. The 130 

Euclidean metric was used to measure dissimilarity among samples for clustering analysis. 131 

Proximity matrix based on dissimilarity of samples was generated. The t-distributed stochastic 132 

neighbor embedding (tSNE) (15) was used to map high-dimensional data to two (or three) 133 

dimensions and to visualize the clusters. Due to the random process of tSNE, we applied 134 

Walktrap community (16) detection on the original proximity matrix for cluster assignments 135 

regardless of the presentation of tSNE visualization. In running tSNE, we set parameters 136 

perplexity of 15/30 and iteration of 10000 with exact tSNE for accuracy, and the process was 137 

repeated for 10 times with different seeds. For Walktrap, we used the parameters of 8 initial 138 

numbers of neighbors search and a walk step of 2. Clusters defined from the community 139 

detection were used for annotation. In supervised learning, PCA transformed genome-wide 140 

features were used in the machine learning model for training. PCA was performed on training 141 

data, and test data was projected on PCA space of training data for classification tasks. We 142 

measured performance by repeating the tenfold cross-validation 10 times and leave-one-out 143 

(LOO) procedures. For cross fold (CV) validation, the ROC curve and performance was 144 

calculated by averaging over 10 repeats. For classifiers, we used a support vector machine 145 

(SVM) and hyperparameters were chosen based on the grid search with a subset of the data. A 146 

separate model was trained to localize tissue of origin and LOO was used to evaluate 147 

performance characteristics. Weighted sample size was accounted for in the model for 148 

imbalanced classes.149 
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Results 150 

GIPXplore detects and classifies hematological malignancies with high accuracy 151 

To assess the potential, we applied our method on a set of cfDNA samples from healthy 152 

controls (n=260) and patients with hematological malignancies that included Hodgkin’s 153 

lymphoma (HL; n=179), diffuse large B-cell lymphoma (DLBCL; n=37), multiple myeloma 154 

(MM; n=22) (Table 1). Walktrap community detection was performed on the dataset, and 15 155 

clusters were defined. Visualization with the tSNE yielded separations between malignant and 156 

healthy control profiles, and the tSNE representation was largely in agreement with the clusters 157 

found by Walktrap (Fig. 2, A). Moreover, we observed cancer type-specific clusters. Cluster 158 

1, 3 and 4 was exclusively composed of HL samples. Cluster 9 was enriched for DLBCL 159 

samples, and cluster 13 was specific to MM samples (Fig. 2, B and Supplemental Fig. 1).  160 

 161 

In parallel, we benchmarked our method against the ichorCNA (17) algorithm for copy number 162 

profiling and tumor fraction (TF) estimation from sWGS data. IchorCNA utilizes the depth of 163 

coverage to evaluate the presence of large-scale copy number aberrations and the probabilistic 164 

model is used to infer copy number states and estimate fraction of tumor. Overall, only 52.95% 165 

of hematological cancer samples had detectable tumor-derived cfDNA levels (Fig. 2, C, 166 

Supplemental Fig. 2 and Supplemental Table 1), using the 3% detection limit suggested in 167 

the ichorCNA for detecting the presence of tumor. The above-mentioned clusters 1, 3, and 4 168 

consisted of profiles characterized by large chromosomal aberrations and high tumor load. 169 

Clusters 2 and 8 consisted of profiles from HL patients with both high and low tumor fractions, 170 

implying that the clustering was not completely CNA-driven. In particular, ten out of 65 171 

(15.38%) lymphoma samples in cluster 2 with normal-like profiles (without detectable CNAs) 172 

grouped together with samples characterized by detectable CNAs. A less pronounced 173 

separation could be observed between clusters containing healthy controls and cluster 8, in 174 
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which 76.47% (26 out of 34) malignant cases had normal-like profiles with less than 3% TFs. 175 

Nine HL samples in cluster 10 showed higher bin-to-bin log2 ratio variations and were more 176 

likely to be noisy on a genome-wide scale (Fig. 2, D and Supplemental Fig. 3). The remaining 177 

malignant cases without detectable CNAs co-localized with healthy controls. To further 178 

explore whether clustering of malignant samples would be mainly CNA-driven, we performed 179 

clustering analysis using the log2 copy ratio values produced by ichorCNA. The analysis 180 

revealed that genome-wide copy number ratios alone were less informative (Supplemental 181 

Fig. 4). In addition, we tested whether our method could detect underlying genome-wide 182 

changes irrespective of the presence of CNAs by restricting the clustering to the cancer samples 183 

with low TF (< 3%). The separation between some malignant and healthy samples still 184 

remained (Supplemental Fig. 5). Collectively, the clustering analysis on genome-wide 185 

features showed separation between malignant and healthy profiles and grouping of similar 186 

cancer type-specific profiles. 187 

 188 

The unsupervised learning delineated cancer-associated profile changes, which suggested that 189 

a more precise prediction can be made by learning representations within different tumor types 190 

using supervised classification. Therefore, we evaluated the capability to detect cancer signals 191 

and identify cancer types with supervised learning on the hematological cohort. Both leave-192 

one-out (LOO) and repeated 10-fold cross validation (CV) was used to assess the performance 193 

of the classifier. Incorporating transformed genome-wide features, the SVM machine learning 194 

model correctly classified 220 (out of 238) malignant cases in LOO analysis, at a sensitivity of 195 

92.44% (95% CI: 88.31% - 95.46%) and a specificity of 98.46% (95% CI: 96.11% - 99.58%), 196 

including 170 HL, 32 DLBCL and 18 MM cfDNA samples (Supplemental Table 1). The 197 

remaining 18 misclassified malignant samples had normal-like profiles and clustered together 198 

with healthy controls (Supplemental Fig. 6). The detection sensitivity was the highest for HL 199 
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(Supplemental Table 1). The sensitivity did not differ substantially between early (I-II) and 200 

advanced (III-IV) stages for these cancer types, though the distribution of the cases across 201 

clinical stages was unequal (Fig. 3, A). ROC analysis had an AUC value of 0.989 (95% CI: 202 

0.980 – 0.998) in distinguishing malignant from healthy samples, compared to ichorCNA TF-203 

based analysis which had an AUC of 0.929 (Fig. 3, B). Repeated 10-fold CV also revealed a 204 

stable performance at an averaged AUC of 0.989 (Supplemental Fig. 7). As the clustering 205 

analysis demonstrated the co-localization of samples originating from the same cancer type, 206 

we then attempted to determine the accuracy of our GIPXplore in cancer type classification. 207 

For this purpose, we trained the classification model using the 220 correctly predicted 208 

malignant samples. The analysis showed an overall accuracy of 85.45% (95% CI: 80.09% - 209 

89.83%), with the highest accuracy in HL prediction (Fig. 3, C and Supplemental Table 2). 210 

Consistent with the exploratory clustering analysis, where some of the profiles from DLBCL 211 

patients colocalized together with those from HL patients, DLBCL samples were more likely 212 

to be misclassified.  213 

 214 

GIPXplore identifies and classifies different types of solid malignancies and allows disease 215 

stratification 216 

Extending our analyses, we applied our method on a solid tumor dataset, consisting of 320 217 

cfDNA profiles from cancer patients, and a set of 107 cfDNA profiles from healthy controls. 218 

The malignant cohort was represented by five tumor types: breast (n=46), colorectal (n=70), 219 

gastrointestinal stromal tumor (GIST; n=35), lung (n=44) and ovarian (n=125; Table 1). Using 220 

GIPXplore, 19 clusters were identified in the solid tumor dataset (Fig. 4, A and Supplemental 221 

Fig. 8). The separations between malignant and control cfDNA profiles were less distinct 222 

compared to clustering results of the hematological cancer dataset. Clusters 4, 8, 10 and 12 223 

were found to be cancer type-specific, in which cluster 4 was mainly enriched with ovarian 224 
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cancer samples, cluster 8 was primarily consisting of cfDNA profiles from lung cancer patients, 225 

cluster 10 was GIST-specific and cluster 13 was mainly composed of colorectal samples (Fig. 226 

4, B). Cluster 2, adjacent to clusters 4 and 8, was enriched with ovarian samples, although it 227 

co-localized with other tumors. Clusters 9 (mostly ovarian cancer) and 15 (intermixed cancer 228 

types) deviated from healthy and other malignant clusters. Majority of the cfDNA profiles from 229 

breast cancer patients resembled profiles from healthy controls, while one advanced stage 230 

breast cancer sample was found in cluster 8, and 2 samples from patients with advanced stage 231 

primary metastatic disease were found in cluster 2 (Fig. 4, A and B).  232 

 233 

Compared with the hematological cancer dataset, ctDNA levels estimated by ichorCNA were 234 

generally lower in the solid malignant cohort (Fig. 4, C). Tumor fraction varied among 235 

different types of cancer and increased with the stage (Supplemental Fig. 9). The malignant 236 

cases with detectable CNAs and therefore higher TF were more likely to separate from the 237 

healthy controls (Supplemental Fig. 10). Cluster 4 contained ovarian cancer samples with 238 

detectable chromosome instability. Among lung cancer profiles in cluster 8, 64.29% (9 out of 239 

14) had detectable CNAs. Clusters 16 to 19 included four ovarian samples with high 240 

chromosomal instability that greatly deviated from other profiles. Overall, in clusters 9 and 15, 241 

profiles tended to be noisy, without clear CNAs (Fig. 4, D), however they deviated from 242 

healthy control and other malignant clusters (Fig. 4, A). When using the log2 copy ratio profiles 243 

from the CNA analysis to investigate whether the sub-grouping of cfDNA profiles was driven 244 

by CNAs, cancer type-specific clustering patterns were diminished (Supplemental Fig. 11). 245 

When restricting the clustering analysis to samples with TF lower than 3%, samples from 246 

clusters 9 and 15 still showed deviations (Fig. 4, A clusters 8 and 9) from normal profiles 247 

(Supplemental Fig. 12). 248 

 249 
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We next investigated whether supervised learning using genome-wide features can enhance 250 

the detection of solid malignancy signals in sWGS cfDNA data. Classification of samples as 251 

either healthy or malignant (107 healthy controls and 320 malignancies) was performed using 252 

the SVM model, with performance estimated by LOO and repeated 10-fold CV. With an 253 

overall accuracy of 65.34%, we correctly detected 177 out of 320 cancer profiles (55.31% 254 

sensitivity, 95% CI: 49.68% - 60.84%), at a specificity of 95%. Performance in individual 255 

tumor types ranged from 15.22% (95% CI: 6.34% - 28.87%) for classifying breast cancer to 256 

80.00% (95% CI: 63.06% - 91.56%) for GIST (Supplemental Table 3). Stage of the disease 257 

affected the detection, with a sensitivity of 26.17% (95% CI: 18.15% - 35.55%) in the early 258 

stage (I-II) versus 69.95% (95% CI: 63.31% - 76.03%) in the advanced stage (III-IV). In 259 

individual tumor types, it remained true that higher sensitivities were found for the advanced 260 

stages than for the early-stage diseases (Fig. 5, A). Colorectal cancer was an exception as 261 

sensitivities were almost the same for early and advanced cancer stages. Misclassified 262 

malignant samples had low tumor fraction, which potentially restricted the detection of 263 

underlying tumor-specific patterns (Supplemental Fig. 13). We could distinguish malignancy 264 

from healthy samples with an AUC of 0.827 (95% CI: 0.787 – 0.867), which again was superior 265 

to ichorCNA TF-based analysis (0.733 AUC, 95% CI: 0.687 – 0.780; Fig. 5, B and 266 

Supplemental Fig. 14). Subsequently, we explored the potential of our GIPXplore method for 267 

tumor classification. When performing tumor type-specific prediction with the 171 correctly 268 

predicted primary tumor samples, the LOO validation resulted in a 69.01% (95% CI: 61.49% 269 

- 75.84%) overall accuracy. Highest sensitivities (>70%) were obtained for cfDNA samples 270 

from ovarian cancer and GIST patients. At the same time, ovarian and colorectal tumor cfDNA 271 

profiles were more likely to be misassigned to each other (Fig. 5, C and Supplemental Table 272 

4). 273 

 274 
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Moreover, among this solid malignant cohort, we had nine cfDNA samples from patients with 275 

ovarian metastases, of which four patients had gastrointestinal primary site, one lymphoma, 276 

one leiomyosarcoma, one uterine origin, and the remaining two had Krukenberg tumors. 277 

Annotation of these nine cases on the tSNE plot showed that metastatic profiles could resemble 278 

profiles of either the primary tumor or the distant site (Supplemental Fig. 15, A). Applying 279 

the type-specific classifier to the six metastatic cases that were predicted as malignant cases by 280 

the malignancy classifier, the case with gastrointestinal origin that was co-clustered with 281 

colorectal samples was classified to be colorectal class. Two out of three metastatic cases that 282 

were identified in intermixed clusters of lung and ovarian tumors were predicted to be lung 283 

class and the other one was assigned to ovarian class. The additional two cases identified by 284 

the classifier were classified to the ovarian and colorectal classes, respectively (Supplemental 285 

Fig. 15, B). 286 

 287 

Accurate classification of benign from invasive and borderline adnexal masses may 288 

improve clinical management  289 

In addition to the invasive ovarian tumor samples, our cohort contained 160 benign and 63 290 

borderline ovarian samples. To assess the potential utility of the method for ovarian cancer 291 

management, we analyzed the ovarian tumor cohort independently by performing clustering 292 

analysis and building the ovarian-specific classifier to differentiate benign from malignant 293 

adnexal masses. Benign and borderline samples were less likely to have detectable ctDNA 294 

levels (Supplemental Fig. 16). In the clustering analysis, 35 invasive samples formed a distinct 295 

group in cluster 1. In clusters 6-9, common patterns were found for invasive, benign and 296 

borderline samples, although they remained distinct from controls (Supplemental Fig. 17). 297 

The classification analysis exhibited an AUC of 0.8656 (95% CI: 0.7761 – 0.8689) in 298 

discriminating benign from invasive samples, and an AUC of 0.7388 (95% CI: 0.6857 – 299 
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0.7920) in discriminating benign from borderline and invasive samples (Supplemental Fig. 18 300 

and 19). 301 
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DISCUSSION 302 

We present a generic approach for cancer identification and classification by mapping genome-303 

wide cfDNA signatures, without prior knowledge of genetic alterations or predefined 304 

signatures in the sequencing data. The unsupervised clustering allows the discovery of hidden 305 

genome-wide patterns, and the supervised learning model can be trained to detect such 306 

underlying signatures. This method can be used to classify cfDNA samples by matching to 307 

existing datasets and has the potential to be used as a pan-cancer assay for detection and typing 308 

of multiple cancers from one blood draw. 309 

 310 

Current sWGS cfDNA analyses mainly focus on the detection of somatic CNAs (17–19). These 311 

methods are blind to events that involve copy neutral abnormalities. Our approach also differs 312 

from the previous method that classified tumor types based on selected CNAs, and in which 313 

normal-like profiles were incapable of tumor classification (20). We demonstrate that even 314 

profiles without detectable CNAs carry informative and discriminative patterns in sWGS data. 315 

Different recent studies have utilized methylation, transcription factor binding, fragment 316 

lengths, or cfChIP-seq for cancer detection (4,12,21–25). While these studies have important 317 

implications and show cfDNA as a promising biomarker, they require more specific workup 318 

and/or deeper sequencing. In contrast, analysis of sWGS data can be easily adapted in clinical 319 

settings and complement CNA analysis. By mapping differences among the cfDNA profiles, 320 

shared abnormality patterns are captured.  321 

 322 

To date, Liu et al. have reported the largest population-level cfDNA methylation study for 323 

multi-cancer detection, in which the targeted methylation analysis of cfDNA enabled detection 324 

of more than 50 cancer types at a sensitivity of 54.9% and at a specificity of 99% (21). This 325 

test was refined and validated in an independent follow-up study, with an overall sensitivity of 326 
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51.5% at 99.5% specificity was reported (26). In line with these findings, we estimate the 327 

combined sensitivity of 68.03% at above 95% specificity for the hematological and solid cancer 328 

cohorts. Performance for cancer signal detection varied among the different cancer types and 329 

stages. The prediction accuracy was highest for hematological malignancies and lowest for 330 

breast cancer. Shedding of the ctDNA from breast cancer is known to be low (27,28). Also, 331 

our cohort had an over-representation of early-stage cancers, with 50% of the samples from 332 

stage I. Apart from potential screening applications, we also demonstrated that GIPXplore 333 

could be used for risk stratification and management of a specific cancer type. Discrimination 334 

between malignant, borderline and benign masses at diagnosis is of critical importance to 335 

improve patient management (29,30). 336 

 337 

The accuracy of tumor type-specific prediction might depend on the intrinsic tumor 338 

characteristics. For example, DLBCL being more heterogeneous on molecular level (31,32), 339 

had lower classification accuracy than HL and MM. The subtype of colorectal and ovarian 340 

tumors is of similar cellular origin, and histological subtypes can be hard to distinguish (33–341 

35), which might be a reason for misclassification amongst the two cancer types. The 342 

identification of the origin of some metastases, suggests the method may allow the 343 

identification of unknown primary cancers. The metastatic cases were classified into profiles 344 

of its primary or distant sites, possibly reflecting changes during the metastatic progression or 345 

dynamic tumor DNA shedding from tumor tissues (36–38).  346 

 347 

Interestingly, besides tumor type- or aberration-specific subgroups, our analysis revealed the 348 

presence of additional clusters that segregated from healthy controls (Fig. 4, B and 349 

Supplemental Fig. 17). Though the origin of such segregations remains unknown, we 350 

hypothesize the method provides a system-wide insight, potentially reflecting 351 
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(patho)physiological conditions of these individuals. Dynamic cellular responses and 352 

malignant cell proliferation with active involvement of immune response during (early) 353 

carcinogenesis might lead to the observed common changes in cfDNA composition across 354 

different cancer types (39,40). Therefore, it is possible that our analysis detected tumor-driven 355 

immune or other biological responses or states.  356 

 357 

GIPXplore provides an unbiased genome-wide scan of cfDNA profiles. However, it also has 358 

some limitations. Increasing the sequencing depth might improve detection of disease-specific 359 

cfDNA patterns and improve the sensitivity of our methodology further. The data presented 360 

here has a larger proportion of HL and ovarian cancer samples and is limited in the number of 361 

different cancer types, which may affect the aggregated sensitivity and distort tumor typing 362 

accuracies. We foresee that expanding the breadth of the evaluated cancer types may improve 363 

prediction of tissue/cell origin and facilitate a deeper understanding of cfDNA in the context 364 

of tumors. Increasing the range of physiological states and diseases that are relevant for these 365 

tumor samples will be essential to fully interrogate the potential and limitations of our 366 

approach. The approach may also be further broadened to project and embed new treatment or 367 

follow-up data for cancer prognosis and monitoring. 368 

 369 

In summary, we have extended the scope of cfDNA analysis, allowing cost-effective 370 

identification of genome-wide cancer-(type-)specific signatures from shallow sequencing data, 371 

allowing improved discrimination between profiles from cancer patients and healthy 372 

individuals. This study lays the foundation for enhanced genomic characterization of cfDNA 373 

that can be used for improved cancer management. We foresee that the method can be scaled 374 

up for detection of multiple pathological conditions.375 

All rights reserved. No reuse allowed without permission. 
perpetuity. 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in 
The copyright holder for thisthis version posted February 20, 2022. ; https://doi.org/10.1101/2022.02.16.22268780doi: medRxiv preprint 

https://doi.org/10.1101/2022.02.16.22268780


19 

 

Acknowledgements: We would like to acknowledge the patients and blood donors. We would 376 

like to thank Gitte Thirion and Annick Van den Broeck for the collection of samples and the 377 

extraction of ctDNA, Kate Stanley for helpful suggestions for the manuscript.  378 

Funding: This study was supported by the Research Foundation-Flanders (FWO-Vlaanderen) 379 

(G080217N to FA and JRV, G0A1116N to PV), Agentschap Innoveren en Ondernemen 380 

(VLAIO; Flanders Innovation & Entrepreneurship grant HBC.2018.2108 to JRV), Kom Op 381 

Tegen Kanker (Stand Up to Cancer, the Flemish Cancer Society under grant 2016/10728/2603 382 

to AC), Stichting tegen Kanker (FAF-C/2016/836 to PV, 2018-134 to JRV and FA) and KU 383 

Leuven funding (no C1/018 to JRV and DL).  384 

Conflict of interest: Patent application pending on ‘Method for analyzing cell-free nucleic 385 

acids’ (JRV and LD). 386 

Author contributions: HC, TJ, LL, LD, FA and JRV conceptualized and designed the study. 387 

KP, AW, EW, AC, PN, ST, DT, PV, HW and FA provided clinical samples and patient data. 388 

LL, LV, NB, IP, KVDB, CD, DF, RH, SH, CL, L.Liekens, VP, ACT, AV and AW carried out 389 

clinical sample procurement and processing. LV, NB, IP and KVDB coordinated sequencing 390 

of cell-free DNA. TJ and LL conducted project coordination and administration. HC and LD 391 

performed bioinformatics analysis of sWGS data. HC, TJ, LL, LD, KP, AW, EW, AC, DL, ST, 392 

DT, PV, FA and JRV contributed to the interpretation of results. HC, TJ and JRV wrote the 393 

manuscript; all co-authors reviewed the manuscript.  394 

Data and materials availability: Processed alignments of sequencing data are archived to 395 

ArrayExpress (https://www.ebi.ac.uk/arrayexpress/) with unrestricted access under accession 396 

number E-MTAB-10934. Code will be available upon request. All other materials associated 397 

with this study are present in the paper or the Supplementary Materials.398 

All rights reserved. No reuse allowed without permission. 
perpetuity. 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in 
The copyright holder for thisthis version posted February 20, 2022. ; https://doi.org/10.1101/2022.02.16.22268780doi: medRxiv preprint 

https://doi.org/10.1101/2022.02.16.22268780


20 

 

Reference 399 

1.  Vandenberghe P, Wlodarska I, Tousseyn T, Dehaspe L, Dierickx D, Verheecke M, et al. 400 

Non-invasive detection of genomic imbalances in Hodgkin/Reed-Sternberg cells in 401 

early and advanced stage Hodgkin’s lymphoma by sequencing of circulating cell-free 402 

DNA: a technical proof-of-principle study. Lancet Haematol. 2015;2:e55–65.  403 

2.  Lenaerts L, Che H, Brison N, Neofytou M, Jatsenko T, Lefrère H, et al. Breast Cancer 404 

Detection and Treatment Monitoring Using a Noninvasive Prenatal Testing Platform: 405 

Utility in Pregnant and Nonpregnant Populations. Clin Chem. 2020;66:1414–23.  406 

3.  Lenaerts L, Vandenberghe P, Brison N, Che H, Neofytou M, Verheecke M, et al. 407 

Genomewide copy number alteration screening of circulating plasma DNA: potential 408 

for the detection of incipient tumors. Ann Oncol. 2019;30:85–95.  409 

4.  Cristiano S, Leal A, Phallen J, Fiksel J, Adleff V, Bruhm DC, et al. Genome-wide cell-free 410 

DNA fragmentation in patients with cancer. Nature. Nature Publishing Group; 411 

2019;570:385–9.  412 

5.  Lo YMD, Han DSC, Jiang P, Chiu RWK. Epigenetics, fragmentomics, and topology of 413 

cell-free DNA in liquid biopsies. Science. American Association for the Advancement 414 

of Science; 2021;372. Available from: 415 

http://science.sciencemag.org/content/372/6538/eaaw3616 416 

6.  Jiang P, Sun K, Tong YK, Cheng SH, Cheng THT, Heung MMS, et al. Preferred end 417 

coordinates and somatic variants as signatures of circulating tumor DNA associated 418 

with hepatocellular carcinoma. Proc Natl Acad Sci. National Academy of Sciences; 419 

2018;115:E10925–33.  420 

7.  Chan KCA, Jiang P, Sun K, Cheng YKY, Tong YK, Cheng SH, et al. Second generation 421 

noninvasive fetal genome analysis reveals de novo mutations, single-base parental 422 

inheritance, and preferred DNA ends. Proc Natl Acad Sci U S A. 2016;113:E8159–68.  423 

8.  Mouliere F, Robert B, Peyrotte EA, Rio MD, Ychou M, Molina F, et al. High 424 

Fragmentation Characterizes Tumour-Derived Circulating DNA. PLOS ONE. Public 425 

Library of Science; 2011;6:e23418.  426 

9.  Snyder MW, Kircher M, Hill AJ, Daza RM, Shendure J. Cell-free DNA Comprises an In 427 

Vivo Nucleosome Footprint that Informs Its Tissues-Of-Origin. Cell. 2016;164:57–68.  428 

10.  Jiang P, Lo YMD. The Long and Short of Circulating Cell-Free DNA and the Ins and 429 

Outs of Molecular Diagnostics. Trends Genet. Elsevier; 2016;32:360–71.  430 

11.  Jiang P, Chan CWM, Chan KCA, Cheng SH, Wong J, Wong VW-S, et al. Lengthening 431 

and shortening of plasma DNA in hepatocellular carcinoma patients. Proc Natl Acad 432 

Sci. National Academy of Sciences; 2015;112:E1317–25.  433 

12.  Mouliere F, Chandrananda D, Piskorz AM, Moore EK, Morris J, Ahlborn LB, et al. 434 

Enhanced detection of circulating tumor DNA by fragment size analysis. Sci Transl 435 

Med. American Association for the Advancement of Science; 2018;10. Available from: 436 

https://stm.sciencemag.org/content/10/466/eaat4921 437 

All rights reserved. No reuse allowed without permission. 
perpetuity. 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in 
The copyright holder for thisthis version posted February 20, 2022. ; https://doi.org/10.1101/2022.02.16.22268780doi: medRxiv preprint 

https://doi.org/10.1101/2022.02.16.22268780


21 

 

13.  Buedts L, Wlodarska I, Finalet-Ferreiro J, Gheysens O, Dehaspe L, Tousseyn T, et al. 438 

The landscape of copy number variations in classical Hodgkin lymphoma: a joint KU 439 

Leuven and LYSA study on cell-free DNA. Blood Adv. 2021;5:1991–2002.  440 

14.  Bayindir B, Dehaspe L, Brison N, Brady P, Ardui S, Kammoun M, et al. Noninvasive 441 

prenatal testing using a novel analysis pipeline to screen for all autosomal fetal 442 

aneuploidies improves pregnancy management. Eur J Hum Genet. 2015;23:1286–93.  443 

15.  Maaten L van der, Hinton G. Visualizing Data using t-SNE. J Mach Learn Res. 444 

2008;9:2579–605.  445 

16.  Pons P, Latapy M. Computing Communities in Large Networks Using Random Walks. 446 

In: Yolum  pInar, Güngör T, Gürgen F, Özturan C, editors. Comput Inf Sci - ISCIS 447 

2005. Berlin, Heidelberg: Springer; 2005. page 284–93.  448 

17.  Adalsteinsson VA, Ha G, Freeman SS, Choudhury AD, Stover DG, Parsons HA, et al. 449 

Scalable whole-exome sequencing of cell-free DNA reveals high concordance with 450 

metastatic tumors. Nat Commun. Nature Publishing Group; 2017;8:1324.  451 

18.  Leary RJ, Sausen M, Kinde I, Papadopoulos N, Carpten JD, Craig D, et al. Detection of 452 

Chromosomal Alterations in the Circulation of Cancer Patients with Whole-Genome 453 

Sequencing. Sci Transl Med. American Association for the Advancement of Science; 454 

2012;4:162ra154-162ra154.  455 

19.  Ulz P, Belic J, Graf R, Auer M, Lafer I, Fischereder K, et al. Whole-genome plasma 456 

sequencing reveals focal amplifications as a driving force in metastatic prostate cancer. 457 

Nat Commun. 2016;7:12008.  458 

20.  Molparia B, Nichani E, Torkamani A. Assessment of circulating copy number variant 459 

detection for cancer screening. PLOS ONE. Public Library of Science; 460 

2017;12:e0180647.  461 

21.  Liu MC, Oxnard GR, Klein EA, Swanton C, Seiden MV, Liu MC, et al. Sensitive and 462 

specific multi-cancer detection and localization using methylation signatures in cell-free 463 

DNA. Ann Oncol. 2020;31:745–59.  464 

22.  Sun K, Jiang P, Chan KCA, Wong J, Cheng YKY, Liang RHS, et al. Plasma DNA tissue 465 

mapping by genome-wide methylation sequencing for noninvasive prenatal, cancer, and 466 

transplantation assessments. Proc Natl Acad Sci. 2015;112:E5503–12.  467 

23.  Ulz P, Perakis S, Zhou Q, Moser T, Belic J, Lazzeri I, et al. Inference of transcription 468 

factor binding from cell-free DNA enables tumor subtype prediction and early 469 

detection. Nat Commun. Nature Publishing Group; 2019;10:4666.  470 

24.  Moss J, Magenheim J, Neiman D, Zemmour H, Loyfer N, Korach A, et al. 471 

Comprehensive human cell-type methylation atlas reveals origins of circulating cell-free 472 

DNA in health and disease. Nat Commun. Nature Publishing Group; 2018;9:5068.  473 

25.  Sadeh R, Sharkia I, Fialkoff G, Rahat A, Gutin J, Chappleboim A, et al. ChIP-seq of 474 

plasma cell-free nucleosomes identifies gene expression programs of the cells of origin. 475 

Nat Biotechnol. Nature Publishing Group; 2021;1–13.  476 

All rights reserved. No reuse allowed without permission. 
perpetuity. 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in 
The copyright holder for thisthis version posted February 20, 2022. ; https://doi.org/10.1101/2022.02.16.22268780doi: medRxiv preprint 

https://doi.org/10.1101/2022.02.16.22268780


22 

 

26.  Klein EA, Richards D, Cohn A, Tummala M, Lapham R, Cosgrove D, et al. Clinical 477 

validation of a targeted methylation-based multi-cancer early detection test using an 478 

independent validation set. Ann Oncol. Elsevier; 2021;0. Available from: 479 

https://www.annalsofoncology.org/article/S0923-7534(21)02046-9/abstract 480 

27.  Wan JCM, Heider K, Gale D, Murphy S, Fisher E, Mouliere F, et al. ctDNA monitoring 481 

using patient-specific sequencing and integration of variant reads. Sci Transl Med. 482 

American Association for the Advancement of Science; 2020;12. Available from: 483 

http://stm.sciencemag.org/content/12/548/eaaz8084 484 

28.  Moss J, Zick A, Grinshpun A, Carmon E, Maoz M, Ochana BL, et al. Circulating breast-485 

derived DNA allows universal detection and monitoring of localized breast cancer. Ann 486 

Oncol. Elsevier; 2020;31:395–403.  487 

29.  Vanderstichele A, Busschaert P, Smeets D, Landolfo C, Nieuwenhuysen EV, Leunen K, 488 

et al. Chromosomal Instability in Cell-Free DNA as a Highly Specific Biomarker for 489 

Detection of Ovarian Cancer in Women with Adnexal Masses. Clin Cancer Res. 490 

American Association for Cancer Research; 2017;23:2223–31.  491 

30.  Kaijser J. Towards an evidence-based approach for diagnosis and management of adnexal 492 

masses: findings of the International Ovarian Tumour Analysis (IOTA) studies. Facts 493 

Views Vis ObGyn. 2015;7:42–59.  494 

31.  Cascione L, Aresu L, Baudis M, Bertoni F. DNA Copy Number Changes in Diffuse 495 

Large B Cell Lymphomas. Front Oncol. Frontiers; 2020;10. Available from: 496 

https://www.frontiersin.org/articles/10.3389/fonc.2020.584095/full 497 

32.  Zhang J, Grubor V, Love CL, Banerjee A, Richards KL, Mieczkowski PA, et al. Genetic 498 

heterogeneity of diffuse large B-cell lymphoma. Proc Natl Acad Sci. 2013;110:1398–499 

403.  500 

33.  Kelemen LE, Köbel M. Mucinous carcinomas of the ovary and colorectum: different 501 

organ, same dilemma. Lancet Oncol. 2011;12:1071–80.  502 

34.  Cheasley D, Wakefield MJ, Ryland GL, Allan PE, Alsop K, Amarasinghe KC, et al. The 503 

molecular origin and taxonomy of mucinous ovarian carcinoma. Nat Commun. Nature 504 

Publishing Group; 2019;10:3935.  505 

35.  Nishizuka S, Chen S-T, Gwadry FG, Alexander J, Major SM, Scherf U, et al. Diagnostic 506 

Markers That Distinguish Colon and Ovarian Adenocarcinomas. Cancer Res. 507 

2003;63:5243–50.  508 

36.  Wyatt AW, Annala M, Aggarwal R, Beja K, Feng F, Youngren J, et al. Concordance of 509 

Circulating Tumor DNA and Matched Metastatic Tissue Biopsy in Prostate Cancer. 510 

JNCI J Natl Cancer Inst. 2017;109. Available from: https://doi.org/10.1093/jnci/djx118 511 

37.  Wei T, Zhang J, Li J, Chen Q, Zhi X, Tao W, et al. Genome-wide profiling of circulating 512 

tumor DNA depicts landscape of copy number alterations in pancreatic cancer with liver 513 

metastasis. Mol Oncol. 2020;14:1966–77.  514 

All rights reserved. No reuse allowed without permission. 
perpetuity. 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in 
The copyright holder for thisthis version posted February 20, 2022. ; https://doi.org/10.1101/2022.02.16.22268780doi: medRxiv preprint 

https://doi.org/10.1101/2022.02.16.22268780


23 

 

38.  Cresswell GD, Nichol D, Spiteri I, Tari H, Zapata L, Heide T, et al. Mapping the breast 515 

cancer metastatic cascade onto ctDNA using genetic and epigenetic clonal tracking. Nat 516 

Commun. Nature Publishing Group; 2020;11:1446.  517 

39.  Abbosh C, Birkbak NJ, Wilson GA, Jamal-Hanjani M, Constantin T, Salari R, et al. 518 

Phylogenetic ctDNA analysis depicts early-stage lung cancer evolution. Nature. Nature 519 

Publishing Group; 2017;545:446–51.  520 

40.  Kustanovich A, Schwartz R, Peretz T, Grinshpun A. Life and death of circulating cell-521 

free DNA. Cancer Biol Ther. Taylor & Francis; 2019;20:1057–67.  522 

 523 

All rights reserved. No reuse allowed without permission. 
perpetuity. 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in 
The copyright holder for thisthis version posted February 20, 2022. ; https://doi.org/10.1101/2022.02.16.22268780doi: medRxiv preprint 

https://doi.org/10.1101/2022.02.16.22268780


24 

 

Table 1. Participant and characteristics 524 
  

Stage* 
Age, Mean 

± SD 
Female, n (%) 

Total 

Samples 

Hematological 

cancer dataset 

 
    

 Healthy  69 (±3) 164 (63%) 260 

 Hodgkin’s lymphoma 

(HL) 
 32 (±14) 98 (55%) 179 

  I   10 

  II   145 

  III   9 

  IV   15 

 Diffuse large B-cell 

lymphoma (DLBCL) 
 59 (±13) 22 (60%) 37 

  I   1 

  II   5 

  III   7 

  IV   8 

  unknown   16 

 Multiple myeloma 

(MM) 
 67 (±9) 8 (36%) 22 

  I   3 

  II   7 

  III   7 

  unknown   5 

      

Solid tumor 

dataset 

 
    

 Healthy  49 (±12) 107 (91%) 107 

 Breast  56 (±12) 46 (100%) 46 

  I   23 

  II   12 

  III   5 

  IV   6 

 Colorectal  66 (±12) 29 (41%) 70 

  I   19 

  II   17 

  III   25 

  IV   9 

 Gastrointestinal 

stromal tumor (GIST) 
 64 (±11) N.A. 35 

  Advanced   35 

 Lung    44 

  Advanced N.A. N.A. 44 

 Ovarian invasive 

tumors 
 61 (±14) 125 (100%) 125 

  I   25 

  II   11 

  III   49 

  IV   31 

  Metastatic   9 

 Ovarian Benign  49 (±16) 160 (100%) 160 

 Ovarian Borderline  51 (±17) 63 (100%) 63 

* Multiple myeloma stratification refers to Revised International Staging System. 525 
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Figure Captions 526 

Fig. 1. Schematic illustration of GIPXplore. Plasma cfDNA in healthy individuals (blue box) 527 

comprises short nucleosome-protected DNA fragments mainly released from the cells of 528 

hematopoietic origin. In patients with cancer (green box), cfDNA is also released from the 529 

tumor. Since cfDNA fragmentation pattern is cell- or tissue-specific, sequencing and mapping 530 

of cfDNA from a patient with cancer may have differential genome-wide distribution of DNA 531 

fragments along the genome compared to a healthy one (green and blue profiles respectively). 532 

The workflow of GIPXplore combines two tasks. First, explorative analysis of the high-533 

dimensional data is performed via unsupervised clustering. Data complexity is reduced by 534 

using the first 50 linearly transformed genome-wide coverage features (non-trivial principal 535 

components, PCs) from a large number of cfDNA profiles, which are used for dataset 536 

exploration to unveil the potential biological signals or technical confounding factors based on 537 

the sub-grouping of underlying patterns that facilitate the design of the supervised models. 538 

Concurrently, classifiers are constructed to predict disease status and identify disease type to 539 

assess the use of such transformed genome-wide features as a marker for diagnostic 540 

application. 541 

 542 

Fig. 2. Genome-wide cfDNA profiles carry cancer type-specific patterns. A, Two-543 

dimensional tSNE visualization of the clustering result. Sample type is annotated by point color 544 

and community detection resulted clusters are annotated by point shape. Cluster numbers are 545 

labeled in the center of the defined cluster. B, Sample distribution in each community detection 546 

defined cluster is shown. The upper bar plot shows the total number of samples grouped in 547 

each cluster and the lower bar plot depicts the proportion of each class of samples. C, Tumor 548 

fraction estimated using ichorCNA. Red horizontal line indicates a detection limit of 3% tumor 549 

fraction level. D, Examples of copy number profiles generated from ichorCNA for selected 550 
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clusters. In each copy number profile, color red represents copy number gains and green 551 

represents copy number losses. The color is supposed to be interpreted together with the log 552 

ratio values to pinpoint copy number gains or losses.  553 

 554 

Fig. 3. Plasma cfDNA genome-wide signatures enable hematological malignancies 555 

detection and subtype prediction. A, Sensitivities for detection of subtypes of hematological 556 

malignancies. Performance for early and advanced stages for DLBCL and HL are shown. Three 557 

(R-ISS) stages of MM are shown. 95% confidence interval is shown as an error bar. B, ROC 558 

curves for performance comparison between the genome-wide feature analysis and ichorCNA 559 

tumor fraction analysis. For the genome-wide feature analysis, decision value from SVM 560 

prediction is used to build a dynamic threshold of true and false positives. Tumor fraction 561 

values were used to construct ROC for ichorCNA analysis. C, Confusion matrix for tissue of 562 

origin detection in hematological tumor. The color shading represents the proportion of 563 

samples being correctly localized. The labeled numbers indicate the number of samples being 564 

classified into the class.  565 

 566 

Fig. 4. Clustering analysis elucidates profile representations in solid tumors. A, Two-567 

dimensional tSNE visualization of solid tumor dataset clustering result. Sample type is 568 

annotated by point color and community detection resulted clusters are annotated by point 569 

shape. Cluster numbers are labeled in the center of the defined cluster. B, Sample distribution 570 

in each community detection defined cluster is shown. The upper bar plot shows the total 571 

number of samples grouped in each cluster and the lower bar plot depicts the proportion of 572 

each class of samples. C, Tumor fraction estimation for indicated types of solid tumors. Red 573 

horizontal line indicates a detection limit of 3% tumor fraction level. D, Examples of copy 574 

number profiles generated from ichorCNA for selected clusters.  575 
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 576 

Fig. 5. Malignancy detection and typing in solid tumors. A, Sensitivities for detection of 577 

different types of solid malignancies detection. Performance for detection of early and 578 

advanced stages of disease is shown. B, ROC curves for performance comparison between the 579 

genome-wide feature analysis and ichorCNA tumor fraction analysis. C, Confusion matrix for 580 

tissue of origin detection in solid malignancies. The color shading represents the proportion of 581 

samples being correctly localized. The labeled numbers indicate the number of samples being 582 

classified into the class. 583 
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