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Abbreviations 

ALT = Alanine transaminase  

AUC = area under the curve 

CI = confidence interval 

DoD = Department of Defense 

EHR = electronic health record 

GND = Greenwood-Nam-D'Agostino  

HbA1C = glycated hemoglobin 

ICD-9-CM = Ninth Revision of International Classification of Diseases, Clinical Modification  

ICD-10-CM = Tenth Revision of International Classification of Diseases, Clinical Modification  

IR = Incidence rate 

KPSC = Kaiser Permanente Southern California  

NDI = National Death Index 

NOD = new onset diabetes 

PC = pancreatic cancer 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted February 15, 2022. ; https://doi.org/10.1101/2022.02.14.22270946doi: medRxiv preprint 

https://doi.org/10.1101/2022.02.14.22270946


 

3 

 

PDAC = pancreatic ductal adenocarcinoma  

PPV = positive predictive value  

RSF = Random Survival Forest 

SEER = Surveillance, Epidemiology, and End Results  

VA = Veterans Affairs 
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Study Highlights 

What Is Known 

• Patients with pancreatic cancer are often diagnosed at late stages. 

• Early detection is needed to impact the natural history of disease progression and 

improve patient survival. 

What Is New Here 

• Machine-learning was used to develop a population-based model for early detection of 

pancreatic cancer.  The model was internally and externally validated in cohorts of 1.8 

million and 2.6 million individuals, respectively. 

• Calibration was excellent in prospective pilot testing for detection of pancreatic 

malignancy.  
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ABSTRACT 

 

OBJECTIVES: There is currently no widely accepted approach to screening for pancreatic cancer 

(PC). We aimed to develop and validate a risk prediction model for PC across two health 

systems using electronic health records (EHR). 

METHODS: This retrospective cohort study consisted of patients 50-84 years of age meeting 

utilization criteria in 2008-2017 at Kaiser Permanente Southern California (KPSC, model 

training, internal validation) and the Veterans Affairs (VA, external validation). ‘Random survival 

forests’ models were built to identify the most relevant predictors from >500 variables and to 

predict PC within 18 months of cohort entry. A prospective study was then conducted in KPSC 

to assess feasibility of the model for real-time implementation.  

RESULTS: The KPSC cohort consisted of 1.8 million patients (mean age 61.6) with 1,792 PC 

cases. The estimated 18-month incidence rate of PC was 0.77 (95% CI 0.73-0.80)/1,000 person-

years. The three models containing age, abdominal pain, weight change and two laboratory 

biomarkers (ALT change/HgA1c, rate of ALT change/HgA1c, or rate of ALT change/rate of HgA1c 

change) had comparable discrimination and calibration measures (c-index: mean=0.77, 

SD=0.01-0.02; calibration test: p-value 0.2-0.4, SD 0.2-0.3). The VA validation cohort consisted 

of 2.6 million patients (mean age 66.1) with an 18-month incidence rate of 1.27 (1.23-1.30).  A 

total of 606 patients were screened in the prospective pilot study at KPSC with 9 patients (1.5%) 

diagnosed with a pancreatic or biliary cancer. 

CONCLUSIONS: Using widely available parameters in EHR, we developed a population-based 

parsimonious model for early detection of sporadic PC suitable for real-time application. 
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INTRODUCTION 

Pancreatic cancer is the third leading cause of cancer deaths with 48,220 estimated deaths in 

2021 in the US.
1
 Because of the lack of an early detection strategy, majority of patients (50-

55%) have metastases at distant sites at the time of diagnosis.
2,3

 Once diagnosed, the average 

5-year survival is only 10.8%.
1
 Accounting for 90% of all pancreatic cancer cases, pancreatic 

ductal adenocarcinoma (PDAC) is by far the most common form of pancreatic cancer, and also 

the most lethal.  

 

Due to the low incidence of pancreatic cancer in the general population (13.2 per 100,000 

person-years),
1
 widespread population-based screening is not currently recommended by the 

United States Preventative Services Task Force.
4
 Therefore, alternative approaches to early 

detection are needed in order to substantially impact the natural history of this disease and 

improve survival for patients. 

 

The emergence of comprehensive EHR and maturation of machine learning offers an 

opportunity to enhance efforts in early detection in pancreatic cancer. To date, efforts to 

develop clinical prediction models in pancreatic cancer have focused on specific populations 

such as those with new-onset diabetes
5-7

or within the confines of a case-control study.
8,9

 

Efforts to target the high-risk patients in the general population are sparse.
10

 There is a critical 

need for novel risk stratification tools which are both sensitive and specific for rapid 

identification of patients at increased risk of developing pancreatic cancer.  
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The aim of the present study was to develop and validate a clinical prediction model for risk of 

PDAC across several large health systems. Specifically, we sought to apply machine-learning 

combined with a comprehensive approach to data in EHR to predict the risk of sporadic PDAC.  

 

METHODS 

Study Design and Setting 

We conducted a retrospective cohort study utilizing multi-ethnic health plan enrollees of Kaiser 

Permanente Southern California (KPSC), a large integrated healthcare system that provides 

comprehensive healthcare services for >4.7 million enrollees across 15 medical centers and 235 

medical offices. Model training and internal validation were conducted based on EHR data. The 

demographics and socioeconomic status of KPSC health plan enrollees are comparable to those 

of residents in the Southern California region.
11

 The internally validated models were externally 

tested using EHR of Veterans Affairs (VA).12 The study protocol was approved by the KPSC’s 

institutional Review Board. 

 

Study Population 

Model training and internal validation: Patients 50-84 years of age and had ≥1 clinic-based visit 

(index visit) within a KPSC facility in 2008-2017 were identified. Patients who had history of 

pancreatic cancer, or not continuously enrolled in the KPSC health plan in the past 12 months 

(gaps 45 days or less were allowed) were excluded. The requirement of continuous enrollment 

allowed adequate data to define study variables. For patients with multiple qualifying index 

visits, we selected one randomly as the index visit. The corresponding visit date was referred to 
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as the index date (t0). Follow-up started on t0 and ended with the earliest of the following 

events: disenrollment from the health plan, end of the study (December 31, 2018), reached the 

maximum length of follow-up (18 months), non-PDAC related death, or PDAC diagnosis or 

death (outcome). A minimum of 30 days of follow-up is required.  

 

Model testing: Veterans 50-84 years of age who had >1 outpatient visit (index visit) within a VA 

facility in 2008-2017 and another clinic-based visit within the 12 months prior to the index date 

were identified. Patients who had history of pancreatic cancer were excluded. The same follow-

up rules mentioned above were applied to the VA cohort except for “disenrollment from the 

health plan”.  

 

Outcome Identification 

The study outcome was PDAC diagnosis or death with pancreatic cancer in the 18 months after 

the index date. For the KPSC cohort, PDAC was identified from the Cancer Registry by using the 

Tenth Revision of International Classification of Diseases, Clinical Modification (ICD-10-CM) 

code C25.x and histology codes (eTable 1). Pancreatic cancer deaths were derived from the 

linkage with the California State Death Master files and identified using ICD-10-CM codes 

C25.x.
13

 For the VA cohort, cases of PDAC were similarly identified through an internal VA 

Central Cancer Registry, and PDAC deaths identified through the VA Mortality Data Repository, 

which integrates vital status data from the National Death Index (NDI), VA, and DoD 

administrative records. 
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Patient Demographic and Clinical Features at Baseline 

A complete list of extracted and derived features for the KPSC cohort is shown in eTable 2. 

Except for demographic variables, values within each time interval (0-6 months, 7-12 months, 

1-2 years and >2 years) were generated. Definitions of the derived variables were described in 

eTable3. Since the VA dataset was solely used for testing purposes, only limited number of 

features were extracted (Table 1).  

 

Missing values were imputed
14

 if the frequency of missing was <60%. We used predictive mean 

matching method
15

 with k=5. Laboratory measures with ≥60% missingness or change/change 

rate measures with ≥80% missingness were not included in the model development process. 

Ten imputed datasets were generated. 

 

Model Training, Validation and Testing  

To overcome the limitations of regression-based models that are traditionally used for analysis 

of time-to-event data, we applied ‘random survival forests’ (RSF), a nonparametric machine 

learning method,
16-18

 to pre-select features and train/validate models. First, we iteratively 

preselected features based on the average minimum depth (eTable 4) and used those features 

to develop and validate risk prediction models based on 5-fold cross validation.
19

 Age was 

forced into the model. Preselected features were added incrementally to identify the feature 

that yielded the maximum improvement of c-index. This process continued until the c-index 

increased <0.005. Of the 50 models derived from the 50 training datasets (10 imputation 
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datasets x 5-fold cross validation), the three that appeared the most often were selected as the 

winning models.  

 

Algorithms of the winning models were applied to the corresponding KPSC validation datasets. 

By design, the KPSC validation datasets did not include any observations of the KPSC training 

datasets from which the winning models were developed. One winning model was first directly 

applied to VA imputed datasets, and subsequently recalibrated to achieve better performance. 

 

Performance Measures  

The discriminative power for each of the winning models was evaluated by c-index, a 

concordance measure, averaged across all the relevant validation datasets for cohort members. 

Calibration was assessed by calibration plots with five risk groups (<50th, 50–74th, 75–89th, 

90–94th, 95–100th percentiles).
20

 Greenwood-Nam-D'Agostino (GND) calibration test was also 

performed to assess goodness-of-fit.  

 

We estimated sensitivity, specificity, positive predictive value (PPV), and relative increase in risk 

in comparison to that of the entire cohort at various levels of risk thresholds. For this analysis 

we restricted the patients to those with complete follow up or developed PDAC in 18 months. 

The results were averaged across the validation datasets for each winning model.  

 

Early Detection Model  
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To facilitate earlier detection of PDAC by ≥90 days, we also established a cohort which included 

patients identified in the main cohort who had ≥90 days of cancer-free follow up. The same 

model training and validation methods mentioned above were applied.  

 

Prospective pilot study 

We conducted a subsequent prospective study from February to December 2021 to evaluate 

feasibility of real-time implementation of the final prediction model.  We aimed to assess the 

calibration of the model (frequency of observed vs. expected cancer).  This study was approved 

as a separate protocol by the KPSC Institutional Review Board.  We prospectively ran a final 

algorithm on a bi-weekly basis to identify patients aged 50-84 without a prior history of 

pancreatic cancer whose predicted risk of pancreatic cancer is ≥1%.  All algorithm-identified 

patients were manually reviewed.  Patients with findings suspicious for a pancreatic cancer on 

cross-sectional imaging obtained through routine clinical care up to 3 months prior to the risk 

identification date (the date when the algorithm was applied to EHR) were monitored. The 

diagnosis was based on either histology where available or presumptive clinical diagnosis as 

documented in patients’ EHR. 

 

Statistical Analysis  

Analyses were performed using SAS (Version 9.4 for Unix; SAS Institute, Cary, NC) or R Version 

3.6.0 (R Foundation, Vienna, Austria).  

 

RESULTS 
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Characteristics of the study cohorts 

1.8 million KPSC patients were eligible (eFigure 1), of which 53.3% were females, 45.3% were 

white, 29.8% were Hispanic, 9.5% were African American and 10.7% were Asian and Pacific 

Islanders (Table 1). The majority (60.7%) used commercial insurance, and slightly under one-

third (31.8%) were on Medicare. On average, the KPSC patients were 61.6 years of age, with 

average membership length of 18.9 years. 35.7% of the patients were obese and additional 

35.6% were overweight. Diabetes was common (about 20%), while acute and chronic 

pancreatitis were rare (<1%). 

 

The 2.6 million eligible veterans were predominantly male (94.3%), white (67.9%) and African 

American (16.8%) and were older (66.1 years of age) than the KPSC cohort. Smoking, diabetes, 

acute and chronic pancreatitis were more prevalent in the VA cohort compared to those of the 

KPSC cohort. ALT and HbA1c at baseline appeared comparable between the two cohorts.  

 

Incidence of PDAC 

Table 2 displays the follow-up time in years, number, incidence rate (IR) of PDAC, and time to 

PDAC for all patients and for subgroups of patients defined by important features. 1,792 KPSC 

patients developed PDAC within 18 months of follow-up (IR=0.77, 95% CI 0.73-0.80/1,000 

person-years (PY) (Table 2). A total of 4,582 patients in the VA cohort developed PDAC (IR 1.27 

(1.23-1.30)). In the VA cohort, abdominal pain in the 6 months prior to t0 increased the IR to 

4.35 (4.01-4.70). Time to PDAC appeared to be longer for the VA cohort (median 233 days, IQR 

116-370 days) compared to that of the KPSC cohort (median 205 days, IQR 91-358 days). The 
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distributions of cancer stage (I-IV) were comparable between the two cohorts (eTable 5), if the 

higher frequency of missingness in the VA cohort is ignored. 

 

Model Training, Validation and Testing  

The number and size of the KPSC training, KPSC validation and VA testing datasets are shown in 

eTable 6.  

  

For the main cohort, the preselection process identified 29 potential predictors (eTable 4). Of 

the 50 training samples, the three winning models containing age, abdominal pain, weight 

change and two biomarkers (alanine transaminase (ALT) change/HbA1c, rate of ALT 

change/HbA1c, and rate of ALT change/rate of HbA1c change) appeared most often (Table 3). 

Internal validation based on KPSC validation datasets revealed comparable results among the 

top three models (c-index: mean 0.77 for all three models (M1-M3) and SD 0.01-0.02; 

calibration test: p-value 0.2-0.4 and SD 0.2-0.3). When M1 was directly applied to VA testing 

datasets, the mean c-index was 0.69 (SD 0.003) (data not shown); however, after the algorithm 

was recalibrated based on VA’s datasets, the mean c-index based on 10 testing datasets was 

0.71 (SD 0.002) (Table 3).  

 

For the early detection cohort, the preselection process identified 32 potential predictors 

(eTable 4). The three best models (E1-E3, c-index: 0.74-0.77) contained the same features as 

those selected by M1-M3 except that abdominal pain was not chosen (Table 3). The calibration 
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test for model E3 was significant (p=0.04), indicating a lack of model fit. The recalibrated E1 

model based on the VA testing datasets achieved a mean c-index of 0.68 (SD 0.003) (Table 3).  

 

The hyperparameters used and the features selected by ≥5 out of 50 models for each cohort 

can be found in eTables 7 and 8, respectively.  

 

Figure 1 displays the calibration plots for all six models (M1-M3, E1-E3). It appears that all fit 

well for the four out of five lower risk groups (i.e., risk<95th percentile). However, for the 

highest risk group (risk ≥95th percentile), M1-M3 properly estimated the risks at KPSC, while 

E1-E3 slightly overestimated the risks for KPSC patients, and M1, E1 slightly underestimated the 

risks for VA patients.  

 

Sensitivity, specificity, PPV and fold increase in risk were comparable among the three winning 

models for both main cohort (M1-M3) and early detection cohort (E1-E3) (Table 4). The top 

2.5% of the testing sample based on M1 experienced 1% risk of PDAC over 18 months, which 

was 7- to 8- fold higher than the baseline risk of PDAC in the KPSC cohort. Twenty % of the total 

PDAC cases occurring within 18 months were identified in this top 2.5% model-predicted high-

risk group. Patients within the top 20% predicted risk of PDAC experienced 0.6% risk of PDAC 

over 18 months. This identified more than 50% of PDAC occurring within 18 months with a 

specificity of 80%. While sensitivities and fold increases in PDAC incidence rate were lower in 

the VA population, PPVs were higher for VA validation data compared to those of KPSC (Table 

4).  
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Compared to the models developed based on the main cohort (M1-M3), the models developed 

based on early detection cohort (E1-E3) had slightly compromised sensitivity, PPV and fold 

increase in risk. 

 

Model application/implementation 

A total of 606 patients were identified by the model with predicted risk of ≥1%.  Nine (1.5%) 

patients had abnormalities identified in the region of the pancreas with the following 

diagnoses/stages: PDAC stages 1b, II, III, IV; pancreatic lymphoma; pancreatic neuroendocrine 

tumor; ampullary carcinoma; cholangiocarcinoma (n=2). 

 

To facilitate external application of the RSF-based prediction model (M1), we have developed a 

publicly available web-based tool (https://pcriskdev.kp-scalresearch.org/). A hypothetical 70-year-

old male patient with hemoglobin A1c value of 7.5%, weight loss of 4 lbs. and ALT increase of 4 

IU/L in one year has an estimated 18-month risk of PDAC 0.30%. 

 

For demonstration, decision rules based on one of the trees built for M1 is displayed in eFigures 

2 and 3 for the left and the right side of the decision tree, respectively.  

 

DISCUSSION 

We applied machine learning methods to EHR data to derive and validate clinical prediction 

models for sporadic pancreatic cancer across two large integrated healthcare systems. Despite 
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inclusion of >500 potential features in the candidate pool, the machine learning models 

incorporated traditional parameters including age, glycated hemoglobin, alanine 

aminotransferase, weight, and abdominal pain. The final models were both parsimonious (with 

only 4-5 predictors) and reasonably accurate in both internal and external validation. In 

addition, the model proved well-calibrated when applied prospectively for real-time 

identification of not only pancreatic but biliary cancers. 

 

While there has been some progress in studying approaches to early detection in high-risk 

patients based on either family history or genetic susceptibility
21

 as well as those with specific 

conditions such as late-onset diabetes,
6
 limited data exist on identification of patients at risk for 

sporadic pancreatic cancer. This study presents a novel approach to risk stratification at the 

population-level based on dynamic parameters contained within structured data from EHR.  

 

Although parameters included in the model are well-established parameters for PDAC,
5,6,10

 their 

selection using an unbiased, comprehensive data-driven approach helped ensure inclusion of 

the most relevant combination of parameters. A recently developed model to predict risk of 

pancreatic cancer among patients with late or new onset diabetes at age 50 or later similarly 

identified increasing age, weight loss and change in blood glucose as key parameters for 

determining risk of pancreatic cancer in this patient population.
5
 The current model extends the 

concept of model-based risk prediction to a much broader population while maintaining 

reasonably high levels of discriminative accuracy for prediction of pancreatic cancer.  
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External validation is key to assessing model performance. In a review of 127 prediction 

models, Siontis et. al found 32 (25%) had at least one external validation.
22

 AUC estimates 

significantly decreased during external validation vs. the derivation study with a median AUC 

reduction 0.05.
22

 In the current study, the c-index declined by 0.08 (or 10%) when model M1 

was directly transported and about 0.06 (or 8%) and 0.09 (or 12%) after models M1 and E1 

were recalibrated, respectively. Although the comparison should be interpreted cautiously, the 

larger reduction observed in the current study could be attributable to multiple factors. First, a 

higher frequency of PDAC cases in the VA cohort were pancreatic cancer deaths identified 

through mortality records compared to the KPSC cohort. Second, given the differences in age 

and sex between KPSC and VA populations, a higher incidence rate of PDAC in the VA dataset 

compared to that of KP’s was observed as expected. This could have impacted model accuracy 

especially for the models without recalibration.  

 

Strengths of the current study included a comprehensive, data-driven approach to model 

development, use of structured data elements and external validation in a separate healthcare 

system with distinct patient population. The present study also extended model development 

to assess feasibility of implementing the model through application in a prospective pilot study 

that demonstrated ability to identify pancreaticobiliary cancers in real-time. 

 

The present study also had several limitations. First, several parameters identified in the 

prediction models (abdominal pain, abnormal ALT) are often associated with advanced stage 

pancreatic cancer. However, several early-stage pancreatic cancer cases were detected by the 
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algorithm in the prospective feasibility study.  Nevertheless, an ongoing concern relates to the 

timing with respect to clinical diagnosis.  The 30-day cancer-free period used in the present 

model is likely insufficient to provide a reasonable window of opportunity for intervention to 

impact the disease course. To address this concern, we also developed an early detection 

model that restricted the study population to patients with ≥90 days cancer-free follow-up 

from the index date. Further testing of this restricted model for early detection of pancreatic 

cancer is the subject of an ongoing single-arm prospective interventional study (NCT04883450). 

Despite the reasonably high performance in terms of discriminative ability, the absolute risk in 

the highest risk category (top 2.5%) approached 1% over 18-months. This level of risk is likely 

below the threshold for cost-effective screening based on currently available testing.
23

 Second, 

of the 1479 and 4,582 events identified in the KPSC and VA cohorts, respectively, 300 and 2,564 

events were captured by data sources other than Cancer Registry. An evaluation based on the 

KPSC Cancer Registry of the same time window showed that about 90% of pancreatic cancer 

cases were PDAC. Third, to estimate sensitivity, specificity, PPV and fold of risk increase, we 

relied on a subset of patients (~70% and ~80% of the total patients in the KPSC and VA cohorts, 

respectively) with complete follow up unless they died of pancreatic cancer. This restriction 

over-estimated the risk of PDAC, because the patients who were excluded from this analysis 

were at-risk for some periods of time.  Finally, several cancers identified during prospective 

pilot testing of the algorithm were biliary in origin given similarities in anatomic location and 

clinical presentation. 
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In conclusion, we developed a parsimonious clinical risk prediction model for sporadic 

pancreatic cancer in a large, diverse integrated health system and subsequently applied the 

model in a separate health system. We also evaluated the model prospectively for real-time 

application. The model identified five key factors in determining risk of pancreatic cancer. 

Findings from the present study provide a potential framework for a systematic approach to 

targeted screening for pancreatic cancer based on automated analysis of data in EHR. 
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Figure Legends 

 

Figure 1 – Calibration plots of winning models. x-axis: predicted; y-axis: observed. The five 

clusters represent the five risk groups defined by the ranges of predicted risks: <50th, 50–74th, 

75–89th, 90–94th, 95–100th percentiles. Within each cluster, there are multiple dots 

representing the pairs of predicted and observed risks, calculated based on the corresponding 

validation datasets.  

 

eFigure 1 – Consort Diagram (KPSC and VA main cohorts) 

eFigure 2 – One of the decision trees for KPSC M1 (left side) 

eFigure 3 – One of the decision trees for KPSC M1 (right side) 
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Table 1. Characteristics of study subjects at baseline, n (%) unless otherwise stated. 

Demographics and Lifestyle 

Characteristics 

Kaiser Permanente Southern California 

N=1,801,931 

Veterans Affairs 

N=2,690,895 

Age, mean (SD) 61.6 (9.4) 66.1 (9.1) 

Female 960266 (53.3) 153630 (5.7) 

Race/Ethnicity 

  Non-Hispanic White 

  Non-Hispanic Black  

  Hispanic 

  Asian and Pacific Islander 

  Multiple/Other/Unknown 

 

815773 (45.3) 

171424 (9.5) 

536079 (29.8) 

192179 (10.7) 

86476 (4.8) 

 

1828095 (67.9) 

451523 (16.8) 

148690 (5.5) 

38536 (1.4) 

224051 (8.3) 

Medical Insurance (one or more) 

  Commercial 

  Medicare  

  Medi-CAL/Other State Programs 

  Private Pay 

 

1094182 (60.7) 

572452 (31.8) 

64150 (3.6) 

483042 (26.8) 

 

Years Since First enrollment, mean 

(SD) 18.9 (13.5) 

 

Family History of Pancreatic Cancer 25386 (1.4)  

Tobacco Use  

  Ever 

  Never    

 

700429 (38.9) 

1101502 (61.1) 

 

1914180 (71.1) 

776715 (28.9) 

Weight Defined by BMI (kg/m
2
) 

  Underweight (<18.5) 

  Normal Weight (18.5-24.9) 

  Overweight (25-29.9) 

  Obese (30+) 

  Unknown 

 

19095 (1.1) 

429010 (23.8) 

640644 (35.6) 

642905 (35.7) 

70277 (3.9) 

 

Weight Change in 1 Year in lb., 

median (IQR)
a 

 

-0.2 (-4.8, 3.5) 

 

-0.3 (-5.8, 4.8) 

Lab Tests Value in Prior 6 Months Change in 1 Year Value in Prior 6 Months Change in 1 Year 

 N Median (IQR) N Median (IQR) N Median 

(IQR) 

N Median (IQR) 

ALT, IU/L 920993  22.0 (17.0, 30.0) 479881 0.0 (-5.0, 4.0) 908520 24 (18, 34) 650675 0 (-6, 4) 

HgA1c, % 744601  6.2 (5.8, 7.1) 409975  0.0 (-0.3, 0.3) 1429886 6.2 (5.7, 7.2) 898378 0.0 (-0.3, 0.3) 

ALP, IU/L 309460  70.0 (57.0, 87.0) 96562  0.0 (-9.0, 10.0)     

Total Bilirubin, mg/dL 303803 0.7 (0.5, 0.9) 94098  0.0 (-0.2, 0.2)     

HGB for Males, g/dL 437416 14.5 (13.4, 15.4) 202538  -0.1 (-0.8, 0.5)     

HGB for Females, g/dL 515110  13.2 (12.4, 14.0) 264229  -0.1 (-0.6, 0.5)     

HCT, L/L 952548  41.0 (38.0, 43.7) 466785  -0.3 (-2.1, 1.5)     

A
ll rights reserved. N

o reuse allow
ed w

ithout perm
ission. 

(w
hich w

as not certified by peer review
) is the author/funder, w

ho has granted m
edR

xiv a license to display the preprint in perpetuity. 
T

he copyright holder for this preprint
this version posted F

ebruary 15, 2022. 
; 

https://doi.org/10.1101/2022.02.14.22270946
doi: 

m
edR

xiv preprint 

https://doi.org/10.1101/2022.02.14.22270946


 

26 

 

RBC, million/mm
3 

934454 4.5 (4.2, 4.9) 449246  0.0 (-0.2, 0.2)     

Sodium, mEq/L 952253  139.0 

 (137.0, 141.0) 

496334  0.0 

 (-2.0, 2.0) 

    

Total Cholesterol, mg/dL 964899  184.0 

 (156.0, 215.0) 

506608  -4.0 

 (-22.0, 13.0) 

    

Platelets, count/L 934239  232.0 

 (194.0, 277.0) 

449030 -3.0 

 (-25.0, 19.0) 

    

Medical Conditions 0-6 m Prior 7-12 m Prior 13-24 m Prior 24+ m Prior 0-6 m Prior 7-12 m Prior 13-24 m Prior 24+ m Prior 

Gallstone Disorders 20085 (1.1) 13184 (0.7) 20183 (1.1) 104529 (5.8)     

Acute Pancreatitis  3256 (0.2) 2065 (0.1) 3199 (0.2) 17975 (1.0) 9510 (0.4) 5646 (0.2) 8859 (0.3) 18209 (0.7) 

Chronic Pancreatitis 1550 (0.1) 1182 (0.1) 1475 (0.1) 3738 (0.2) 7749 (0.3) 5125 (0.2) 6707 (0.2) 9719 (0.4) 

Benign Pancreatic Disease 2019 (0.1) 1398 (0.1) 1711 (0.1) 2780 (0.2)     

Biliary Tract Disease 26199 (1.5) 20974 (1.2) 25512 (1.4) 38538 (2.1)     

Depression 189508 (10.5) 150514 (8.4) 190868 (10.6) 317686 (17.6)     

Diabetes 376022 (20.9) 325789 (18.1) 335965 (18.6) 327408 (18.2) 842,311 

(31.3) 

775,964 

(28.8) 

831,566 

(30.9) 

735,251 

(27.3) 

Medical Procedures 0-6 m Prior 7-12 m Prior 13-24 m Prior 24+ m Prior 0-6 m Prior 7-12 m Prior 13-24 m Prior 24+ m Prior 

Abdominal/Chest CT 121427 (6.7) 82841 (4.6) 119308 (6.6) 304085 (16.9)     

Abdominal/Chest MRI 1861 (0.1) 1366 (0.1) 2226 (0.1) 7057 (0.4)     

Abdominal/Chest Ultrasound 70721 (3.9) 55004 (3.1) 93179 (5.2) 333051 (18.5)     

Any Abdominal Surgery 11447 (0.6) 7360 (0.4) 11559 (0.6) 77283 (4.3)     

Surgical Procedures on esophagus 18492 (1.0) 13226 (0.7) 22164 (1.2) 125701 (7.0)     

Upper GI Endoscopy 37108 (2.1) 27232 (1.5) 43386 (2.4) 160899 (8.9)     

Colonoscopy 95156 (5.3) 74199 (4.1) 125372 (7.0) 417049 (23.1)     

Medications 0-6 m Prior 7-12 m Prior 13-24 m Prior 24+ m Prior 0-6 m Prior 7-12 m Prior 13-24 m Prior 24+ m Prior 

Pancreatic Enzyme 1246 (0.07) 1105 (0.06) 1314 (0.07) 2437 (0.1)     

Antidiabetic Medications – Insulin 88277 (4.9) 79163 (4.4) 78660 (4.4) 78323 (4.4)     

Antidiabetic Medications – Non-

Insulin 

158667 (8.8) 148703 (8.3) 155764 (8.6) 182396 (10.1)     

GI-Related Signs/Symptoms 0-6 m Prior 7-12 m Prior 13-24 m Prior 24+ m Prior 0-6 m Prior 7-12 m Prior 13-24 m Prior 24+ m Prior 

Abdominal Pain 133380 (7.4) 92422 (5.1) 142470 (7.9) 483652 (26.8) 107586 (4.0) 68717 (2.6) 108170 (4.0) 237763 (8.8) 

Chest Pain 114152 (6.3) 79399 (4.4) 128549 (7.1) 483953 (26.7)     

Constipation 60032 (3.3) 41935 (2.3) 64439 (3.6) 193331 (10.7)     

Diarrhea     44025 (2.4) 32187 (1.8) 52487 (2.9) 202067 (11.2)     

Itching     46314 (2.6) 33730 (1.9) 57062 (3.2) 207679 (11.5)     

Malaise or Fatigue 104298 (5.8) 71136 (3.9) 111646 (6.2) 362901 (20.1)     

Melena 11089 (0.6) 7433 (0.4) 13235 (0.7) 66321 (3.7)     

Nausea or Vomiting  51787 (2.9) 36348 (2.0) 57767 (3.2) 215982 (12.0)     
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Abbreviations: ALP, alkaline phosphatase; ALT, alanine transaminase; BMI, body mass index; CT, computerized tomography; GI, gastrointestinal; HCT, 

hematocrit; HbA1c: hemoglobin A1c; HGB, hemoglobin; IQR, interquartile range; MRI, magnetic resonance imaging; RBC, red blood cell; SD, standard deviation. 
a
 1 lb = 0.45 kg 
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Table 2. Total follow-up (f/u) time, number, and incidence rate of PDAC per 1,000 person-years (PY) and 95% CI. 

 Kaiser Permanente Southern California (KPSC)  Veterans Affairs (VA) 

 Total f/u 

Time 

(years) 

No. of 

PDAC 

Incidence Rate of 

PDAC/ 1000 PY 

(95% CI) 

Days to PDAC 

(median, IQR) 

Total f/u 

Time 

(years) 

No. of 

PDAC 

Incidence Rate of 

PDAC/ 1000 PY 

(95% CI) 

Days to PDAC 

(median, IQR) 

All 2331767 1792 0.77 (0.73, 0.80) 205 (91, 358) 3614215 4582 1.27 (1.23, 1.30) 233 (116, 370) 
Age Group in years           

  50-59 1133128 350 0.31 (0.28, 0.34) 198 (84, 357) 989814 679 0.69 (0.64, 0.74) 212 (98, 352) 

  60-69 711410 624 0.88 (0.81, 0.95) 197 (91, 355) 1630532 2026 1.24 (1.19, 1.30) 239 (122, 374) 

  70-79 369643 604 1.63 (1.51, 1.77) 219 (91, 362) 677576 1304 1.92 (1.82, 2.03) 237 (113, 369) 

  80-84 117585 214 1.82 (1.59, 2.08) 213 (112, 353) 316293 573 1.81 (1.67, 1.96) 235 (116, 367) 

Sex           

  Female 1246235 864 0.69 (0.65, 0.74) 219 (97, 370) 213181 101 0.47 (0.39, 0.57) 248 (104, 398) 

  Male 1085520 928 0.85 (0.80, 0.91) 220 (88, 350) 3401034 4481 1.32 (1.28, 1.36) 233 (116, 369) 

Race/ Ethnicity         

  Non-Hispanic White 1065194 934 0.88 (0.82, 0.93) 206 (90, 362) 2456059 2986 1.22 (1.17, 1.26) 238 (119, 370) 

  Non-Hispanic Black 226546 262   1.16 (1.02, 1.30) 208 (100, 356) 612641 692 1.13 (1.05, 1.22) 220.5 (100.5, 377) 

  Asian/Pacific Islander 255168 147   0.58 (0.49, 0.67) 216 (114, 367) 52570 48 0.91 (0.68, 1.20) 192 (118.5, 373.5) 

  Hispanic 692443 410   0.59 (0.53, 0.65) 201 (87, 345) 202263 211 1.04 (0.91, 1.19) 239 (121, 369) 

  Unknown
a
     290682 645 2.22 (2.05, 2.40) 220 (115, 357) 

ALT change in 1 year in IU/L         
  ≤ -5 156757 174 1.11 (0.95, 1.28) 216 (92, 360) 248360 359 1.45 (1.30, 1.60) 247 (123, 367) 
  (-5, 5] 340273 330 0.97 (0.87, 1.08) 232 (107, 392) 434050 523 1.20 (1.10, 1.31) 246.5 (132.5, 

  > 5 123457 165 1.34 (1.14, 1.55) 149 (63, 303) 187824 322 1.71 (1.53, 1.91) 184 (86, 302) 

  Unknown 1711281 1123 0.66 (0.61, 0.70) 203 (94, 355) 2743981 3378 1.23 (1.19, 1.27) 234 (116, 373) 

Rate of ALT Change in 1 Year         

  ≤ -0.01 180995 205 1.13 (0.99, 1.30) 210 (91, 358) 281222 402 1.43 (1.29, 1.57) 247 (126, 373) 

  (-0.01, 0.01] 272305 255 0.94 (0.83, 1.06) 234 (114, 384) 343020 420 1.22 (1.11, 1.35) 244.5 (132.5, 

  > 0.01 167186 209 1.25 (1.09, 1.43) 166 (65, 330) 245991 382 1.55 (1.40, 1.71) 191 (86, 310) 

  Unknown 1711281 1123 0.66 (0.62, 0.70) 203 (94, 355) 2743981 3378 1.23 (1.19, 1.27) 234 (116, 373) 

HgA1c Value Prior to Index date         

  <6.5% 586772 326 0.55 (0.50, 0.62) 220 (90, 369) 1132107 1094 0.97 (0.91, 1.02) 241 (118, 373) 

  6.5-6.9% 124249 139 1.12 (0.94, 1.32) 190 (74, 360) 228430 366 1.60 (1.44, 1.77) 234 (118, 367) 

  7.0-7.4% 80113 122 1.52 (1.27, 1.81) 159 (88, 310) 157876 289 1.83 (1.63, 2.05) 221 (112, 366) 

  ≥7.5% 179700 305 1.70 (1.51, 1.89) 200 (90, 341) 399057 969 2.43 (2.28, 2.58) 216 (102, 354) 

  Unknown 1360933 900 0.66 (0.62, 0.71) 212 (96, 365) 1696745 1864 1.10 (1.05, 1.15) 239 (121, 378) 

HgA1c Change in 1 Year in %         

  < -0.3 118111 143 1.21 (1.02, 1.42) 185 (88, 343) 287080 479 1.67 (1.52, 1.82) 227 (115.5, 371) 

A
ll rights reserved. N

o reuse allow
ed w

ithout perm
ission. 

(w
hich w

as not certified by peer review
) is the author/funder, w

ho has granted m
edR

xiv a license to display the preprint in perpetuity. 
T

he copyright holder for this preprint
this version posted F

ebruary 15, 2022. 
; 

https://doi.org/10.1101/2022.02.14.22270946
doi: 

m
edR

xiv preprint 

https://doi.org/10.1101/2022.02.14.22270946


 

29 

 

  [-0.3, 0.3] 298587 204 0.68 (0.59, 0.78) 238 (100, 372) 625990 637 1.02 (0.94, 1.10) 251 (130, 388) 

  > 0.3 120115 211 1.76 (1.53, 2.01) 190 (90, 329) 291,676 660 2.26 (2.10, 2.44) 220 (103, 357) 

  Unknown 1794953 1234 0.69 (0.65, 0.73) 205 (90, 358) 2409469 2806 1.16 (1.12, 1.21) 233 (117, 370) 

Rate of HgA1c Change in 1 Year         

  < -0.0008 126922 146 1.15 (0.97, 1.35) 184 (88, 343) 322572 519 1.61 (1.47, 1.75) 227 (115,371) 

  [-0.0008, 0.0008] 280155 181 0.64 (0.56, 0.75) 224 (98, 371) 554791 535 0.96 (0.89, 1.05) 249 (129, 378) 

  > 0.0008 129736 231 1.78 (1.56, 2.02) 200 (92, 343) 327480 722 2.21 (2.05, 2.37) 225.5 (105, 359) 

  Unknown 1794953 1234 0.69 (0.65, 0.73) 205 (90, 358) 2409469 2806 1.16 (1.12, 1.21) 233 (117, 370) 

Rate of Weight Change in 1 Year         

  < -0.02 503012 683 1.35 (1.26, 1.46) 160 (68, 322) 869902 2049 2.36 (2.26, 2.46) 185 (86, 313) 

  [-0.02, 0.02] 1033671 703 0.68 (0.63, 0.73) 238 (124, 387) 1437632 1403 0.98 (0.93, 1.03) 286 (156, 409) 

  > 0.02 393142 209 0.53 (0.46, 0.61) 238 (114, 358) 750864 621 0.83 (0.76, 0.89) 281 (145, 408) 

  Unknown 401941 197 0.49 (0.43, 0.56) 202 (90, 364) 556817 509 0.91 (0.84, 0.996) 244 (133, 387) 

Abdominal Pain in Prior 6 mos
b
         

  Yes 168579 322 1.91 (1.71, 2.13) 116 (54, 256) 139459 606 4.35 (4.01, 4.70) 136 (67, 252) 

  No 134525 139 1.03 (0.87, 1.22) 199 (110, 349) 3474756 3976 1.14 (1.11, 1.18) 250.5 (128, 382.5) 

  Unknown 2028662 1331 0.66 (0.62, 0.69) 230 (110, 377)     

Abbreviations: ALT, alanine transaminase; CI, confidence interval; F/U, follow-up; HgA1c, hemoglobin A1c; IQR, interquartile range; PDAC, pancreatic ductal 

adenocarcinoma; PY, person-years. 
a
 Not estimated for KPSC dataset due to the small number of events (39) in this group. 

b
 For VA data, “Unknown” was interpreted as “No” due to the inability to distinguish between the two. 
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Table 3. Predictors selected in top 3 models
a
 developed based on the main cohort and restricted cohort, and model performance during 

internal validation and external testing.   

 

 

 

Model 

Name 

Predictors 
Training 

KPSC 

Validation  

KPSC 

Testing
b
  

VA 

Age 

ALT HgA1c 

Abdomi-

nal Pain 

Weight 

Change 

in 1 yr 

No. of times 

selected out 

of 50 

training 

samples 

c-index 

Mean (SD) 

χ2 

Mean (SD) 

p-value 

Mean (SD) 

c-index 

Mean (SD) Change 

Rate of 

Change 

in 1 yr 

HgA1c 

Rate of 

Change 

in 1 yr 

Main Cohort  

M1 X X X X X 11 0.77 (0.02) 5.9 (4.1) 0.4 (0.3) 0.71 (0.002) 

M2 X X X X X 11 0.77 (0.02) 8.5 (5.3) 0.2 (0.3) NA 
M3 X X X X X 9 0.77 (0.01) 6.7 (2.1) 0.2 (0.2) NA 

Early Detection Cohort  

E1 X X 
 

X 
 Not 

Selected 

X 5 0.77 (0.04) 7.3 (4.9) 0.3 (0.3) 0.68 (0.003) 
E2 X 

 
X X 

 
X 6 0.74 (0.02) 7.4 (4.2) 0.2 (0.2) NA 

E3 X 
 

X 
 

X X 5 0.76 (0.03) 10.3 (2.0) 0.04 (0.02) NA 
Abbreviations: ALT, alanine transaminase; C-index, concordance index; HgA1c, hemoglobin A1c; KPSC, Kaiser Permanente Southern California; NA, not 

applicable; SD, standard deviation; VA, Veterans Affairs 
a
 Top three models were selected based on the number of times each model was selected out of 50 training samples. 

b
 Models were recalibrated using the exact features selected by Model M1 and Model E1, respectively. 

 

  

A
ll rights reserved. N

o reuse allow
ed w

ithout perm
ission. 

(w
hich w

as not certified by peer review
) is the author/funder, w

ho has granted m
edR

xiv a license to display the preprint in perpetuity. 
T

he copyright holder for this preprint
this version posted F

ebruary 15, 2022. 
; 

https://doi.org/10.1101/2022.02.14.22270946
doi: 

m
edR

xiv preprint 

https://doi.org/10.1101/2022.02.14.22270946


 

31 

 

Table 4. Percent of patients
a
 whose risk was among the top 20%, 15%, 10%, 5%, and 2.5%, sensitivity, specificity, positive predictive value (PPV), and 

risk fold increase for each of the winning models based on KPSC validation datasets and one of the winning models based on VA validation dataset.   
 KPSC VA 

 High-Risk Patients High-Risk Patients High-Risk Patients High-Risk Patients 

Top 

20% 

Top 

15% 

Top 

10% 

Top 

20% 

Top 

2.5% 

Top 

20% 

Top 

15% 

Top 

10% 

Top 

5% 

Top 

2.5% 

Top 

20% 

Top 

15% 

Top 

10% 

Top 

5% 

Top 

2.5% 

Top 

20% 

Top 

15% 

Top 

10% 

Top 5% Top 

2.5% 

Main Cohort Model M1 Model M2 Model M3 Model M1 

N
b
 50952 37454 24959 424761 6249 49746 37512 24949 12572 6244 49934 37545 24850 12468 6238 424761 318408 212392 106118 53528 

Sensitivity (%) 56.6 48.8 39.0 51.7 19.5 55.5 47.5 38.8 27.1 18.5 56.6 48.9 40.0 28.0 19.5 51.7 45.5 37.7 27.2 19.4 

Specificity (%) 79.6 85.1 90.0 80.2 97.5 80.1 85.0 90.1 95.0 97.5 80.1 85.0 90.1 95.0 97.5 80.2 85.1 90.1 95.1 97.5 

PPV (%) 0.4 0.5 0.6 0.6 1.1 0.4 0.4 0.5 0.8 1.0 0.4 0.5 0.6 0.8 1.1 0.6 0.7 0.8 1.2 1.7 

Fold Increase in Risk
c
 2.8 3.3 3.9 2.6 7.9 2.8 3.2 3.9 5.4 7.4 2.8 3.3 4.0 5.6 7.9 2.6 3.0 3.7 5.4 7.7 

Early Detection Cohort Model E1 Model E2 Model E3 Model E1 

N
b
 49944 37462 24974 424521 6244 49966 37475 24984 12492 6246 49917 37439 24960 12480 6240 424521 318131 212172 106087 53047 

Sensitivity (%) 55.1 44.1 35.1 49.6 14.5 50.7 42.2 33.2 20.3 12.6 52.3 44.2 33.6 22.3 13.1 49.6 42.8 34.5 23.6 15.5 

Specificity (%) 80.0 85.0 90.0 80.1 97.5 80.9 80.0 85.0 90.0 95.0 80.0 85.0 90.0 95.0 97.5 80.1 85.1 89.8 95.0 97.5 

PPV (%) 0.3 0.3 0.4 0.4 0.6 0.3 0.3 0.4 0.4 0.5 0.3 0.3 0.4 0.5 0.6 0.4 0.6 0.6 0.8 1.1 

Fold Increase in Risk
c
 2.6 2.9 3.5 2.5 5.8 2.5 2.8 3.3 4.1 5.0 2.6 2.9 3.4 4.5 5.2 2.5 2.9 3.5 4.7 6.2 

Abbreviations: KPSC, Kaiser Permanente Southern California; PPV, positive predictive value; VA, Veterans Affairs. 
a
 Estimated in patients with complete 18 months follow up or those who developed PDAC in 18 months.  

b
 Number of eligible patients whose risk was above each risk threshold. 

c
 Compared with the incidence rate in the entire cohort. 

Model M1: Main cohort; age, weight change, abdominal pain, ALT change, HgA1c; estimated based on 11 validation samples for KPSC and 10 imputed testing datasets 

for VA.  

Model M2: Main cohort; age, weight change, abdominal pain, ALT change rate, HgA1c; estimated based on 11 validation samples.  

Model M3: Main cohort; age, weight change, abdominal pain, ALT change rate, HgA1c change rate; estimated based on 9 validation samples. 

Model E1: Early detection cohort; age, weight change, ALT change, HgA1c; estimated based on 5 validation samples for KPSC and 10 imputed testing datasets for VA. 

Model E2: Early detection cohort; age, weight change, ALT change rate, HgA1c, estimated based on 6 validation samples. 

Model E3: Early detection cohort; age, weight change, ALT change rate, HgA1c change rate, estimated based on 5 validation samples. 
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