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Abstract
Background
COVID-19 is a new multi-organ disease, caused by
the SARS-CoV-2 virus, resulting in considerable
worldwide morbidity and mortality. While many rec-
ognized pathophysiological mechanisms are involved,
their exact causal relationships remain opaque. A
better understanding is needed for predicting their
progression, targeting therapeutic approaches, and
improving patient outcomes. While many mathemat-
ical causal models describe COVID-19 epidemiology,
none have been developed for its pathophysiology.
The virus’s rapid and extensive spread and therapeu-
tic responses made this particularly difficult. Initially,
no large patient datasets were publicly available, and
their data remains limited. The medical literature
was flooded with unfiltered, technical and sometimes
conflicting pre-review reports. Clinicians in many
countries had little time for academic consultations,
and in-person meetings were unsafe.

Methods and Findings
In early 2020, we began a major project to develop
causal models of the pathophysiological processes
underlying the disease’s clinical manifestations. We
used Bayesian network (BN) models, because they
provide both powerful tools for calculation and clear
maps of probabilistic causal influence between se-
mantically meaningful variables, as directed acyclic
graphs (DAGs). Hence, they can incorporate expert
opinion and numerical data, and produce explainable
results. Dynamic causal BNs, which represent succes-
sive “time slices” of the system, can capture feedback
loops and long-term disease progression.

To obtain the likely causal structures, we used
extensive elicitation of expert opinion in structured
online sessions. Centered in Australia, with its ex-
ceptionally low COVID-19 burden, we managed to
obtain many consultation hours. Groups of clinical
and other subject matter specialists, all independent
volunteers, were enlisted to filter, interpret and dis-
cuss the literature and develop a current consensus.
We aimed to capture the experts’ understanding, so
we encouraged discussion and inclusion of theoreti-
cally salient latent (i.e., unobservable) variables, doc-
umented supporting literature while noting contro-
versies, and allowed experts to propose mechanisms
by extrapolation from other diseases. Intermediary
experts with some combined expertise facilitated the
exchange of knowledge to BN modelers and vice versa.
Our method was iterative and incremental: we sys-
tematically refined and checked the group output

with one-on-one follow-up meetings with the original
and new experts to validate previous results. In total,
35 experts contributed 126 face-to-face hours, and
could review our products.

Conclusions
Our method demonstrates and describes an improved
procedure for developing BNs via expert elicitation,
which can be implemented rapidly by other teams
modeling emergent complex phenomena. The re-
sults presented are two key models, for the initial
infection of the respiratory tract and the possible
progression to complications, as causal DAGs and
BNs with corresponding verbal descriptions, dictio-
naries and sources. These are the first published
causal models of COVID-19 pathophysiology, with
three anticipated applications: (i) making expert
knowledge freely available in a readily understandable
and updatable form; (ii) guiding design and analysis
of observational and clinical studies, by identifying
potential mediators, confounders, and modifiers of
treatment effects; (iii) developing and validating pa-
rameterized automated tools for causal reasoning and
decision support, in clinical and policy settings. We
are currently developing such tools for the initial
diagnosis, resource management, and prognosis of
COVID-19, parameterized using the ISARIC and
LEOSS databases.

Keywords: COVID-19, pathophysiology, Bayesian
network, DAG, DBN, causal model, expert elicitation,
decision support, experimental design
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1 Introduction

COVID-19 is a new multi-organ disease, caused
by the highly infectious SARS-CoV-2 virus, re-
sulting in considerable worldwide morbidity and
mortality. While many recognized pathophysi-
ological mechanisms are involved—coagulation
and inflammatory cascades, pulmonary exuda-
tion and respiratory compensation, endovascular
and renal injury—the exact causal relationships
between them remain opaque. A better under-
standing of these causal processes is urgent and
important for predicting their progression, tar-
geting therapeutic approaches and improving pa-
tient outcomes. To this end, the worldwide pan-
demic generated a flood of research, but much of
the early output was unfiltered, sometimes con-
flicting, and of reduced reliability [1]. In contrast,
no large patient datasets were publicly available,
and even now, their data remains limited.

In this project, we used online tools to en-
list independent medical experts to interpret and
iteratively discuss the evolving literature, pro-
viding us with consensus views. This process re-
sulted in the elicitation of several detailed graph-
ical causal models of the pathophysiology under-
lying the clinical manifestations of COVID-19
disease, using the kind of iterative, incremental
method widely recommended for model build-
ing [2], but rarely realized in expert knowledge
elicitation. From these theoretical products, sim-
plified models can be constructed for practical
application that are parameterized using avail-
able data, e.g., for predicting the probability of
a patient’s future need for intensive care given
their current signs, symptoms and laboratory
results.

In this paper, we make freely available our
expert-elicited models. While there has been con-
siderable prior work developing causal models of

the transmission of SARS-CoV-2 within popula-
tions [3–11], ours are the first causal models of
the COVID-19 disease process within individuals.
We anticipate that these models will serve three
purposes, for our team and other researchers.
First, they will aid communication and theoreti-
cal understanding, which includes being readily
updated to incorporate new findings, and being
internally and externally validated using local
datasets. Second, they will guide the design
and analysis of both observational and clinical
studies into COVID-19, by identifying potential
mediators, confounders, etc. Third, they will
be used to develop and validate parameterized
practical tools for causal reasoning and decision
support, both in clinical and policy settings.

1.1 Causal Bayesian networks

Bayesian networks (BNs) were designed to
model probabilistic causal systems. Formally,
a BN [2,12,13] includes a directed, acyclic graph
(DAG), (e.g., Fig. 1), which consists of nodes con-
nected by arcs (pointing from ‘parent’ to ‘child’)
that never point in a continuous sequence from
a node back to itself.1 In addition, in a BN each
node represents a random variable with multi-
ple possible states, and each arc represents a
direct probabilistic dependency, quantified by
a conditional probability table (CPT) or equa-
tion specifying the probability distribution of the
child given the states of all its parents. In causal
DAGs and BNs, these arcs also represent direct
causal influences—hence they can also predict
the effects of decisions regarding interventions.

1In mathematical graph theory, where early work
focused on polyhedra, these are traditionally called ‘ver-
tices’ connected by ‘directed edges’; but common and
equivalent terms are ‘nodes’ connected by ‘directed links’,
‘arrows’ or ‘arcs’.
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Fig 1. Causal DAG excerpt. These are the initial nodes of the Respiratory causal DAG provided in
S1 Fig. The node Pulmonary capillary leakage, for example, has three ‘parents’ that jointly influence
it, and two ‘children’ it influences. In the BN, provided in S1 Model, the variable it represents has
states and a CPT that are not shown in the DAG. All the nodes are named, numbered, and color
coded for ease of reference, and corresponding definitions for variables and arcs are given in the
associated Dictionary, S1 Table, an excerpt from which is provided in Fig. 2.

Readily available software2 allows users to
enter exact or uncertain evidence about any vari-
ables, which is then efficiently propagated to

2We used the GeNIe BN software tool (https://www.
bayesfusion.com/) to elicit the BNs presented here, and
Netica (https://www.norsys.com/) to develop and param-
eterize subsequent models from datasets. Other widely-
used commercial BN software tools include Hugin (https:
//www.hugin.com/), AgenaRisk (https://www.agenarisk.
com/), and BayesiaLab (http://www.bayesia.com/). In
addition, research software and tools include Elvira
(http://leo.ugr.es/elvira/), R BN libraries (http://
www.bnlearn.com/), BNT (https://github.com/bayesnet/
bnt/), SamIam (http://reasoning.cs.ucla.edu/samiam/),
and BayesPy (https://pypi.org/project/bayespy/).

update the probability distributions for all vari-
ables. Thus, causal BNs can support and per-
form prognostic (predictive), diagnostic (retrod-
ictive), explanatory and decision-oriented proba-
bilistic reasoning.

In a BN, all arcs and nodes—even ‘latent’
ones, i.e., not directly observable—may be de-
fined in a semantically meaningful way (as in
Fig. 1 and Fig. 2), and this will always be so
when the BNs represent knowledge elicited from
humans. This transparency is in stark contrast
to the opaque “black boxes” of neural networks,
where latent nodes are usually connected and pa-
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rameterized based on a large dataset and do not
have any readily discernible semantic or causal
interpretation.

One important consequence is that an
elicited BN can be readily updated to reflect
new human knowledge, which is often derived
from more than just a new dataset. Since it is
clear which nodes the new knowledge relates to,
we can usually identify a few locations where
changes are needed while leaving the remain-
der of the network untouched. This can be ex-
tremely useful for complex emergent phenomena,
where understanding is advancing rapidly while
datasets remain small.

Another important consequence is that the
BN structure and its inferences are potentially
explainable, provided that the important aspects
of a complicated BN or inference can be iden-
tified and clearly articulated. In medicine, for
example, for ethical and practical reasons it is
better if the recommendations of an AI tool are
explainable and justifiable [14,15]. Algorithms
for automatically generating such explanations,
which supplement basic BN software by distilling
complex inferences into a concentrated essence
more palatable for human consumption, are a
continuing focus of research, e.g., [15–19]. These
explanations are often better expressed in causal
terms [20], including those supporting medical
diagnoses [21].

Any causal BN entails a partial time order
for its variables: parents precede their children.
But a BN’s capacity to represent time is limited,
since cycles are prohibited and each variable usu-
ally appears only once, thus making it difficult
to represent both feedback loops and time se-
ries. A dynamic Bayesian network (DBN) [2]
is a BN in which a variable can be represented
multiple times at different discrete time steps,

and at any step T it may have parents at T ,
T − 1, T − 2, T − 3, . . . Hence, DBNs can model
any complex multivariate time series, including
feedback loops. If the structure of the network
remains constant over time, the DBN can be
compactly and clearly represented as a network
“snapshot” at a time step showing each variable’s
connections to all its parents.

We present our models as non-dynamic BNs
by focusing on the first instance at which each
variable becomes involved, but have noted some
feedback loops to facilitate their possible conver-
sion to DBNs for modeling disease progression
over longer time scales.

1.2 Building BNs by eliciting expert
opinions

Given a large and representative numerical
dataset, preferably supplemented by expert guid-
ance on some causal directions, machine learn-
ing algorithms have been developed to find the
sparsest causal BNs that could produce the ob-
served dependencies, e.g., PC [13], CaMML [22],
and R libraries such as bnlearn (https://www.

bnlearn.com/). In the absence of such a dataset,
BN structure and/or parameters—unlike those
of opaque models—can be obtained entirely
through knowledge elicitation from domain ex-
perts. This may be more time consuming, but
has the essential advantage that expert knowl-
edge usually represents a synthesis of multiple
sources that can supplement and help interpret
limited local data. Since domain experts usually
have no prior exposure to BNs or training in
causal inference, they need to be assisted by an
expert BN modeler, who helps to express the
knowledge in appropriate terms and highlight
any important or missing pieces.
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ID Variable name Description Parent nodes Relationships with parent nodes 

1 
Chronic 
pulmonary disease 

Chronic pulmonary disease is 

recorded in medical history. 
None NA 

2 
Upper respiratory 
tract (URT) 
epithelial infection 

Viral tropism of upper respiratory 

tract epithelial cells, signaling an 

immune response and leading to an 

altered state of cells (local 

inflammation)  

Virus enters upper 
respiratory tract  

SARS-CoV-2 infection begins in the upper respiratory 

tract [1] causing infection of the epithelial cells in the 

upper respiratory tract. 

4 
Ageusia and/or 
anosmia 

Loss of taste and/or smell 
Infection of 
supporting 
olfactory epithelium 

The sensation of loss of smell and/or taste occurs due 

infection of the cells supporting the olfactory neurons, 

the olfactory epithelial cells [2]. 

5 
Alveolar epithelial 
infection 

Viral tropism of the epithelial cells of 

the alveoli, inducing an immune 

response which leads to an altered 

cellular state (local inflammation). 

Virus enters upper 
respiratory tract, 
Upper respiratory 
tract epithelial 
infection 

The upper airways act as portals for SARS-CoV-2 entry 

and infection of the alveolar epithelium [4]. 

23 Hypoxemia 
Reduced level of oxygen in the 

blood. 

V/Q mismatch, 
shunt, Ventilatory 
insufficiency 

Oxygen levels in the blood are reduced due to 

inadequate gas exchange and perfusion and/or 

intrapulmonary shunting due to persistent pulmonary 

arterial blood flow to non-ventilated alveoli [28], [29] 

30 Acidosis Decrease in blood pH. 
Hypercapnia, 
Hypoxia 

Respiratory acidosis develops due to increased levels of 

carbon dioxide resulting in an increase in pH [34]. 

Hypoxia causes cells to undergo anaerobic metabolism 

resulting in an increased pH. 

32 
Low oxygen 
saturation (SaO2) 

Low levels of oxygen in the 

circulation. 
Hypoxemia 

Hypoxemia can be demonstrated by low oxygen 

saturation measured by pulse oximetry [28]. 
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Fig 2. BN Dictionary excerpt: In the Dictionaries, descriptions of the variables and arcs are
provided, with selected supporting references. The variables are numbered, named and color coded
as in the causal DAGs and BN files. The full Dictionaries are provided as S1 Table and S2 Table.

It is common to use multiple opinions rather
than relying on only one source, with the hope
of obtaining a larger pool of information and
greater reliability from aggregated opinions, and
perhaps benefiting from mutual feedback via
discussion. Group elicitation of BNs has been
particularly popular in some domains, such as
reliability assessment [23, 24] and environmental
research [25].

When group knowledge is pooled effectively,
whether by collation, consensus, averaging, or an-
other form of amalgamation, then it tends to out-
perform individual knowledge [26–31]. However,
unstructured group interactions also bring well-
documented problems, e.g., diffusion of respon-
sibility, anchoring, ‘groupthink’, deference to
social status, and unproductive disputes [32–36].
Such problems can be reduced by using struc-
tured protocols, e.g., collecting independent opin-
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ions from all participants prior to discussion, and
also by using a moderator, e.g., to focus discus-
sion on the most pressing issues, encourage only
constructive contributions, and help establish a
consensus where possible. A BN modeler with
appropriate skills may also take the role of the
moderator who leads discussion, which is the
approach we used.

Software tools have recently been developed
to support group elicitation of BNs, and the
BARD tool [19] includes multiple options to
support highly structured protocols, including
a strict version of the widely used Delphi tech-
nique [37, 38]. However, we needed to make
the elicitation interactions as easy and quick as
possible for our experts, so using only a videocon-
ferencing tool (Zoom) with a modeler/facilitator
who followed structured but flexible protocols
was the most appropriate choice.

The way BNs are defined in §1.1 might
suggest that we build them in the same logical
stages, like a waterfall: (i) define all the variables,
so that we can (ii) specify all the arcs between
them, and then (iii) estimate all the parameters
this structure requires. However, for complex
BNs this would require uncanny foresight. In
contrast, as noted in [19], proposed methodolo-
gies for BN elicitation recommend proceeding
iteratively and incrementally [2, 39–41]. More
specifically, [2, Part III] suggests beginning with
a small local structure around a target variable
of interest, rather than attempting to exhaus-
tively consider every possible factor relevant to
the target. Subsequent iterations can pick up a
few additional factors at a time, preferably with
some form of validation in each iteration (e.g.,
feedback from an independent expert).

Another recommended strategy is to break
down complex models into sub-models, and reuse

common structures or elements when appropri-
ate, dubbed “idioms” [42], “templates” [40] and
“network fragments” [39]. These incremental ap-
proaches adapt similar ideas long used in soft-
ware engineering, such as “spiral prototyping”
or “agile model building” [43], and reusing com-
mon local structures is fundamental to “object-
oriented” programming [44]. An expert mod-
eler/moderator can manage this workflow flexi-
bly and efficiently as issues emerge.

If probabilities are elicited, then there is
usually some degree of uncertainty and disagree-
ment about them. Instead of a single point
estimate for each probability, more thorough pro-
tocols have been designed to elicit several points
(e.g., maximum, minimum, and best estimates)
from each of multiple experts and combine this
information [45–48]. Here, we are concerned
principally with causal structure, with proba-
bilities to be determined later from numerical
datasets—although frequently experts provide
rough indications of influence along with the
variables and causal arcs, which can be captured
by ‘indicative’ BN parameters and used for struc-
ture validation (see §2.3).

1.3 Our contributions

This paper makes two kinds of novel contribu-
tions to prior literature: in method and in results.
In §2, we demonstrate a structured approach
that is only feasible using online tools, which
manages to combine large-scale group expert
elicitation with BN building that is iterative, in-
cremental, and includes validation. In §3, we
present detailed causal DAGs and BNs (with
indicative parameters), together with compre-
hensive associated documentation, that capture
our experts’ theoretical understanding of the cor-
responding COVID-19 pathophysiological pro-
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cesses. In §4, we explain how researchers can
use both our methods and results, and how we
are currently doing so.

2 Methods

Our elicitation process was organized very
quickly, relative to its scale and to similar
projects with which any of the present authors
have been involved. Organization included our
initial planning for which models we wanted to
develop, and hence what information we needed
to elicit.

The process was exceptionally intensive,
with many experts involved, a high degree of
interest, and more detail captured in the ex-
pert models than usual. Centered in Australia,
with its exceptionally low COVID-19 burden, we
managed to obtain a very large number of con-
sultation hours—mostly from experts around
Australia, but supplemented by experts overseas.
Many of these clinical experts therefore had little
direct experience in treating COVID-19, with
the exception of some overseas recruits with
firsthand experience. Nevertheless, since their
role was to interpret the available literature in
the context of their existing domain knowledge
rather than contribute original material, their
expertise was adequate for our purposes. Fur-
thermore, in high incidence settings few experts
would have had the time to participate.

There was a high degree of consensus about
what was currently established, except when dis-
cussing immune processes. However, knowledge
in this area was evolving rapidly as new evidence
emerged, so as expert opinion was revised we
needed to update our models.

2.1 Social roles for elicitation

There are three major specialist roles people
performed during the elicitation process, which
we will refer to as follows:

Modelers are our team’s technical experts in
BN and other computational modeling and
causal inference, which encompasses model con-
struction, refinement, comparison, learning via
expert elicitation, machine learning from data,
validation, and application.

Medical Experts are the domain experts we
enlisted to contribute their time and knowledge,
which here means medical specialists in a rel-
evant subsystem, who agreed to participate in
any of our elicitation activities.

Coordinators are people on our team with
some combination of general medical knowledge,
general modeling knowledge, and medical con-
tacts, who facilitated interaction between mod-
elers and experts, and searched the available
literature to support the model-building process.

Since both medicine and modeling are highly
technical, our cross-disciplinary coordinators
played a vital role in translating knowledge from
one sphere to the other. Also, they ensured
that the modeling decisions our team made were
always informed by general medical expertise
even where we did not elicit specialist medical
opinions on the issue.

Some members of our team (YW, TS and
SM) had previous experience in building causal
models for infectious disease pathophysiology,
including both a generalizable basic structure
and adaptations for specific cases such as pneu-
monia. Based on a preliminary literature review,
we adapted this generalizable model to form a
preliminary model for COVID-19.
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However, due to the recent emergence of the
disease, compounded by its inherent novelty and
complexity, it quickly became clear that obtain-
ing the necessary causal knowledge would be a
massive challenge. First, there was insufficient
data available in the published literature to infer
causal mechanisms, and the available literature
was highly specialized and fragmented. Second,
there was insufficient raw data available to in-
fer causal structure more directly using machine
learning techniques (such as those mentioned
in §1.2). Third, there was insufficient certainty
amongst experts to rely on any individual source
of authority; it would be more reliable to build
an understanding from a group consensus, such
as a group of experts in respiratory medicine.
Fourth, the disease involves multiple areas of
specialist knowledge, so we would need to elicit
opinions from multiple groups of medical ex-
perts. Fifth, the logistical challenge of enlisting
and managing multiple groups would only be
compounded by needing to conduct all meetings
online, due to the social effects of the very dis-
ease under discussion. Lastly, several models of
specific subsystems would need to be synthesized
into a single, general master model to provide
the theoretical foundation for developing clini-
cal tools. Nevertheless, we took on this difficult
challenge.

2.2 Initial models

How to divide the problem into manageable
models and associated groups of experts was
not obvious, since medical expertise is differenti-
ated by more than one dimension. Some medi-
cal specialists focus on particular body systems,
and here early clinical experience indicated that
COVID-19 strongly affected the respiratory and
immune systems, with frequent complications,

often involving the hematological, cardiovascular
and renal systems. Clinicians, however, are famil-
iar with the processes of diagnosis and prognosis,
which need to synthesize the most important
information from all these physiological systems.

Informed by our previous modeling experi-
ence and preliminary literature review, we ini-
tially divided the problem into four submod-
els: Core Mechanism, Complications, Immune Re-
sponse, and Diagnosis. (This division was eventu-
ally revised substantially, as described in §3.1.)
Our Core Mechanism submodel was focused pri-
marily on the respiratory system, so we primar-
ily enlisted respiratory and infectious disease
specialists to help create it. Immune Response
details were elicited from clinical immunologists
and other domain experts in human immunol-
ogy. In contrast, to discuss Complications, we
enlisted a more varied group of clinicians and
other domain experts, including cardiologists, in-
tensivists, and renal specialists. Our experts for
Diagnosis were also more varied, including emer-
gency and primary care physicians, and medical
microbiologists.

To help orient our medical specialists, we
provided a simple schematic Overview model in-
dicating how these four submodels were related.
However, in addition to developing the four sub-
models, we needed to actually synthesize them
into a unified model with a view to developing
practical tools to facilitate clinical reasoning and
decision-making. This task was performed by
our modelers in parallel, i.e., as the submodels
were refined, so was the unified model.

We were able to leverage the insights from
submodel workshops to connect the submodels
appropriately, and to prioritize the most im-
portant features and omit less important ones.
We did not use separate elicitation sessions for
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developing the unified model, because it was
constrained to be consistent with the four sub-
models, it was too complex to address in a single
workshop, and it also involved decisions based
on modeling expertise.

2.3 Elicitation sequences

Fig. 3 illustrates our use of several types of elic-
itation session in a specific sequence, and how
these sessions mapped to the sequence of steps
needed to develop a model.

Our first elicitation session to develop a
particular expert causal model was a 2 h group
workshop, with 7–12 experts each attending for
1–2 h. The main goal here was to develop a
causal structure and refine it through interactive
discussion.

Despite the fact that we did not formally
elicit parameters at this stage, after the work-
shops it was already possible from the discussion,
the literature, and our understanding to roughly
indicate the expected relationships (e.g., respi-
ratory infection is highly likely to activate the
immune system) with ‘indicative’ BN parame-
ters. These were useful for follow up discussion,
and ensured that we specified the states of the
variables properly and consolidated our under-
standing. We also identified some typical clinical
scenarios (e.g., common ways the disease pro-
gresses).

We followed up with one-on-one sessions as
needed, either with the same experts or supple-
mentary experts with additional expertise. The
goals were to clarify and refine the causal struc-
ture by discussing it directly, but also to perform
a particular kind of validation exercise: check-
ing that the proposed structure with indicative
parameters accounted for the typical scenarios.

We then presented the model to independent
experts in one-on-one sessions. The stated goals
were the same as the previous sessions, but if the
new experts’ answers did not substantially differ
from those of the previous experts, then this also
provided a more thorough form of validation.

Finally, we sent the refined models to all
the participating experts for inspection before
publication. The goals were to verify widespread
endorsement as a broader form of validation, and
also to show participants that their efforts had
yielded (if endorsed) a finished product.

Overall, 35 different experts contributed a
total of 126 h of face-to-face time to the group
workshops and one-on-one meetings, with some
additional activities also assisting in model de-
velopment. A more detailed quantitative break-
down is as follows:

• 2 subject-matter surveys were sent out
prior to early group workshops, which were
answered by approximately 55 different ex-
perts.

• 7 group workshops were held in which 26
different experts participated (some at-
tending more than one), contributing a
total of 106 expert hours.

• 15 one-on-one follow-up meetings were held
(occasionally two experts attended a meet-
ing) in which 15 different experts partic-
ipated, contributing a total of 20 expert
hours. Where one-on-one meetings focused
on reviewing a model produced in a group
workshop (11/15 meetings), these almost
always (10/11) involved new experts who
had not already participated in developing
the model discussed.

• After the structures of the expert BNs had
been determined, there were subsequent
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Fig 3. Typical steps used in our model development process, and their relationship to our expert
elicitation sessions.

meetings (11 meetings involving 35 differ-
ent experts contributing a total of 85 h)
focused mainly on parameterization of our
Progression model via available databases,
which provided as a byproduct some addi-
tional degree of detail and validation for
the experts’ theoretical causal BNs pre-
sented here, e.g., for the definitions of some
of the variable states.

Fig. 4 illustrates the same sequence of elici-
tation session types (left column), and how they
relate to two more detailed elicitation proce-
dures. To maximize the value of each session,
a sequence of associated tasks was performed
before and after the session itself (middle col-
umn). This work was most extensive for the
group elicitation session, and is detailed below,
but the work was repeated to a lesser extent for
each of the one-on-one sessions.

To conduct a group session, we followed a
particular elicitation procedure (right column)
guiding the introduction, efficient elicitation
questions for causal structure, and the kinds of

interjections from experts we encouraged. In con-
trast, for each one-on-one session, a customized
agenda was followed with the issues and scenar-
ios to address via more flexible interactions.

2.4 Procedure around group work-
shop

1. Literature review: Coordinators searched
for and reviewed relevant articles in the litera-
ture. They identified areas of expertise required
and some controversial issues. This work contin-
ued in parallel to the next two steps.

2. Expert survey and recruitment: TS
leveraged existing clinical and research networks
to enlist contributions from domain experts. We
directly emailed individuals as well as a national
infectious diseases clinical mailing list, inviting
them to complete a web-based survey (via the
Survey Monkey tool). This served multiple pur-
poses. First, it elicited initial information on the
potential causal model. Since we expected many
people would not fully complete the survey, we
shuffled blocks of questions randomly so that
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we obtained a similar number of responses to
all questions. Second, at the end of the survey,
we asked if respondents wished to participate
further in group workshops, so it functioned as
a preparatory exercise for any participants of
the workshop. Third, since it was a long survey
(100 questions over 5 pages), the amount partic-
ipants managed to complete was taken to be an
implicit measure of their engagement. We then
used other techniques to increase engagement
before the workshop, such as distributing recent
model diagrams and descriptions (or important
excerpts), and asking a few more open-ended
questions.

3. Workshop scheduling: Each week, we col-
lectively decided which workshop to schedule
next by reviewing our progress and identifying
the most pressing need. We invited suitable ex-
perts with limited notice (2 weeks) but achieved
good participation rates, which we attribute to a
strong motivation to contribute to the pandemic
response as well as, in some cases, existing re-
lationships with our team. Since not everyone
who was willing to contribute could be available
at any given time, we invited more people than
we could optimally accommodate, and anyone
who could not attend was invited to validate the
model in a subsequent round. We scheduled 2 h
timeslots, since in our experience this is the mini-
mum to introduce experts to the technology and
to the problem and still have adequate time to
elicit their opinions. This is also the maximum
time that most of our experts could contribute
(due to limited time or attention), and most indi-
cated a preference for shorter sessions. We tried
to run the sessions as efficiently as possible, but
used the full 2 h in every case.

4. Pre-workshop preparation: Prior to
each workshop, we gave participants background
material that identified issues and summarized
features of the model to be discussed and de-
veloped during the workshop. We used the
literature review to prepare a starting template
for the model. This gave our experts something
to critique and expand upon, rather than start-
ing from a blank slate, and hence expedited
discussion and elicitation. We also presented a
schematic overview of how each submodel would
fit in with the others, and an explanation of the
goals of our project.

5. Elicitation workshop: We began each
workshop with a short presentation that in-
cluded “housekeeping” such as introductions
and the format of the session, a summary of the
problem space and the goals of the workshop,
the starting template for the model, and any
other supporting materials. We raised the gen-
eral issue of what question the model is trying to
answer, and tried to achieve an expert consensus
on this. We then proceeded to a standard set of
questions for eliciting causal structure, applied
in an adaptive and iterative fashion. We asked
about which factors (variables) are relevant,
and only asked about their possible states if it
was important to help define them. Experts
frequently suggested clarification of the concepts
intended to be captured by existing variables or
modification of their names as elicitation pro-
gressed, and sometimes suggested merging and
separating variables. We asked about the causal
relationships between them, usually focusing
on one variable at a time and asking which
other variables are direct causes and which are
direct effects (a localized version of the “bow
tie” method used for risk analysis [49]). When
new variables were added and connected, we
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also asked if this superseded any prior direct
connection between a parent and a child of the
new variable. Experts sometimes pointed out
that a relationship could be bidirectional, which
we noted, but in this initial non-dynamic graph
we displayed only one direction. We chose a
direction that created no cycle, and was either
the initial influence, or the more immediate
(i.e., with less time delay), or the strongest, as
deemed most informative for disease progression
or most pertinent to a submodel’s goal. We
also noted any other comments, such as which
connections were more important, unusual, or
controversial. Experts sometimes clarified the
basis for their suggestions by referring to the
literature or their own opinion. The primary
outcome of the workshop was a causal DAG (in
the GeNIe BN software) that a high proportion
of experts agreed captured the most important
underlying pathophysiological processes.

6. Post-workshop review: After the work-
shop, our team had a debrief discussion (30–60
min), for feedback on their own performance
and to consolidate their understanding. Subse-
quently, the modelers cleaned up any loose ends
in the model or documentation, making sure all
the knowledge elicited was understood and docu-
mented correctly, and simultaneously looking for
gaps that would need further clarification. This
included indicative parameters and typical sce-
narios, as described above. The whole workshop,
conducted remotely by web-based videoconfer-
ence (Zoom), was recorded as video, and the
audio later transcribed into text. This allowed
us to review any part of the elicitation as re-
quired. Our transcripts and video recordings,
the “raw data” of these elicitation sessions, have
been retained and securely stored. We used our
newfound understanding to choose and sched-

ule subsequent elicitations and actions. These
included emailing questions to specific experts
that were present or to other experts with differ-
ent skill sets or knowledge, and then if needed,
scheduling one-on-one elicitation sessions.

7. Translation to application models: As
a result of our various expert elicitation ses-
sions, we produced multiple “expert models”
that represented different body subsystems, and
sometimes represented alternative perspectives
put forward by different experts. Our approach
here was exploratory, avoiding premature judg-
ments on what would be important for practical
applications, so we tried to capture this theoreti-
cal expert knowledge comprehensively. However,
our ultimate aim is to develop practical tools
powered by customized “application models”,
the first of which will be to support clinical
reasoning in the prognostication for COVID-19.
The expert models will provide a theoretical
rationale for, and increase confidence in, the
validity of the application models. Our model-
ers decide which aspects of the expert models
are most relevant and should be included in
an application model, given its purpose and
required outcomes. In some respects an applica-
tion model may be simplified, e.g., by combining
several latent variables. In other respects, it may
be more sophisticated, e.g., by creating a DBN
representing the whole system based on multi-
ple expert BNs representing subsystems. The
application models we have already developed
are currently being independently validated by
experts, both structurally and quantitatively, as
well as validated by their fit to the data.

2.5 Adaptive, spiral processes

Although we depict our methods as several lin-
ear sequences, our description should make clear
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that in combination these formed a spiral pro-
cess, as widely recommended for model building:
i.e., our sequences of steps were iterated to pro-
duce successive improvement. Most obviously,
the sequence depicted in Fig. 3 is designed to
successively refine and validate elements of the
model through repeated elicitation.

In the same vein, we also used an adaptive
elicitation procedure, i.e., we used the outcomes
of elicitation and modeling exercises to help de-
cide what sort of elicitation and modeling should
be done next. So, to some extent, we learned
and refined our methods over the course of the
project.

One example of adaptive elicitation was
modifying our pre-workshop material for par-
ticipants. For our early workshops, we prepared
surveys on issues where we identified disagree-
ment in the literature. We aimed to engage and
prepare participants, and obtain a preliminary
understanding of their views. However, despite
the assistance of our coordinators, we found it
difficult to design survey questions that our mod-
elers felt were relevant to the modeling choices,
yet were framed and expressed in a way that
most medical experts felt they could respond to.
For example, experts often felt the answers were
dependent on unstated contextual details.

For subsequent workshops, we simply gave
participants background material that identified
such issues of disagreement, and summarized fea-
tures of the model to be discussed and developed
during the workshop. In our video conferences,
where elicitation and model building were more
coordinated and interactive, we found that mod-
elers and medical experts had much less difficulty
in translating medical knowledge to models and
vice versa.

Another example of adaptive elicitation was
adding post-workshop supplementary meetings.
After holding 2 h elicitation workshops with
groups of medical experts to generate a con-
sensus BN, it became clear that follow-up one-
on-one meetings would be useful, with some of
the workshop participants and sometimes with
other experts who had different expertise. These
meetings allowed experts who wanted additional
time to give more detailed feedback on the model,
and they were also a better forum for resolving
persistent points of disagreement or uncertainty.

3 Results and Discussion

3.1 Models produced

Fig. 5 illustrates the history of our model devel-
opment in a cladogram. The four models we com-
menced with, as described in §2, did not survive
in their initial forms. As an adaptive, generative
process in a complex, novel domain, our progress
was inevitably evolutionary: new model variants
were created, crossbred and adapted for each en-
vironmental niche, with many now extinct and
a few still extant.

Our Core Mechanism model centered mainly
on the respiratory system from the outset; as
the multi-system nature of COVID-19 became
apparent we decided to rename it the Respiratory
model and focus on the initial infection process
in that system. It is presented below.

Our Complications model largely begins
where the Respiratory model’s story of patho-
physiology ends, capturing for more severe cases
the knock-on effects to other organ systems and
body functions. After a period of work on both
this and the Respiratory model, key ideas were
identified from both that would form the basis
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Fig 5. Model cladogram from April to December 2020. Some model lines primarily concerned
prognosis (top family), other lines primarily concerned diagnosis (middle), and one line concerns
Näıve Bayes (NB) and related variants adapted for preliminary parameterization and data
exploration using available data (bottom).

of an application model, called the Progression
model.

This Progression model subsequently came
to incorporate ideas from further expert models,
including the Immune System, Vascular System
and Background models, and it became clear
that this BN would need to be transformed into
a DBN, which can better represent longer-term
system dynamics by replicating variables at dif-
ferent time steps (§1.1), in order to track the
longer-term progression of COVID-19 and ulti-
mately assist with prognosis. The parameterized
Progression model changes shape depending on
the data set and setting, so it is not presented
here; we are currently preparing the detailed
presentation it requires. However, the expert
Complications model on which it is most closely
based is presented below.

We invested considerable effort in modeling
the Immune System response, which proved to
be a complex and contentious topic with much
uncertainty and little that could be confidently
extrapolated from other infections. However, af-
ter this investigation we concluded that much of
the exact detail of the mediators of the immune
response might be unnecessary for the purposes
of diagnosis and prognosis where we ultimately
aimed to contribute practical tools. Hence, we
deferred work on this model and it is not pre-
sented here.

After some work eliciting details for our Di-
agnosis model, we made the judgment that with
the emergence of sensitive and specific diagnos-
tics, diagnosis of patients was not a task for
which our models were likely to provide much
assistance, with the exception of the specific task
of managing COVID-19 testing in the commu-
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nity. We therefore discontinued modeling most
of these details, and continued modeling the re-
mainder in our Testing model. We have already
published this as a causal BN [50], and will not
reproduce it here.

We detail these procedural missteps and
‘dead-ends’ to accurately describe a method of
modeling, whereas omitting or rewriting this
history might give the misleading impression
that the two models presented below were always
exactly the intended output.

3.2 Method of presentation

Since COVID-19 pathophysiology is complex, we
developed several BNs for different subsystems;
here we present our two main products. Our Res-
piratory BN concerns the detailed pathways that
link the initiating infection to respiratory patho-
physiology and the beginning of complications,
and hence it focuses primarily on the lungs. Our
Complications BN concerns higher-level interac-
tions and how the disease may progress after
complications have begun, and hence it includes
other organs that become important later in the
progression of a severe case.

We present the models in three complemen-
tary types of file:

1. Causal DAGs and BNs, in which we
specify the causal structures in supplemen-
tary static graph diagrams (S1 Fig., S2 Fig.)
and in supplementary GeNIe BN files (S1 Model,
S2 Model). GeNIe can present the structures
simply as causal DAGs, or more dynamically:
variables can be displayed with their states
and indicative probabilities, and the states of
variables can be specified to explore how this
changes the probability distributions over other
variables’ states.

2. BN descriptions and issues, which sum-
marize the processes these graphs represent (§3.4
and 3.6), and discuss a few unusual or contro-
versial features (§3.5 and 3.7).

3. BN dictionaries with references, which
give the definitions of variables and states, and
also cite some of the research literature that
supported specific BN features. We present
illustrative examples in Fig. 2, discuss some gen-
eral features in §3.8, and provide the complete
documents as supplementary files (S1 Table,
S2 Table).

3.3 Limitations of our models

While there are still unknowns and competing
hypotheses in the literature, the differences are
not profound enough to require presentation as
competing DAGs; our list of issues is sufficient
to indicate which structural components would
differ. Some disagreements only concern the de-
gree of impact of alternative pathways, which
corresponds to differing numerical parameteriza-
tions of the BNs, and no parameterizations are
included here.

Both our BNs do not include important
background factors such as age, comorbidities
and vaccination status, that strongly influence
the probability of more serious COVID-19 out-
comes (and each other). Knowledge about their
role in the COVID-19 process was too limited:
although they are known to directly influence
some of our variables (e.g., vaccination reduces
the chance of initial infection), not all of their
direct influences are clear (e.g., vaccination also
decreases the chance of infection developing into
severe COVID-19, probably by influencing multi-
ple variables along these pathways). Fortunately,
these theoretical models are useful and valid
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without them. According to our experts’ assess-
ment, the distinctive COVID-19 causal structure
depicted is unlikely to change for any particu-
lar specification of background factors. Rather,
such factors will affect the parameters, e.g., how
strongly some variables influence others. When
adequate data is available to adjust these pa-
rameters depending on background factors, then
these factors can be appended by researchers to
the DAGs we present here as additional causes.3

Many variables involved in these processes
are latent, but their probability distributions
can be inferred from observed evidence, such as
clinical signs, symptoms and laboratory measure-
ments. Again, our BNs do not include all the
relevant possible evidence available now or in
the future, but our model is valid without them.
Structurally, they can be appended as additional
effects of some of the variables in our DAGs,
without changing the existing DAG connections.
As data becomes available (e.g., the false posi-
tive and false negative rates for a new test) then
their CPT parameters can be estimated.

Feedback loops, i.e., variables that influence
each other over time, are not included in these
acyclic models. Some are, however, noted in
the BN dictionary. Feedback loops, like back-
ground variables, are explicitly included in our
parameterized Progression DBN for modeling
longer-term COVID-19 trajectories. The details
will be presented in a future publication on this
model and associated practical tools.

3We implemented this procedure in the subsequent
development of our parameterized Progression DBN. We
conducted a survey and group elicitation session dedicated
to background factors, where we asked experts which of
the Progression variables (which do not include all the
theoretical variables here) would be affected.

3.4 Respiratory BN Description

Our Respiratory causal DAG (S1 Fig.) models
the physiological process underlying COVID-19
in the respiratory system, outlining multiple and
often concurrent pathways from the initial repli-
cation of the virus to key downstream complica-
tions such as multi-organ failure.

We color-coded the nodes: pink for the In-
fection process, yellow for more detailed mecha-
nisms relevant to the Pulmonary system, orange
for those Complications that mainly arise di-
rectly from the respiratory system, and cyan
for a selection of Signs and Symptoms included
only for illustrative purposes. “Virus” refers to
SARS-CoV-2.

References have been omitted from the fol-
lowing description, but can be found in the as-
sociated variable entries in the BN dictionary.

Infection process

After an exposure event, the virus can enter
the upper respiratory tract via the nasopharynx
(Virus enters upper respiratory tract) and may
replicate locally and cause inflammation at vari-
ous locations in the respiratory system, including
the epithelial cells of the upper respiratory tract
(Upper respiratory tract epithelial infection) and
the lower respiratory tract (Alveolar epithelial in-
fection). Direct infection involving the alveoli
without preceding or simultaneous infection in-
volving the upper respiratory tract is possible,
although it may be less likely.

The virus can first become established at
one site then spread to or re-establish in another.
For example, Infection of olfactory epithelium fol-
lowing epithelial infection in the upper respira-
tory tract has manifested as Ageusia and/or anos-
mia in some patients. The virus may spread from
epithelial to endothelial cells in alveoli, causing
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Alveolar endothelial infection. During all infection
processes, the virus may enter the bloodstream
(Viremia) and potentially spread to other parts
of the body (not included here).

Viral replication at any site may activate
Systemic immune and inflammatory response,
which often results in the release of pro- and/or
anti-inflammatory blood markers from immune-
related cells.

Pulmonary system

The primary function of the respiratory system
is to support the metabolic processes of the
body by taking in oxygen and removing car-
bon dioxide; this occurs through gas exchange
between air and blood at the delicate membranes
of the lung alveoli. Our Respiratory causal DAG
(S1 Fig.) models the initial pathophysiological
process which is initiated by SARS-CoV-2 infec-
tion in this system.

The most notable large-scale feature is the
three distinct pathways from the initial infec-
tion to involvement of the respiratory system
and then complications, although these path-
ways have interconnections and often contribute
concurrently.

Mechanical pathway: Alveolar and systemic
inflammation can damage pulmonary capillaries
causing the leakage of plasma (Pulmonary cap-
illary leakage), leading to filling of the alveoli
with exudate (Alveolar consolidation) that causes
stiffening and reduced mechanical lung function
(Reduced lung compliance), and results in Venti-
latory insufficiency. Alveolar epithelial infection
(and inflammation) can also directly reduce com-
pliance, but to a lesser extent. Another possible
cause of ventilatory insufficiency is a loss of mus-
cle mass (Muscle wasting) which can be directly

caused by catabolism as a result of the systemic
immune response and may be affected by a range
of background factors, such as nutritional status
and immobility, not shown in this model.

Gas exchange pathway: Pulmonary capillary
leakage and alveolar consolidation blocks the pas-
sage of air and reduces the alveolar surface area
available for gas exchange, and this mismatch
between ventilation and blood perfusion reduces
gas exchange in the affected parts of the lungs
(V/Q mismatch). At an extreme, local perfusion
may occur in the absence of ventilation with oxy-
genated air (Shunt). Alveolar infection causes
local Hypoxia which can trigger counteracting
Pulmonary vasoconstriction, an adaptive physio-
logical response which helps to match regional
perfusion to ventilation in the lungs and thus
reduces the extent of V/Q mismatch.

Coagulation pathway: Endothelial infection/
inflammation and possibly the presence of virus
in the blood (viremia) may trigger a systemic
immune and inflammatory response, and this
may result in an abnormally high propensity
to coagulation (Hypercoagulable state). This
may begin locally in the small vessels of the
lower airways (Pulmonary microthromboses), but
can later manifest as macroscopic thromboses
in larger vessels (Other thromboses). Both types
of thrombosis can block vessels in the lungs
(Pulmonary circulatory blockage) and lead to V/Q
mismatch, to which alveolar endothelial infec-
tion/inflammation can also directly contribute.

The direct consequences of impaired lung
function, due to any of these pathways, include
insufficient blood oxygenation (Hypoxemia) and
excessive blood carbon dioxide (Hypercapnia),
which can be measured using blood gas assays
or by pulse oximetry for oxygen. Furthermore,
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pulmonary vasoconstriction caused by hypoxia
and pulmonary circulatory obstruction caused by
thrombosis can produce raised blood pressure in
the pulmonary arteries (Pulmonary hypertension),
which interacts with the rest of the system in a
complicated way that is not explicitly described
here, but which can lead to Impaired cardiac
output.

Complications

The Respiratory model includes and summarizes
some key complications. The lungs interact
most closely with the heart; so in addition to
pulmonary hypertension, pulmonary thrombosis
can directly cause impaired cardiac output. Sys-
temic immune response and insufficient oxygen
in the blood (i.e., hypoxemia) can also lead to im-
paired cardiac output via Diminished myocardial
contractility.

Maintaining end organ tissue oxygenation
relies on sufficient oxygen transport via the
blood, so Hypoxia occurs where there is hypox-
emia or insufficient blood perfusion due to im-
paired cardiac output. Hypoxia can directly
cause organ failure, or Multi-organ failure if more
than one is affected (which is often the case).

Other pathways that can eventually lead to
multi-organ failure include virus in the blood-
stream causing direct viral injury to organs, and
an extreme systemic immune response (i.e., cy-
tokine storm).

Several mechanisms can trigger the body’s
sensor for insufficient oxygen, including reduced
compliance (i.e., a mechanical failure of the
lungs), hypoxemia, hypercapnia, and acido-
sis (both respiratory and metabolic). If the
body senses there is insufficient oxygen supply
(Perceived need for air), it demands more oxygen

intake, which manifests as Dyspnea, one of the
most important symptoms for COVID-19.

3.5 Respiratory BN Issues

We describe here four issues with our Respiratory
model that seem noteworthy, either in them-
selves or as illustrative examples. Some issues
involve modeling choices: even where the pro-
cess being represented is entirely agreed upon,
modeling sometimes involves choices about how
to represent it, and some of the options we chose
here may need clarification or appear contro-
versial. Some issues involve domain knowledge:
there are some aspects of COVID-19 that are
still not fully understood, about which there may
be competing hypotheses. So, some of the op-
tions we chose here may need revision in future
as further research resolves these controversies.

Upper respiratory tract mediation: One
theoretical controversy, related to the diagnostic
value of a dry cough, concerns three possible
respiratory pathways by which the virus enters
the body. Respiratory viruses are thought to
typically infect the upper respiratory tract first
(abbreviated as URT in the BN), then descend
by contiguous spread to the alveoli and (rarely)
via the bloodstream. COVID-19 may take this
normal path, or may bypass the upper respi-
ratory tract or the larger airways to infect the
endothelium of the lower airways more directly
via the ACE2 receptor, or less directly from the
upper respiratory tract via the bloodstream. The
data on this issue is currently limited so we have
included all three pathways in the model, but
our experts thought the typical path for respira-
tory viruses was less likely than the other two.
Future findings may support this opinion and
clarify their relative importance.
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Vascular lung damage feedback loops: A
high degree of vascular lung damage, caused by
microthromboses in lung capillaries, appears to
be a unique feature of COVID-19. Our Res-
piratory BN includes vascular involvement (in
the Coagulation pathway) primarily as a me-
diator for the initial phase of infection in the
lung, whereas our Complications BN places more
emphasis on subsequent feedback loops. Since
vascular involvement is complicated, we explored
it by eliciting a separate vascular model from
two of our experts, which is not presented here.
We were satisfied that the vascular elements
included in our Respiratory and Complications
models were sufficient for our purposes.

V/Q mismatch and Shunt seem logically re-
lated: It is good practice to avoid including
logically related terms in a causal model, i.e.,
where their semantics results in a logical depen-
dence. Such a connection results in probabilistic
dependence and an arc in the model, but it may
behave differently to a causal connection un-
der intervention, which can make it difficult to
adapt the model for decision support. Here we
included both Shunt and V/Q mismatch, even
though shunt is (by definition) a type of V/Q
mismatch, so the former logically entails the lat-
ter. This accurately represents the statements
elicited: our experts consistently used both these
terms and distinguished between them. They
had good reason: different interventions (such
as positive airway pressure for shunt and supple-
mentary oxygen for V/Q mismatch) are consid-
ered appropriate in each case. So, mirroring their
terminology faithfully captures expert knowledge
in a way they can agree is accurate, which in this
case includes the relevant causal connections to
interventions or tests.

Neurological explanation for “happy hy-
poxics”: We model the patient’s perceived need
for air separately from dyspnea (shortness of
breath). An unusual feature of COVID has been
patients who present as “happy hypoxics” (phys-
iologically hypoxic but without symptoms) [51].
One causal hypothesis is that neurological vi-
ral infection inhibits the perceived need for air.
However, at the time of modeling this connec-
tion was very speculative, so we decided not to
include this pathway, pending further medical
research.

3.6 Complications BN description

Our Complications causal DAG (S2 Fig.) models
the main physiological processes underlying the
progression of COVID-19 from the initial infec-
tion in the respiratory system to complications
in other organs. As before, the BN dictionary
notes some key feedback loops and provides ref-
erences for the mechanisms associated with each
variable mentioned below.

Overview

The model explicitly describes the status (dys-
function) of nine key organ systems, namely, res-
piratory, vascular, cardiac, liver, kidney, hema-
tologic, gastrointestinal, cortical and brainstem
dysfunctions. Among these, we choose to paint a
more fine-grained picture of the Vascular (nodes
in blue) and Cardiac (nodes in green) systems
due to their potential earlier involvement, as well
as more significant System-wide impact (nodes
in off-white) on Other organs (nodes in orange).

The full picture of the pulmonary system
is shown in the Respiratory model; here we re-
tained a few key Pulmonary variables (nodes
in yellow) and two major consequences of pul-
monary dysfunction due to their system-wide
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impact: Hypoxemia and Hypercapnia. Two Back-
ground factors (nodes in purple) are added only
for illustrative purposes.

Pulmonary system and direct viral impact

Despite its initial establishment in the pul-
monary system, infection with SARS-CoV-2 can
potentially drive the dysfunction of all listed
organ systems directly via two main mecha-
nisms, Direct viral injury and the Systemic im-
mune/inflammatory response, throughout the en-
tire process of the disease. In particular, they
both can affect the vascular system by reduc-
ing Vascular integrity and Vascular tone. Vascu-
lar integrity refers to the status of endothelial
structure compromising permeability, and the
vascular tone refers to the degree of constriction
of a blood vessel.

The systemic inflammatory response can
additionally increase the probability of Hyperco-
agulable state (as also depicted in the Respiratory
model) and Dehydration. For the cardiac system,
direct viral injury and the systemic inflamma-
tory response might both result in Acute cardiac
inflammation.

Vascular system

The vascular function (in this model) represents
the ability of blood vessels to ensure sufficient
blood circulation to meet the metabolic needs
and energy requirements of the organs. Reduced
vascular tone, Reduced vascular integrity and Hy-
percoagulable state are three major mechanisms
that contribute to vascular dysfunction.

The first two mechanisms can both lead
to Reduced functional intravascular volume, i.e.,
less blood is available to supply the organs be-
cause of the loss of vascular tone or the shift
of intravascular fluid to the interstitium (Fluid

shift to interstitium) due to altered permeability
(vascular integrity).

The hypercoagulable state may increase the
vascular resistance to flow of blood through af-
fected vessels. Abnormally low vascular resis-
tance is also problematic because it can lead to
insufficient pressures needed to ensure the dis-
tribution of blood and perfusion of the organs.

Cardiac system incl. Vascular interaction

The cardiac and vascular systems closely inter-
act. While vascular resistance and functional
intravascular volume predominately drive the
amount of blood available to supply organs, the
heart creates the forward movement of blood
needed to maintain supply to organs (organ per-
fusion). This is measured as Stroke volume (the
volume of blood ejected for each stroke) and
Cardiac output (the product of heart rate, not
shown, and stroke volume).

Acute cardiac inflammation and Ischemic car-
diac injury can both cause abrupt or gradual
deterioration in the cardiac output, either by
inducing Abnormal contractility of the heart (the
strength with which it pumps), or the synchronic-
ity and efficiency with which it pumps; the latter
can be manifest as abnormal heart rate or ar-
rhythmia.

Hypercoagulable state can lead to insuffi-
cient supply of blood more directly and acutely
by blocking the pathway to certain parts of body;
this can cause ischemic cardiac injury and pul-
monary hypertension in the heart and lungs,
respectively.

Other organ dysfunctions and failures

The ultimate need of organs is enough oxygen
and metabolites supplied through the blood cir-
culation to maintain their vital functions, we
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have therefore replaced Hypoxia from the Respira-
tory model with separate nodes that distinguish
between the supply of blood (as organ perfu-
sion) and the supply of oxygen and metabolites.
Reduced supply of blood will lead to reduced
supply of oxygen and metabolites, and the latter
will also be reduced if there is a lack of oxygen
in blood (hypoxemia) even if the supply of blood
is normal.

Reduced supply of oxygen and metabolites
can lead to dysfunction of any of the listed end-
organs, which often further disrupts the balance
of the whole system. For example, liver, kidney
and gut play important roles in maintaining the
balance of electrolytes, metabolites and acids.
The dysfunction of these organs would generate
feedback loops with other organs including pul-
monary, cardiac, and vascular systems via elec-
trolyte and metabolite imbalance and acidosis.
In this model, we summarize all such feedback
loops by presenting only their final deterioration
to particular organ failures.

Since vascular failure is ill defined, we in-
stead represent a key pathway in which a hy-
percoagulable state combined with possible liver,
kidney and hematologic dysfunctions lead to gen-
eral coagulopathy that can in turn contribute to
severe vascular dysfunction that may result in
the heart stopping and subsequent death. Crit-
ical failures of the brainstem, pulmonary, and
cardiac systems also rapidly lead to an inability
to support any of the vital organ functions and
are terminal events.

3.7 Complications BN issues

As we did for the Respiratory model, here
we describe two issues with our Complications

model that seem noteworthy, involving modeling
choices and/or domain knowledge.

Hypercoagulable state and Coagulability
seem logically related: The model includes
the Boolean variable Hypercoagulable state, and
also a more general variable Coagulability, which
has states to represent both hypercoagulability
and hypocoagulability. This reflects the way our
experts consistently preferred to describe the
system, and our primary goal in this model was
to capture expert knowledge in a way they can
agree is accurate. It may be efficient to focus
on a particular state, such as hypercoagulability,
where that has a higher frequency or specific
effects that other states do not. However, a
reasonable alternative would be to represent
Coagulability twice, at two different time steps,
with hypercoagulable as one possible state of
this variable—which is what we use in our
Progression DBN model.

Lung–acidosis feedback loop: The Compli-
cations model involves several important feed-
back loops. For example, as noted in the de-
scription, if the lungs are damaged and do not
adequately remove CO2, then the resulting aci-
dosis may damage the lungs themselves.

3.8 BN Dictionaries with References

All variables in these two BNs have both descrip-
tions and their relationships with their parent
nodes (supported by selected references) speci-
fied in their Dictionaries (S1 Table, S2 Table);
a few illustrative examples are given in Fig. 2.
Here we discuss some general features.

Definitions and databases: Chronic pulmon-
ary disease in Fig. 2 illustrates that many of
our variable descriptions are explicitly aligned
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with the case database, e.g., IDDO (https://www.

iddo.org/covid-19) or LEOSS (https://leoss.

net/), that we will use to parameterize both
our expert and application BN models. If other
researchers use slightly different descriptions and
datasets, these are unlikely to alter the relevant
causal connections, though different datasets in
particular may not be sufficiently detailed to
support each relation and, as is always the case,
will need appropriate processing.

Observable versus latent: Symptoms such
as Ageusia and/or anosmia or test results such
as Low oxygen saturation (SaO2) are classified
as directly observable (purple), and can often
be represented as a node influenced by (and
considered a noisy measurement of) a few un-
derlying variables, but does not itself influence
those underlying processes. Hence, additional
observations can usually be represented sim-
ply by adding another such variable without
changing the underlying causal structure. For
simplicity, we omit these variables here, with
the exception of Low oxygen saturation (SaO2)
in the Respiratory model. Most other variables
are classified as latent, even if, like Hypoxemia,
their state can be easily and reliably determined
via an observation like the SaO2 test.

Number of variable states: Many of our
variables, such as Ageusia and/or anosmia, are
Boolean: their only possible states are true or
false. The names of these variables generally
refer to the abnormal status of a mechanism,
since people more readily interpret abnormal
states as causes, particularly when they tend to
produce an abnormal result [52], and to make
the causal diagrams more easily digested in the
absence of visible states. Most of our other vari-
ables, such as Acidosis, are ordered categorical:

they have a finite number of discrete states in a
meaningful order (usually degrees of severity).
Continuous variables are often discretized during
a measurement process and/or during BN con-
struction to assist with probability estimation
and computation (although BNs can include
them). The states are not depicted in the causal
DAG, but may be inspected in the BN GeNIe
file.

Minimizing the state space: Many vari-
ables were mentioned during elicitation and
considered as candidates for inclusion, but ul-
timately excluded from the BN as unnecessary
complications that would only make the BN
harder to understand and parameterize. Several
such examples exist: Electrolyte imbalance was
soon replaced with the more specific Acidosis;
Acute cardiac injury and Type I/II myocardial
infarction were exchanged in preference for the
more general Ischemic cardiac injury and Acute
cardiac inflammation, along with other associated
changes; several concepts surrounding innate
versus adaptive immunity and finer distinctions
between immune and inflammatory response
were shelved in favor of a simple node Systemic
immune/inflam. response representing the overall
severity of the response. Similarly, we have
included sufficient states to adequately represent
the elicited causal relationships; adding further
states would not change the causal structure
significantly, but would add superfluous com-
plexity. For example, in the Respiratory model,
Hypercapnia and Acidosis are represented with
just two states, while Hypoxemia and Low oxygen
saturation are represented with three, due to
the conclusions of that model being particularly
sensitive to the latter nodes.

February 14, 2022 24/32

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 17, 2022. ; https://doi.org/10.1101/2022.02.14.22270925doi: medRxiv preprint 

https://www.iddo.org/covid-19
https://www.iddo.org/covid-19
https://leoss.net/
https://leoss.net/
https://doi.org/10.1101/2022.02.14.22270925
http://creativecommons.org/licenses/by-nc-nd/4.0/


Modeling COVID-19 disease processes by eliciting causal BNs Mascaro et al.

Qualitative vs. quantitative influence: In
principle, the relationships depicted in BNs can
be highly complex, so a causal DAG alone could
be hard to interpret without examining the de-
tails of the parameters. In practical applications
such as this one, however, the reader usually
has some basic domain knowledge which can
be augmented by brief descriptions such as the
ones we have given for the BN as a whole, and
in the Dictionaries for each variable’s parents.
It then becomes fairly easy to interpret the kind
of influence indicated by each of the arcs. For
example, Upper respiratory tract epithelial infec-
tion is shown as a parent of Alveolar epithelial
infection, which does not in itself indicate how
the parent affects the child (unless additional
markup is applied, such as plus and minus sym-
bols), but the natural and correct reading here
is that the former increases the probability of
the latter. Our BN files do include parameters
that roughly indicate a degree and direction of
influence. These were often suggested by our
experts during structure elicitation, and used
to assist structure validation, but they were not
formally elicited or estimated. Precise effects
may vary with the local context of application,
and precise parameters are often learned from
an appropriate local dataset.

4 Conclusion

4.1 Value of our method

Methodologically, we have demonstrated how to
implement best practice recommendations in a
systematic, expanded procedure for developing
BNs via expert elicitation. This can be emu-
lated, adapted and refined in future projects. It
is particularly well suited to projects modeling
emergent diseases, since (i) it uses large-scale

online expert elicitation to develop causal struc-
ture, rather than only using data or literature
directly, and (ii) it produces a family of well-
documented theoretical models that make the
expert knowledge freely available and that can be
updated as the knowledge base develops, rather
than only producing a few practical BN tools
that can be derived from, and supported by, the
hidden theoretical base.

Harnesses worldwide expertise when data
and literature are lacking

We demonstrated how to overcome the scarcity
of data, and the exceptional abundance and un-
reliability of research literature, by using groups
of volunteer, independent, specialist domain ex-
perts to filter, interpret and discuss the literature
findings and develop a reasonable current con-
sensus. We also utilized intermediary experts
to facilitate the exchange of knowledge from do-
main specialists to BN modelers and vice versa.

This approach is unusual, and the total num-
ber of expert hours required was exceptionally
high. We obtained these hours by recruiting a
large number of experts to contribute the time
they could spare, which was facilitated by our
extensive use of online meetings. In addition to
being COVID-safe, they had the logistical ad-
vantages that experts could meet briefly within
their busy schedules from their normal places of
work and in highly dispersed locations, without
the overhead of travel time or even needing to be
in the same country, which effectively broadened
our pool of available experts and the number of
elicitation sessions which were feasible. Online
tools also enabled all our elicitation exchanges
to be easily recorded.
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Adaptive evolution of theoretical models
that can be updated and used by others

We followed an unusual two-phase process of BN
development and publication. We aimed to first
elicit relatively detailed causal models that cap-
tured the experts’ understanding of the relevant
processes, including theoretically salient latent
variables that might not be useful in the specific,
practical BN tools we aimed to subsequently
develop. Furthermore, we are publishing here
the full details of, and documentation for, these
causal models. The goal is to make the elicited
expert knowledge freely available to others in
a form that can be readily updated as medi-
cal science progresses, and used for a variety of
purposes.

Since both the method and domain were
large, complex and novel, it was necessary to
subdivide, adapt and evolve both the elicitation
procedure and the models. We developed a sys-
tematic approach of refining and checking the
group output with one-on-one follow-up meetings
as necessary, with both group members and new,
independent recruits. By enlisting new domain
experts, we progressively validated and refined
our models in the iterative, incremental style
that is broadly recommended for BN building,
but is more logistically challenging and has rarely
been achieved when using expert elicitation.

Although we have specified our method in
clear logical sequences, we stress that in model
building, teams need to be flexible and in some
respects progress is unpredictable. Pre-workshop
questionnaires, which we abandoned, may prove
more suited to other topics, especially where
variables are known or easily identified before-
hand; an elicitation workshop may reveal that
substantial supplementary expertise or litera-
ture is required; it may become clear that models

should be split or merged; and even after experts
have signed off on a model it may need to be
abandoned if subsequent testing with numerical
datasets doesn’t support it.

There is also scope to refine our methods
further and test some variations in future appli-
cations. For example, group workshops followed
by one-on-one follow ups worked well, bringing
key information and model structures together
quickly (via the workshops) and then allowing
more cautious validation and refinement of those
structures in detail (via the follow ups). How-
ever, we now believe that conducting some one-
on-one interviews may be useful earlier in the
elicitation process. They may be useful prior to
questionnaires to increase the chance that ques-
tions handle problematic concepts well, or prior
to group workshops to provide better structure
for those sessions.

4.2 Value of our models

Representing current and future under-
standing

The two fully documented models presented here
are the first published causal DAGs of COVID-19
pathophysiology. Confidence in their quality is
underwritten by the rigorous process used to
create them. They can be used as a visual aid
to understanding and explaining the internal
causal processes and remaining controversies of
COVID-19, and are accessible to audiences with-
out specialist medical expertise.

Medical science is constantly progress-
ing, so our models must be refined accord-
ingly—possibly using the method we have pro-
vided here, whether employed by us or by others.
Fortunately, most of our work will not need to
be repeated, since elicited causal DAGs can be
readily updated (§1.1). This includes resolutions
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to the theoretical issues mentioned in §3.5 and
§3.7, as well as adding new background factors,
new diagnostic tests, and new interventions.

Feedback loops are not incorporated in these
DAGs, even though some are important for mod-
eling the progression of the disease over longer
time scales. We noted some of these loops in
the Dictionaries, and will discuss them in future
work, in conjunction with presenting our DBN
model for disease progression.

Guiding design of empirical studies

Causal DAGs are now widely recommended to in-
form the design and analysis of health-related ob-
servational studies [53]. DAGs help researchers
identify relevant factors, and more specifically,
factors that are potential mediators, confounders,
and sources of selection bias or measurement
error. So, we anticipate that our models will
serve as a guide to the design of cohort and
case-control studies of the effects of various de-
mographic and clinical risk factors, or of the
effects of various interventions, on one of several
clinical outcomes of interest for SARS-CoV-2
infection.

Causal DAGs have similar applications to
the design of experimental studies, even where
manipulation or randomization of the treatment
variables reduces confounding. So, we anticipate
that our models will also be useful to guide the
design of clinical trials of treatments for SARS-
CoV-2 infection.

Our DAGs can be used to identify important
non-treatment factors that may influence and
produce unwanted variation in the trial outcome,
and which should therefore be considered for
control by stratification or statistical adjustment
(regardless of whether treatment randomization
is employed) in order to increase the statistical

power of the experiment. Similarly, our DAGs
can be used to identify factors that might modify
the effect of treatments, which should therefore
be used to pre-specify patient subgroups.

By quantifying the pathways in our models
that connect proximal outcomes such as hypoxia
or biomarkers to key outcomes of interest such
as the need for mechanical ventilation or death,
it may be possible to design more statistically
efficient trials that use the former as plausible
surrogate endpoints for the latter. For example,
we may use the degree to which a treatment re-
duces hypoxia and specific biomarkers in a larger
group of patients as a more statistically power-
ful way of quantifying the expected reduction
in the need for mechanical ventilation, which
eventually occurs in a smaller subset of patients.

Developing and validating practical tools

Our models will be useful in the development
and/or validation of fully parameterized practi-
cal tools for causal reasoning and decision sup-
port. In addition to using them for individual
decision-making in a clinical setting, such tools
can also be used as an aid to policy decision-
making at a broader level, for example, by con-
sidering risks that apply to whole populations, or
the effect of non-targeted interventions applied
to readily identifiable patient subgroups.

Practical tools can be developed by any
researchers directly from our models, or from
future updated versions of them. This often in-
volves identifying which evidence (observable)
variables are included in the available datasets
that will be used for parameterization. The the-
oretical causal structure of our DAGs can then
be simplified or adapted to omit or merge some
latent variables, while trying to retain sufficient
latent structure to encode the expected eviden-

February 14, 2022 27/32

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 17, 2022. ; https://doi.org/10.1101/2022.02.14.22270925doi: medRxiv preprint 

https://doi.org/10.1101/2022.02.14.22270925
http://creativecommons.org/licenses/by-nc-nd/4.0/


Modeling COVID-19 disease processes by eliciting causal BNs Mascaro et al.

tial dependencies. These application models are
then parameterized using the datasets, and may
be further modified depending upon their perfor-
mance (e.g., using cross validation to assess their
mean predictive accuracy on various measures
for target variables given some evidence).

Decision and utility nodes may be added to
the theoretical or application models, to allow
causal BNs to formally model and predict the
consequences of therapeutic interventions, which
is essential for clinical reasoning and decision
making. As new data accrues on the impacts of
such interventions, the application models can
be re-parameterized to remain accurate.

Even if an application model is developed
independently of our models, the dependencies
this application model encodes between variables
(including interventions) can be checked against
our DAGs to identify any likely discrepancies.
Our models thus provide a ready-made and well
grounded source of theoretical validation for
other research teams using different modeling
methods.

In our ongoing work with these BN models,
we are already developing several of our own
tools for either standalone or integrated decision
support, parameterized using the IDDO sub-
set of the ISARIC database (https://www.iddo.

org/covid-19) and LEOSS databases (https:

//leoss.net/). We are tailoring two distinct
tools based on an applied version of the models
we have described here, one for in-hospital prog-
nosis and management of COVID-19 patients
and another to support resource management
and monitoring for confirmed cases. For the
in-hospital prognosis tool, available information
about the patient can be entered into the tool
by a clinician directly, or retrieved automatically
from a patient’s record. The clinician will then

receive information not just on the patient’s over-
all prognosis, but also on risks around organs,
body functions and treatment requirements over
the next 24 hours and the next 5 days. For re-
source management, the same application model
can be used, but integrated into existing, cen-
tralized, government monitoring systems. The
model would be used for confirmed cases being
monitored at home or in non-medical facilities
to quickly flag those at risk, allowing ministry
staff to make better informed and more fine-
grained decisions around utilization of hospital
and medical resources.

Supporting information

All the following supplementary files will remain
available on our OSF project page (https://

osf.io/bynr6/) in the versions referred to here,
accompanied by any subsequent versions of them
that we develop.

S1 Fig. Respiratory causal DAG v3.8. This
depicts the initial pathophysiological process of
SARS-CoV-2 in the respiratory system, outlin-
ing multiple and often concurrent pathways from
viral infection to key downstream complications
such as multi-organ failure. Some variables are
latent (i.e., not directly observable) but their
probability distributions can be inferred from
observable evidence such as clinical signs, symp-
toms and laboratory measurements, not all of
which are shown in the diagram. Many mech-
anisms described in the BN can be influenced
by background factors such as age, sex, and
comorbidities, which are also not shown. BNs
are acyclic, so feedback loops that may occur
as the disease progresses are not included in
the diagram. We divide the nodes into four
color-coded categories: Infection process (pink),
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Pulmonary details (yellow), resulting Complica-
tions (orange), and a few illustrative examples
of Signs and symptoms (cyan). Within the
pulmonary system, we distinguish (using back-
ground boxes) three pathways from Infection
to possible Complications: involving problems
with Mechanical operation of the lungs, Gas
exchange, and Coagulation.

S2 Fig. Complications causal DAG v3.8.
This depicts the main physiological processes
underlying the progression of COVID-19 from
the initial infection in the Pulmonary system
(nodes in yellow) to complications in other or-
gans. Vascular (nodes in blue) and Cardiac
(nodes in green) systems are modeled in more
detail due to their likely earlier involvement and
greater system-wide impact on Other Organs
(nodes in orange), i.e., liver, kidney, hemato-
logic, gastrointestinal, cortical and brainstem
dysfunction. Mechanisms that have a system-
wide impact are colored in off-white, and we
include two illustrative examples of background
factors (nodes in purple).

S1 Model. Respiratory BN v3.8 (indica-
tive parameters only). This BN file for the
Respiratory model may be viewed, manipulated
and edited in the GeNIe application (https:

//www.bayesfusion.com/genie/), which is free
for academic use, or reformatted for other BN
software. The network structure is depicted
in S1 Fig., and in addition the BN includes
states for each variable and parameters spec-
ifying their influence (which are only rough in-
dications based on our elicitation sessions and
literature reviews).

S2 Model. Complications BN v3.8 (indica-
tive parameters only). This BN file for the
Complications model may be viewed, manipu-

lated and edited in the GeNIe application (https:

//www.bayesfusion.com/genie/), which is free
for academic use, or reformatted for other BN
software. The network structure is depicted
in S2 Fig., and in addition the BN includes
states for each variable and parameters spec-
ifying their influence (which are only rough in-
dications based on our elicitation sessions and
literature reviews).

S1 Table. Respiratory BN dictionary v3.8.
This table for the Respiratory BN specifies, for
each variable, a description of the variable and
its relationships to its parent nodes, supported
by references to academic literature listed in a
bibliography. Relevant evidence, background
factors, and some feedback loops are noted even
if not included in the BN diagram.

S2 Table. Complications BN dictionary
v3.8. This table for the Complications BN spec-
ifies, for each variable, a description of the vari-
able and its relationships to its parent nodes,
supported by references to academic literature
listed in a bibliography. Relevant evidence, back-
ground factors, and some feedback loops are
noted even if not included in the BN diagram.

S3 Table. Members of COVID BN Ad-
visory Group v1.2. This table lists all the
members of our COVID BN Advisory Group
who opted to be individually acknowledged, with
their institutions and relevant qualifications.
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S1 Table. Respiratory BN dictionary v3.8 

Supplement prepared for Mascaro et al (2021); reuse freely with acknowledgement. 

ID Variable name Description Parent nodes Relationships with parent nodes 

1 
Virus enters 
upper respiratory 
tract (URT) 

Air filtration is an important component 

of nasopharyngeal function. SARS-CoV-

2 viral particles enter the upper 

respiratory tract and become trapped on 

mucosal surfaces. The amount of virus is 

dependent on exposure related factors, 

not included in the current model. 

None NA 

2 

Upper respiratory 
tract (URT) 
epithelial 
infection 

Viral tropism of upper respiratory tract 

epithelial cells, signaling an immune 

response and leading to an altered state 

of cells (local inflammation)  

Virus enters upper 
respiratory tract 

SARS-CoV-2 infection begins in the upper respiratory tract [1] causing 

infection of the epithelial cells in the upper respiratory tract. 

3 
Infection of 
olfactory 
epithelium  

Viral tropism of the olfactory epithelial 

cells, leading to impaired function 
Upper respiratory tract 
epithelial infection 

SARS-CoV-2 travels up the upper respiratory tract infecting the 

olfactory epithelium entering via the ACE2 receptors [2], [3]. 

4 
Ageusia and/or 
anosmia 

Loss of taste and/or smell 
Infection of supporting 
olfactory epithelium 

The sensation of loss of smell and/or taste occurs due infection of the 

cells supporting the olfactory neurons, the olfactory epithelial cells [2]. 

5 
Alveolar epithelial 
infection 

Viral tropism of the epithelial cells of the 

alveoli, inducing an immune response 

which leads to an altered cellular state 

(local inflammation). 

Virus enters upper 
respiratory tract, Upper 
respiratory tract epithelial 
infection 

The upper airways act as portals for SARS-CoV-2 entry and infection of 

the alveolar epithelium [4]. 

6 
Alveolar 
endothelial 
infection 

Viral tropism of the endothelial cells of 

the alveoli, inducing an immune 

response which causes to an altered 

cellular state (local inflammation). 

Alveolar epithelial infection 
SARS-CoV-2 transverse the alveolar epithelium to infect the alveolar 

endothelium [5]. 

7 Viremia 

Presence of SARS-CoV-2 in plasma 

allowing for systemic distribution of the 

virus. 

Upper respiratory tract 
epithelial infection, Alveolar 
epithelial infection, Alveolar 
endothelial infection 

In COVID-19, the barrier between the upper respiratory tract (upper 

respiratory tract epithelium, alveolar epithelium) and circulatory system 

(alveolar endothelium) may be compromised causing leakage of the 

virus into the blood [6]. 

8 

Systemic 
immune/ 
inflammatory 
(inflam.) response 

Activation of the innate and adaptive 

immune system due to detection of viral 

particles at one or more body site/s. This 

often results in the release of pro- and/or 

anti-inflammatory markers in blood by 

immune-related cells. 

Upper respiratory tract 
epithelial infection, Alveolar 
epithelial infection, Alveolar 
endothelial infection, Viremia 

Infection of the alveolar epithelial cells [7], alveolar endothelial cells 

[8], [9], the presence of viral material in the blood [10] simulate a 

systemic inflammatory immune response including the migration of 

inflammatory cells to the infected site and the release of cytokines and 

chemokines. 
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ID Variable name Description Parent nodes Relationships with parent nodes 

9 
Pulmonary 
capillary leakage 

Leakage of the plasma into the tissues 

from the pulmonary capillaries. 

Alveolar epithelial infection, 
Alveolar endothelial 
infection, Systemic immune/ 
inflam. response 

Infection of the alveolar units including the endothelial cells [5] and 

associated immune response [11], [12] damage cells resulting in 

increased vascular permeability and leakage of plasma into the tissues. 

10 Dry cough 

A reflex action intended to clear the 

airways due to irritation without the 

production of mucus or phlegm. 

Pulmonary capillary leakage, 
Upper respiratory tract 
epithelial infection 

The upper respiratory tract irritation can cause dry cough. Inflammation 

and irritation of the lower respiratory tract can also trigger cough. [13] 

11 Productive cough 

A reflex action intended to clear the 

airways due to irritation secondary to the 

production of mucus or phlegm. 

Alveolar epithelial infection, 
Pulmonary capillary leakage 

Productive cough is usually caused by the presence of secretion in the 

lower respiratory tract. [13], [14] 

12 
Alveolar 
consolidation 

Alveolar airspaces become filled with 

liquid, cells, tissues and other materials. 
Alveolar epithelial infection, 
Pulmonary capillary leakage. 

Plasma leaks from the capillaries and cells migrate to the alveolar 

airspaces in response to infection of the epithelial cells and increased 

permeability of the capillaries. Cell death further simulate the 

infiltration of inflammatory cells and a protein-rich exudate within the 

alveolar space [15], [16]. 

13 
Reduced lung 
compliance 

Reduced expansion (change in volume) 

of the lungs per unit increase in the trans-

pulmonary pressure (at equilibrium). 

Alveolar consolidation, 
Alveolar epithelial infection 

Infection of type II pneumocytes of the alveolar epithelium reduces 

surfactant secretion causing atelectasis of the lungs which, along with 

alveolar consolidation, reduces lung compliance [15] 

14 Muscle wasting 

Loss of respiratory skeletal muscle over 

time resulting in a functional respiratory 

impairment. 

Systemic immune/inflam. 
response 

Systemic inflammation and hypoxia (feedback loop not shown) drives 

muscle catabolism and decreases muscle protein synthesis that then 

causes muscle wasting and reduced mechanical capacity of the lungs 

[17]. The loss of skeletal muscle mass can also be caused by 

immobility, aging, malnutrition, medications (not shown in this model). 

Note that this a slower process that occur over weeks rather than days 

(compared with some other events described in the model). 

15 
Ventilatory 
insufficiency 

The collective chemical and mechanical 

factors preventing the adequate receipt of 

oxygen and elimination of carbon 

dioxide. 

Reduced lung compliance, 
Muscle wasting 

When alveolar consolidation reaches a certain magnitude, there is a 

decrease gas volume in the lungs (reduced compliance), and tidal 

volumes produced for a given inspiratory pressure preventing the 

exchange of oxygen and carbon dioxide [18]. 

16 
Pulmonary 
vasoconstriction 

Constriction of the vascular smooth 

muscles in response to low levels of 

alveolar oxygen or molecular promotors 

resulting in increased vascular resistance. 

Alveolar epithelial infection, 
Alveolar endothelial infection 

Alveolar epithelial and endothelial infection lead to local hypoxia 

(feedback loop not shown) that can cause vasoconstriction. Disruption 

in the Renin-Angiotensin System associated with endothelial infection 

via ACE2 receptors reduces expression of ACE2, which results in an 

increase of a number of molecules that promote pulmonary 

vasoconstriction [19]. 
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ID Variable name Description Parent nodes Relationships with parent nodes 

17 
Hypercoagulable 
state 

Increased propensity to coagulate due to 

a high level of clotting factors and 

molecules. 

Systemic immune/inflam. 
response, Alveolar 
endothelial infection, Viremia 

Presence of viral material in the blood [10], infection of endothelial 

cells [20] and the systemic immune/inflammatory response [21] activate 

the coagulation cascade (thrombin/ coagulation proteases, fibrinogen 

and platelets) inducing a hypercoagulable state as a physiological effort 

to repair damaged blood vessels and limit viral replication [22]. 

18 
Pulmonary 
microthrombosis 

Small fragments of coagulated blood in 

the pulmonary circulation. 
Hypercoagulable state 

Coagulation is initiated as a result of the hypercoagulable state and 

pulmonary endothelial injury resulting in disruption of the endothelial 

cell membrane manifesting a pulmonary microthrombi [23]. 

19 
Pulmonary 
circulatory 
blockage 

Blockage of pulmonary circulation. 

Alveolar endothelial 
infection, Pulmonary 
microthrombosis, Other 
thrombosis 

The formation of multiple microthrombi and/or larger thrombi cause 

emboli in the pulmonary arteries [24]. Alveolar inflammation and blood 

clots can lead to blockage of pulmonary circulation. 

20 
Pulmonary 
hypertension 

High blood pressure in the pulmonary 

arteries. 

Pulmonary circulatory 
blockage, Pulmonary 
vasoconstriction, Hypoxemia 

Vascular manifestations such as pulmonary and other thrombosis and 

sustained pulmonary vasoconstriction (which can be caused by 

hypoxemia) result in pulmonary hypertension due to persistently high 

blood pressure [21], [25]. 

21 V/Q mismatch 

A state of ventilation and perfusion 

whereby the gas exchange is inadequate 

to meet the needs to oxygen delivery and 

carbon dioxide removal. 

Pulmonary circulatory 
blockage, Pulmonary 
vasoconstriction, Pulmonary 
capillary leakage, Alveolar 
consolidation 

V/Q mismatch can be a result of obstruction of circulation in the 

pulmonary arteries due to pulmonary embolism impedes blood flow and 

gas exchange [26], [27]. Consolidation of the alveolar sacs due to 

inflammation and alveolar capillary leak reducing surface area for gas 

exchange [28]. Vasoconstriction helps to match regional perfusion to 

ventilation in the lungs. The failure of the hypoxic pulmonary 

vasoconstriction mechanism leads to persistent high pulmonary blood 

flow of poorly ventilated alveoli [29] which allows for carbon dioxide to 

be removed at a greater rate than the receipt of oxygen. 

22 Shunt 

An extreme state of V/Q mismatch 

where blood is shunted away from the 

functioning lung tissues. 

Pulmonary capillary leakage, 
Alveolar consolidation, V/Q 
mismatch 

Failure of pulmonary vasoconstriction allows for perfusion of blood to 

areas with inadequate ventilation due to a pulmonary capillary leakage 

and consolidation, worsening V/Q mismatch [30] 

23 Hypoxemia Reduced level of oxygen in the blood. 
V/Q mismatch, Shunt, 
Ventilatory insufficiency 

Oxygen levels in the blood are reduced due to inadequate gas exchange 

and perfusion and/or intrapulmonary shunting due to persistent 

pulmonary arterial blood flow to non-ventilated alveoli [28], [29] 

24 Hypercapnia 
Increased level of carbon dioxide in the 

blood. 

V/Q mismatch, Ventilatory 
insufficiency 

Carbon dioxide abnormally accumulates in the blood due to insufficient 

ventilation and inadequate gas exchange [28], [29]. 
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ID Variable name Description Parent nodes Relationships with parent nodes 

25 
Perceived need 
for air 

Sensation of need and potential need of 

more oxygen.  

Reduced lung compliance, 
Hypoxemia, Hypercapnia, 
Acidosis 

Sensation of insufficient respiration (oxygen) is detected due to low 

oxygen levels, high carbon dioxide levels and a low pH by peripheral 

and central chemoreceptors. Mechanostretch receptors in the muscles 

and lungs also provide sensory feedback as a result of reduced 

compliance and respiratory muscle weakness due to altered lung 

mechanics [29]. 

26 Other thrombosis 

Large thromboses including pulmonary 

arterial thrombosis and venous 

thrombosis. 

Hypercoagulable state 
Large clots are thrombotic complications resulting from a 

hypercoagulable state [31]. 

27 
Abnormal 
contractility 

In this model, refers to abnormal cardiac 

electrophysiology, resulting in an 

alteration in the rate and/or coordination 

of contractility. 

Systemic immune/inflam. 
response, Hypoxemia 

An hypoxic state and the immune and inflammatory response such as 

cytokine storm due to infection with COVID-19 can result in reduced 

function of the myocardial cells [21], [32]. 

28 
Reduced cardiac 
output 

A reduction in the amount of blood the 

heart pumps per unit time. 

Abnormal contractility, Other 
thrombosis, Pulmonary 
hypertension 

Cardiac output is a function of heart rate and stroke volume. 

Thrombosis can lead to reducing stroke volume by blocking blood flow, 

it may also trigger acute cardiac injury thus reduce contractility. 

Diminished myocardial contractility reduces the heart rate [21], [28] 

Pulmonary hypertension can impair cardiac output by making it hard for 

the heart to pump out blood due to increased vascular resistance and 

pulmonary pressures [33]. 

29 Hypoxia Reduced level of tissue oxygenation. 
Hypoxemia, Reduced 
cardiac output 

Low levels of oxygen in the blood and reduced blood flow prevents 

adequate oxygen delivery to the tissues [28] 

30 Acidosis Decrease in blood pH. Hypercapnia, Hypoxia 

Respiratory acidosis develops due to increased levels of carbon dioxide 

resulting in an increase in pH [34]. Hypoxia causes cells to undergo 

anaerobic metabolism resulting in an increased pH. 

31 Multiorgan failure 

Altered function of two or more organ 

systems and failure to maintain 

homeostasis. 

Hypoxia, Acidosis, Other 
thrombosis, Viremia, 
Systemic immune/inflam. 
response, Reduced cardiac 
output 

Systemic inflammatory response and viremia can impair organ function 

via cell damage. Hypoxia results in cell death and subsequent organ 

failure [35]. Acidosis causes significant disruption in homeostasis [28]. 

Both hypoxia and acidosis can be caused by reduced blood flow to 

organs due to impaired cardiac output and thrombosis. 

32 
Low oxygen 
saturation (SaO2) 

Low levels of oxygen in the circulation. Hypoxemia 
Hypoxemia can be demonstrated by low oxygen saturation measured by 

pulse oximetry [28].  

33 Dyspnea 
A subjective experience of breathing 

discomfort (shortness of breath). 
Perceived need for air 

Dyspnea occurs when an individual responds to the sensation of need 

for oxygen (e.g., hypoxemia) [29]. 

34 Death Mortality due to COVID-19 Multi-organ failure Multi-organ failure directly causes of death due to COVID-19 [36]. 
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S2 Table. Complications BN dictionary v3.8 

Supplement prepared for Mascaro et al (2021); reuse freely with acknowledgement. 

ID Variable name Description Parent nodes Relationships with parent nodes 

1 Vaccination 
Recipient of vaccination against SARS-

CoV-2. 
None NA 

2 
Chronic 
pulmonary 
disease 

Chronic pulmonary disease is recorded in 

medical history. 
None NA 

3 

Virus enters 
upper 
respiratory tract 
(URT) 

Air filtration is an important component of 

nasopharyngeal function. SARS-CoV-2 

viral particles enter the upper respiratory 

tract and become trapped on mucosal 

surfaces. The amount of virus is 

dependent on exposure related factors, not 

included in the current model.  

None NA 

4 
Respiratory 
infection 

Viral replication occurring at one or more 

sites of the body, primarily initiating in the 

nasopharynx. 

Virus enters upper respiratory 
tract, Upregulation of ACE2 
receptors 

SARS-CoV-2 enters human cells by binding with Angiotensin 

Converting Enzyme-2 (ACE-2), which is highly expressed in nasal 

epithelial cells [1].  

5 
Alveolar 
inflammation 

Viral tropism of the cells of the alveoli, 

inducing an immune response which 

causes to an altered cellular state (local 

inflammation). 

Respiratory infection, Systemic 
immune/ inflam. response 

The upper airways act as portals for SARS-CoV-2 entry and 

infection of the alveolar epithelium and endothelium [2], [3]. 

6 
Pulmonary 
dysfunction 

Impairment of the pulmonary system 

capacity to oxygenate blood and removing 

carbon dioxide (gas exchange). 

Direct viral injury, Systemic 
immune/ inflam. response, 
Alveolar inflammation, 
Hypercoagulable state 

Gas exchange can be impaired due to injury of alveolar cells, 

pulmonary capillary leakage (caused by both the virus and immune 

activities), pulmonary circulatory blockage (due to 

microthromboses), and ventilatory insufficiency (due to reduced 

compliance and effort). (See details in the respiratory model) 

7 
Pulmonary 
hypertension 

High blood pressure in vascular tree of the 

lung. 

Hypercoagulable state, 
Hypoxemia 

Elevated blood pressure in the lungs can be due to blood clots 

(microthromboses and pulmonary emboli), and vasoconstriction 

(triggered by hypoxemia) [4]–[6]. 

8 
Respiratory 
failure 

Inability of the lungs to perform gas-

exchange to oxygenate the blood and 

remove carbon dioxide. 

Pulmonary dysfunction, 
Pulmonary hypertension, 
brainstem dysfunction, Acidosis, 
Coma 

Hypoventilation (brain and coma) reduces amount of new air 

entering the lungs for gas exchange. Pulmonary dysfunction and 

hypertension diminish the blood flow through the lungs. Acidosis 

increases the amount of carbon dioxide that needs to be 

exchanged. [7] 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 17, 2022. ; https://doi.org/10.1101/2022.02.14.22270925doi: medRxiv preprint 

https://doi.org/10.1101/2022.02.14.22270925
http://creativecommons.org/licenses/by-nc-nd/4.0/


2/8 

ID Variable name Description Parent nodes Relationships with parent nodes 

9 
Respiration 
stops 

Cessation of ventilation. 
Cardiac failure, Brainstem failure, 
Severely disrupted cellular 
function, Respiratory failure 

Hypoxemia and hypercapnia impair respiratory muscle stimulation 

and activity progressive hypoventilation to cessation. Loss of 

respiratory effort follows brainstem failure. 

10 
Upregulation of 
ACE2 receptors 

Expression of Angiotensin-converting 

enzyme 2 (ACE2) – a protein attached to 

the cell membranes of cells located in the 

nasal epithelium, lungs, arteries, heart, 

kidney, and intestines.  

None NA 

11 

Systemic 
immune/ 
inflammatory 
(inflam.) 
response 

Activation of the innate and adaptive 

immune system due to detection of viral 

particles at one or more body site/s. This 

often results in the release of pro- and/or 

anti-inflammatory markers in blood by 

immune-related cells.  

Respiratory infection 
Viral replication stimulates systemic immune and inflammatory 

response [2], [3], [8].  

12 
Direct viral 
injury 

Injury to the cells caused by direct effects 

of viral infection. 
Respiratory infection, 
Upregulation of ACE2 receptors 

Larger quantities of virus cause more direct damage to cells. 

Upregulation of ACE2 receptors facilitates viral entry into cells, 

contributing to more direct viral injury [9], [10]. 

13 Hypoxemia Reduced levels of oxygen in blood. Pulmonary dysfunction 
Insufficient gas exchange can reduce blood oxygen levels [11], 

[12].  

14 Hypercapnia Increased carbon dioxide levels in blood. Pulmonary dysfunction 
Insufficient gas exchange can lead to accumulation of carbon 

dioxide in blood [11], [12].  

15 
Hyperdynamic 
circulation 

Increased cardiac output above baseline to 

maintain tissue perfusion, in response to 

inappropriately low peripheral vascular 

tone. 

Reduced vascular tone 
Hyperdynamic circulation can be triggered in response to 

inappropriately low peripheral vascular tone [13]. 

16 
Fluid shift to 
interstitium 

Fluid moves from the intravascular space 

(blood vessels) into the interstitial or 

“third” space. 

Reduced vascular integrity 

Loss of integrity increases the permeability of the vascular 

endothelial junction, allowing more fluid to shift into this space 

[14]. 

17 Dehydration Refers to a deficiency in total body water. 
Systemic immune/inflam. 
response 

Fever, generated as part of the systemic response, increase water 

losses [15].  

18 

Reduced 
functional 
intravascular 
volume 

A reduction in the effective volume of 

blood circulating in the body. This 

variable captures states that result in 

decreased intravascular volume due to 

losses and sates that increase the size of 

the vascular basin, resulting in a relative 

decrease in the intravascular volume. 

Dehydration, Fluid shift to 
interstitium, Reduced systemic 
vascular tone 

Dehydration and fluid shift result in a reduction in the volume of 

blood. Reduced vascular tone increases the volume of the vascular 

basin, reducing the functional volume. [14] 
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ID Variable name Description Parent nodes Relationships with parent nodes 

19 

Reduced organ 
perfusion 
(supply of 
blood) 

Organ perfusion has multiple definitions. 

In this model, it refers to the blood flow 

level to perfuse (end) organs such as the 

kidneys and brain. 

Hypercoagulable state, Reduced 
cardiac output, Vascular 
resistance 

Insufficient organ perfusion can be caused by not enough blood 

being pumped out by heart (reduced cardiac output), and 

thrombosis (hypercoagulable state) [14]. Decrease in vascular 

resistance causes reduced organ perfusion [16].  

20 
Reduced supply 
of oxygen and 
metabolites 

The reduced supply of oxygen and 

metabolites to meet the organ needs. 
Reduced organ perfusion (supply 
of blood), Hypoxemia 

Decreased perfusion reduces the amount of blood and the 

associated oxygen and metabolites delivered to an organ. 

Insufficient oxygen to meet the organ needs if there is lack of 

oxygen in blood (hypoxemia) regardless of blood supply. 

21 
Electrolyte and 
metabolites 
imbalance 

Abnormal concentrations of electrolytes 

(such as sodium, potassium, chloride, 

calcium, bicarbonate, phosphate, and 

magnesium 

Liver dysfunction, Kidney 
dysfunction, Gut dysfunction 

Abnormal renal function and gastrointestinal loses 

can adversely alter electrolyte balance through increased losses. 

Kidney dysfunction may impair the kidneys electrolyte balancing 

role. The liver recycles and excretes by-products of metabolism 

produced by other organs and tissues. These chemicals increase 

when the liver is impaired. [17]–[19] 

22 

Severe 
electrolytes and 
metabolites 
imbalance 

Severely abnormal concentrations of 

electrolytes. 

Electrolytes and metabolites 
imbalance, Liver failure, Kidney 
failure, Gut failure 

The kidney plays a central role in balancing electrolytes. Kidney 

failure impairs this homeostatic function. Similar to gut failure, 

kidney failure may also increase inappropriate losses of 

electrolytes. [17]–[19] 

23 Acidosis 

Increased acidity in the blood and other 

body tissues, altering blood oxygen 

carrying capacity and muscle function, 

including cardiac contractility. 

Hypercapnia, Reduced supply of 
oxygen and metabolites, Kidney 
dysfunction, Liver dysfunction, Gut 
dysfunction 

The kidneys, gut and respiratory system play critical roles in 

maintaining acid-base levels in the body. Dysfunction of these 

systems may result in increased loss of base (kidneys and gut) or 

impaired compensatory mechanisms. Carbon dioxide complexes 

with bicarbonate in blood to form acid. Low supply of oxygen and 

metabolites shifts metabolism to anaerobic, lactic acid production. 

The liver helps to clear this lactic acid. [20] 

24 Severe acidosis 

Acidosis in the blood and other body 

tissues exceeding physiological 

compensatory mechanisms. 

Acidosis, Kidney failure, Gut 
failure, Respiratory failure 

The kidneys, gut and respiratory system play critical roles in 

maintaining acid-base levels in the body. Dysfunction of these 

systems may result in increased loss of base or impaired 

compensatory mechanisms. [21] 

25 
Severely 
disrupted 
cellular function 

Cells unable to perform basic functions  
Severe electrolytes and 
metabolites imbalance, Severe 
acidosis 

Increased acid alters cell metabolism and disturb the cell function 

and structure. Severe electrolytes and metabolites imbalance 

negatively impairs cell pathways and metabolism. [22] 

26 Death Cessation biological functions  Heart stops 
Cessation of perfusion of organs contributing cell dysfunction and 

death.  

27 
Reduced 
vascular 
integrity 

Alterations in endothelial cell viability, 

structure and function, compromising 

permeability. 

Systemic immune/inflam. 
response, Direct viral injury 

Direct viral injury can damage and kill endothelial cells. The 

systemic immune response can cause similar damage when 

responding to infection [14].  
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ID Variable name Description Parent nodes Relationships with parent nodes 

28 
Hypercoagulable 
state 

Increased propensity to coagulate due to a 

high level of clotting factors and 

molecules. 

Systemic immune/inflam. 
response, Reduced vascular 
integrity, Alveolar inflammation 

Infection of endothelial cells and the systemic 

immune/inflammatory response activate the coagulation cascade 

(thrombin/ coagulation proteases, fibrinogen and platelets) 

inducing a hypercoagulable state as a physiological effort to repair 

damaged blood vessels and limit viral replication [4], [23]–[25]. 

29 
Reduced 
vascular tone 

Decrease in the degree of constriction of a 

blood vessel. 

Systemic immune response, 
Direct viral injury, Hypercapnia, 
Hypoxemia 

Endothelial cell death and dysfunction and chemical signals 

generated as part of the systemic response contribute to the 

dysregulation of tone [2]. Blood vessels are sensitive to changes in 

pCO2, the low pH values (hypercapnia) lead to relaxation of 

vascular smooth muscle [26], [27]. Hypoxemia disrupts the control 

of vascular tone [28]. 

30 
Vascular 
resistance 

Refers to increase or decrease of the 

resistance of vessel wall. 

Reduced vascular tone, Reduced 
functional intravascular volume, 
Hypercoagulable state 

Tone and vascular resistance can increase in response to reduced 

functional volume to maintain perfusion. Thrombosis can result in 

increased resistance by vessels and restricting downstream flow. 

[14] 

31 Coagulopathy 

Derangement of the balance of the 

coagulation cascade resulting in increased 

blood clotting, bleeding or a combination 

of both. 

Liver dysfunction, Marrow 
dysfunction, Kidney dysfunction, 
Hypercoagulable state 

The liver and bone marrow produce components used in clotting 

and organ dysfunction impairs their production. Uremia (kidney 

dysfunction) impairs platelet function and number.  

Dysfunctional systemic activation of the coagulation pathway can 

lead to fibrin clots, microvascular thrombosis and subsequent 

depletion of coagulation factors and platelets. [29]  

32 
Vascular 
dysfunction 

Refers to the ability of the vascular system 

to ensure sufficient end-organ perfusion.  
Coagulopathy, Electrolytes and 
metabolites imbalance, Acidosis 

This is a concept node that summarizes all possible causes of 

impaired vascular function (all vascular related nodes). 

33 
Ischemic cardiac 
injury 

Myocardial cell death due to insufficient 

oxygen to meet metabolic requirements. 

Hyperdynamic circulation, 
Hypercoagulable state, 
Hypoxemia 

The increased cardiac output observed in hyperdynamic circulation 

increases the metabolic requirements of myocardial cells. 

Thrombosis prevents blood from reaching the myocardial cells. 

Hypoxemia reduces the available oxygen in blood to meet 

metabolic requirements. [11], [30] 

34 
Acute cardiac 
inflammation 

Altered status of myocardial cells 

stimulated by chemical factors released by 

injured cells or immunological activities. 

Systemic immune/inflam. 
response, Direct viral injury 

Direct viral injury damages myocardial cells. Cell damage and 

death and systemic immune response stimulate local inflammation 

[31], [32].  

35 
Abnormal 
contractility 

In this model, refers to abnormal cardiac 

electrophysiology, resulting in an 

alteration in the rate and/or coordination 

of contractility. 

Ischemic cardiac injury, Acute 
cardiac inflammation 

Inflammation and ischemia damage and kill cells impeding the 

flow of electrical signaling and the coordination of contractility 

[32]. 
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36 
Reduced stroke 
volume 

The volume of blood ejected from the 

heart with each left ventricular cardiac 

muscle contraction event or heart beat is 

reduced.  

Reduced functional intravascular 
volume, Ischemic cardiac injury, 
Acute cardiac inflammation, 
Pulmonary hypertension, 
Hyperdynamic circulation, 
Abnormal contractility, Vascular 
resistance 

The stroke volume is dependent on the volume of blood filling the 

left ventricle before contracting. Reduced functional intravascular 

volume and pulmonary hypertension lower this volume of blood. 

Hyperdynamic circulation reduces time for filling to occur. 

Ischemic cardiac injury, acute cardiac inflammation and abnormal 

contractility impair weaken and disrupt myocardial ability to eject 

from the left ventricle. Increased vascular resistance leads to 

reduced stroke volume via diminished ventricular compliance. [32] 

37 
Reduced cardiac 
output 

A reduction in the amount of blood the 

heart pumps per unit time. 
Abnormal contractility, Reduced 
stroke volume 

Cardiac output is a function of heart rate and stroke volume. 

Reducing stroke volume decreases output. Abnormal contractility 

alters the heart rate [11]. 

38 Cardiac failure 
Inability to adjust cardiac output to meet 

body’s requirements. 

Reduced cardiac output, 
Electrolytes and metabolites 
imbalance, Acidosis 

Electrolytes and metabolites imbalance and acidosis impair the 

heart muscles contractility, reducing cardiac output. [33] 

39 Heart stops Cessation of cardiac contractility. Respiration stops 
Hypoxemia and poor perfusion cause cellular dysfunction. In the 

heart this leads to failure of electrical signaling and contractility.  

40 
Liver 
dysfunction 

The impaired ability of liver to perform 

multiple functional activities such as 

protein synthesis, metabolism of 

substrates, including drugs, and excretion 

of waste products including bile. 

Reduced supply of oxygen and 
metabolites, Systemic immune/ 
inflam. response, Direct viral injury 

Viral damage, inflammation and poor nutrient supply damage and 

impair cellular function in the liver [34], [35]. 

41 Liver failure 

The inability of the liver to perform its 

normal synthetic and metabolic functions, 

such as protein synthesis, metabolism of 

substrates including drugs and bile 

excretion. 

Liver dysfunction, Acidosis 

Progression of liver dysfunction, which may both result from and 

contributed to acidosis, may lead to synthetic and metabolic 

function failure [36].  

42 
Kidney 
dysfunction 

The impaired ability of kidney to control 

the body's fluid balance, maintain 

appropriate electrolyte concentration and 

eliminate substrates.  

Reduced supply of oxygen and 
metabolites, Systemic immune/ 
inflam. response, Direct viral injury 

Direct damage, inflammation and lack of nutrients impair cellular 

function in the kidney, altering water and electrolyte balance 

capacity [37], [38]. 

43 Kidney failure 

Kidney fails to participate in multiple 

functional activities such as to control the 

body's fluid balance, maintain appropriate 

electrolyte concentration and eliminate 

substrates. 

Kidney dysfunction, Electrolytes 
and metabolites imbalance, 
Acidosis 

Significant and widespread damage to the cells in the kidney 

resulting in loss of function. Acid-base, electrolytes and 

metabolites imbalance place competing strains on limited 

homeostasis capacity. [18]  

44 
Hematologic 
dysfunction 

The ability of bone marrow to produce 

blood cells.  

Reduced supply of oxygen and 
metabolites, Systemic immune/ 
inflam. response, Direct viral injury 

Viral damage, inflammation and poor nutrient supply damage and 

impair cellular function in the bone marrow [39].  
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45 
Hematologic 
failure 

Bone marrow fails to produce blood cells. 
Marrow dysfunction, Electrolytes 
and metabolites imbalance, 
Acidosis 

Significant and widespread damage to the cells in the bone marrow 

through lack of nutrients and direct damage [39]. 

46 Gut dysfunction 

The impaired ability of gut to participate 

in its usual functional activities such as the 

digestion, absorption of nutrients and the 

excretion of waste. 

Reduced supply of oxygen and 
metabolites, Systemic immune 
response, Direct viral injury 

Direct viral injury of enterocytes, systemic inflammation and 

hypoperfusion may impair gastrointestinal tract function [40]. 

47 Gut failure 

Gut fails to participate in its usual 

functional activities such as the digestion, 

absorption of nutrients and the excretion 

of waste. 

Gut dysfunction, Electrolytes and 
metabolites imbalance, Acidosis 

Severe gastrointestinal dysfunction may result in gut failure with 

reduction of gut function below the minimum necessary for 

absorption of macronutrients, water and electrolytes. The 

metabolic and electrolyte disturbances associated with systemic 

sepsis and inflammation may contribute to gut failure [41]. 

48 
Brainstem 
dysfunction 

The impaired ability of the brainstem to 

perform baseline function including 

mediating sensory and motor pathways 

between the spinal cord and the brain, 

controlling brainstem reflexes, the sleep-

wake cycle and autonomic control of the 

cardiocirculatory, respiratory, digestive 

and immune systems. 

Systemic immune/inflam. 
response, Reduced supply of 
oxygen and metabolites 

The brainstem is prone to vascular and inflammatory insults 

including compromised brainstem perfusion from impaired 

autoregulation of cerebral blood flow from sepsis; neuro-

inflammatory processes from excessive systemic inflammatory 

response; and metabolic disturbance including electrolyte 

disturbance and renal or liver failure [42]. 

49 
Brainstem 
failure 

The complete loss of brainstem function. 
Electrolytes and metabolites 
imbalance, Acidosis, Brainstem 
dysfunction 

Complete cessation of brainstem reflexes and functions with 

irreversible loss of consciousness and the capacity to breath, 

leading to cardiocirculatory and respiratory failure and death [42]. 

50 
Cortical brain 
dysfunction 

The impaired ability of the central nervous 

system to perform baseline function 

including normal level of consciousness 

and cognitive processes. 

Systemic immune response, 
Reduced supply of oxygen and 
metabolites 

Diffuse cerebral dysfunction due to the systemic inflammatory 

response to infection without direct central nervous system 

infection, mediated via excessive microglial activation, impaired 

cerebral perfusion, blood-brain-barrier dysfunction and altered 

neurotransmission. Severe hypoxemia and glucose dysregulation 

can potentiate dysfunction. [43] 

51 Coma 

A state of prolonged unresponsiveness 

with inability to respond appropriately to 

stimuli. 

Liver dysfunction, Electrolytes and 
metabolites imbalance, Acidosis, 
Cortical brain dysfunction 

Significant cortical brain dysfunction from sepsis, metabolic and 

electrolyte disturbance may result in coma [43]. Severe liver 

dysfunction may result in hyperammonemia with neuronal 

dysfunction and cerebral edema, with progression to coma [44].  
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S3 Table. Members of COVID BN Advisory Group v1.2 

The following members agreed to be acknowledged individually; others preferred to remain anonymous. We 

thank all members for participating in the elicitation sessions, including group workshops, one-on-one meetings, 

and surveys. This supplement was prepared for Mascaro et al (2021); reuse freely with acknowledgement. 
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Andrew McLean-

Tooke 
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AU 

Department of Laboratory Immunology, PathWest QEII Medical 

Centre, AU 

BSc, MBChB, MD, FRCP, 

FRCPath FRCPA, FRACP 

Ben Marais University of Sydney Institute for Infectious Diseases, AU MD, PhD 

Benjamin Tang Nepean Hospital, AU 
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PhD, FCICM, MBBS, MMed (Clin 

Epi) 
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MBBS (Hons), FRACP, DTM&H, 
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