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Abstract:  21 

Neuroinflammation has been implicated in multiple brain disorders but the extent and the 22 

magnitude of change in immune-related genes (IRGs) across distinct brain disorders has not been 23 

directly compared. We curated 1,275 IRGs and investigated their expression changes in 2,467 24 

postmortem brains of controls and patients with six major brain disorders, including 25 

schizophrenia (SCZ), bipolar disorder (BD), autism spectrum disorder (ASD), major depressive 26 

disorder (MDD), Alzheimer's disease (AD), and Parkinson's disease (PD). More than 60% of the 27 

IRGs had significantly altered expression in at least one of the six disorders. The differentially 28 

expressed immune-related genes (dIRGs) shared across disorders were mainly related to innate 29 

immunity. Moreover, we systematically evaluated sex, tissue, and cell type for immune 30 

alterations in different neuropsychiatric disorders. Co-expression networks revealed that 31 

neuroimmune systems interacted with neuronal-systems, both of which contribute to the risk of 32 

disorders. However, only a few genes with expression changes have also been identified as 33 

containing risk variants of genome-wide association studies. The transcriptome alterations at 34 

gene and network levels may clarify the immune-related pathophysiology and redefine 35 

neuropsychiatric and neurological disorders.  36 

One-Sentence Summary: The brain transcriptome of six neurological and psychiatric disorders 37 

showed signature changes in genes related to immunity. 38 

39 
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  40 

Introduction 41 

Multiple lines of evidence support the notion that the immune system is involved in major “brain 42 

disorders,” including psychiatric disorders such as schizophrenia (SCZ) (1), bipolar disorder 43 

(BD) (2), and major depressive disorder (MDD)(3),  brain development disorders such as autism 44 

spectrum disorder (ASD)(4), and  neurodegenerative diseases such as Alzheimer's disease 45 

(AD)(5), and Parkinson's disease (PD)(6). Patients with these brain diseases share deficits in 46 

cognition, blunted mood, restricted sociability and abnormal behavior to various degrees.  47 

Transcriptome studies have identified expression alterations of immune-related genes (IRGs) in 48 

postmortem brains of AD(7) , PD(8) , ASD(9) , SCZ(10-14) and BD(10) separately. Cross-49 

disorder transcriptomic studies further highlighted changes in IRGs(15, 16). At the protein level, 50 

several peripheral cytokines showed reproducible disease-specific changes in a meta-analysis 51 

(17). Since brain dysfunction is considered the major cause of these disorders, studying immune 52 

gene expression changes in patient brains may reveal mechanistic connections between immune 53 

system genes and brain dysfunction. Most previous studies were limited to the analysis of 54 

individual disorders. There is no comprehensive comparison of the pattern and extent of 55 

inflammation-related changes in terms of immune constructs (subnetworks), neuro-immune 56 

interaction, genetic contribution, and relationship between diseases. 57 

Neuroinflammation, an immune response taking place within the central nervous system (CNS), 58 

can be activated by psychological stress, aging, infection, trauma, ischemia, and toxins (18, 19). 59 

It is regulated by sex (20), tissue type (21) and genetics (22), many of which are known disease 60 

risk factors for both psychiatric and neurological diseases. The primary function of 61 

neuroinflammation is  to maintain brain homeostasis through protection (23) and repair (24). 62 
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Abnormal neuroinflammation activation could lead to dysregulation of mood (25), social 63 

behaviors (26), and cognitive abilities (27). Offspring who were fetuses when their mothers’ 64 

immune system was activated (MIA) showed dopaminergic hyperfunction (28), cognitive 65 

impairment (29), and behavioral abnormalities (30) as adults. Alternatively, acute and chronic 66 

neuroinflammation in adulthood can also alter cognition and behavior(31, 32). In animal models, 67 

both adult and developmental maternal immune activation in the periphery can lead to increases 68 

in pro-inflammatory cytokines in the brain , similar to what is found in humans with major 69 

mental illness(14, 33).  70 

Previous studies identified immune gene dysregulations in brains of patients with several major 71 

brain disorders. For example, Gandal et al.(16) found that up-regulated genes and isoforms in 72 

SCZ, BD, and ASD were enriched in pathways such as inflammatory response and response to 73 

cytokines. One brain co-expression module up-regulated specifically in MDD was enriched for 74 

genes of cytokine-cytokine interactions, and hormone activity pathways(15). The association of 75 

neurological diseases such as AD and PD with IRGs has also been reported(7, 34). These studies 76 

examined the changes of immune system as a whole without going into details of specific 77 

subnetworks, the disease signature, or genetic versus environmental contribution.   78 

We hypothesize that expression changes of specific subsets of IRGs constitute part of the 79 

transcriptome signatures that distinguishes diseases. Since tissue specificity, sex and genetics all 80 

could influence such transcriptome signatures, we analyzed their effects. Furthermore, we expect 81 

that neurological diseases and psychiatric disorders bear transcriptomic changes that may help to 82 

address how similar immunological mechanisms lead to distinct brain disorders. The current 83 

boundary between neurological diseases and psychiatric disorders is primarily the presence of 84 

known pathology. Neurological diseases have more robust histological changes while psychiatric 85 
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disorders have more subtle subcellular changes. Nonetheless, pathology evidence is always a 86 

subject to be revised with new research.  87 

To investigate immune-related signatures of transcriptome dysregulation in brains of six 88 

neurological and psychiatric disorders, we studied a selected list of 1,275 genes known to be 89 

associated with neuroinflammation and interrogated their expression across disorders. We 90 

collected and analyzed existing transcriptome data of 2,467 postmortem brain samples from 91 

donors with AD(35-37), ASD(38-41), BD(38, 42-45), MDD(44, 46), PD(47-50), SCZ(38, 42-45, 92 

51, 52) and healthy controls (CTL). We identified the differentially expressed IRGs shared 93 

across disorders or specific to each disorder, and their related coexpression modules (Fig. S1). 94 

These genes and their networks and pathways provided important insight into how immunity 95 

may contribute to the risk of these neurological and psychiatric disorders, with a potential to 96 

refine disease classification.  97 

  98 
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 99 

Results 100 

Expressions of immune-related genes were altered in brain disorders.  101 

We collected 1,789 IRGs from curated databases including Comparative Toxicogenomics 102 

Database(53), ImmPort(54), ImmunomeDB(55), InnateDB(56), ImmuneSigDB(57), Gene 103 

Ontology database with immune annotation(58), KEGG database with immune annotation(59), 104 

as well as additional literature reviews (60-62), followed by filtering based on expression profile 105 

in the human brains ( see Table. S1). We compiled 23 transcriptomic datasets of multiple brain 106 

disorders from the Gene Expression Omnibus (GEO), ArrayExpress, or from the authors directly 107 

(see Table. S1). In total, we collected transcriptome data of 2,467 postmortem brain samples 108 

from subjects with AD (n = 340 individuals), ASD (n = 103), BD (n = 188), MDD (n =87), PD 109 

(n = 97), SCZ (n = 474) and CTL (n = 1,178). We used the data sets derived from microarray 110 

(n=1007) as our discovery set and data sets derived from RNA-Seq as an independent replication 111 

set (Table. S1). Out of the 1,789 selected IRGs, 1,275 (71%) were detected across all the 112 

microarray data. The IRG curation procedure is summarized in a Preferred Reporting Items for 113 

Systematic Reviews and Meta-Analyses (PRISMA) workflow (Fig. S2). Table S2 lists the 1,275 114 

detected IRGs categorized by their reference databases and pathway annotation programs. 115 

After preprocessing the microarray data (methods and materials), we conducted a whole 116 

transcriptome differential expression analysis for each disorder using a linear mixed-effects 117 

model that accounted for sample overlap across studies. Filtering the differentially expressed 118 

genes (DEGs, FDR<0.05) for the 1,275 IRGs, we identified dIRGs in each of the six brain 119 

disorders (number of dIRGs in descending order of transcript identified as differentially 120 
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expressed; AD: 638, ASD: 275, SCZ: 220, PD: 97, BD: 58, MDD: 27, Fig. 1A). We used a 121 

conservative genome-wide threshold instead of study-wide threshold for significance so that we 122 

could further evaluate the relative enrichment of IRGs in all the DEGs under the same 123 

significance criteria. The dIRGs were significantly over-represented in the DEGs across 124 

disorders (OR>2, adjust.p < 0.05, Table S3). The enrichment of IRGs in the DEGs supports the 125 

reported immune gene dysfunction in transcriptome of these six disorders, highlighting its 126 

importance.  127 

To replicate the findings, we used the independent RNA-seq datasets and processed data as 128 

detailed in the Methods and Materials. We observed a significant overlap of dIRGs between 129 

discovery and replicate datasets (Table S4). AD data achieved the highest replication rate (56%) 130 

while BD achieved the lowest (19%). More importantly, we observed high concordance of effect 131 

sizes of case-control fold change between the microarray and RNA-seq results for all IRGs (R2 > 132 

0.66, p.value < 2.2E-16, Fig. 1B, Table S4).  133 

The changes of IRGs clustered by disorders and sex- and tissue-specific effects. 134 

We used hierarchical clustering based on the correlations of the fold changes of all the detected 135 

IRGs among different brain disorders, resulting in two distinct groups, one containing all 136 

psychiatric disorders (BD, SCZ, and MDD) and another containing mainly neurological 137 

disorders (ASD, AD, and PD) (Fig. 2A, B).  The fold changes of IRGs were highly correlated 138 

between SCZ and BD (Spearman’s r = 0.75, p.value <0.001). When comparing the groups of 139 

psychiatric disorders and neurological disorders, we found a higher effect size (larger fold- 140 

change) in the expression of inflammatory related genes in neurological disorders than in 141 

psychiatric disorders (t-test p.value < 2.2E-16, Fig. S4). RNA-seq data replicated the observation 142 
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(Fig. S4) that larger immune-related dysregulation was present in neurological disorders than in 143 

psychiatric disorders.  144 

To test effects of sex on immune-related dysregulation, we recomputed dIRGs with the samples 145 

partitioned by sex. Comparing the effect sizes of the IRGs between male and female subgroups, 146 

we found significant sex differences in ASD and MDD (Fig. 2C, Table. S5; pASD = 0.003; pMDD 147 

= 4E-6), but not in other diseases. The IRGs showed larger magnitude of change in male ASD 148 

than in female ASD relative to corresponding controls, while the situation was the opposite for 149 

MDD with females having larger changes than males.  150 

To investigate tissue specificity of  IRG dysregulation, or more specifically, whether  alterations 151 

of IRGs in the brain can be reflected in blood, we calculated the changes of IRGs in blood 152 

datasets of these six disorders (Table S1). The correlation of IRGs’ effect size showed negligible 153 

concordance (R2 from -0.24 to 0.11, P-value>0.05, Fig. S5), indicating that the majority of the 154 

changes of IRGs in the blood and brain do not overlap, implying distinct origins and/or cellular 155 

mechanisms. However, we still identified a few dIRGs showing consistent changes in brain and 156 

blood (Table S6), such as S100A8 in SCZ. These genes may serve as candidates of disease 157 

peripheral biomarkers, which warrants a thorough investigation.      158 

Innate immune genes are the most shared changes across all brain disorders.  159 

Comparing the overlap of dIRGs across disorders, 26% of IRGs were dIRGs in two or more 160 

disorders (shared dIRGs, Fig. 3 A, B). While we found alterations of both adaptive and innate 161 

IRGs in each disease (Fig. S6, Table S3),  68% of the shared dIRGs were classified as genes 162 

involving innate immune functions.  To avoid bias caused by the number of IRGs in the two 163 

categories, we further calculated the enrichment of dIRG and found that they were significantly 164 
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enriched in only innate IRGs (Fisher Exact Test OR > 2, qvalue <0.05). In the RNA-seq replicate 165 

data, there was a better replication rates in innate IRGs than in adaptive IRGs (Fig. S6, Table S4).  166 

The two most shared dIRGs are Corticotropin-releasing hormone (CRH) and Tachykinin 167 

Precursor 1 (TAC1), which were differentially expressed in five of the six diseases (Fig. 2D).  168 

They both involve innate immunity according to the databases we used and literature (53-56, 58, 169 

59). CRH was downregulated in five of the six disorders; the exception was PD. CRH can 170 

regulate innate immune activation with neurotensin (NT), stimulating mast cells, endothelia, and 171 

microglia (57). TAC1 was down-regulated in five of the six disorders, the exception being MDD. 172 

TAC1 encodes four products of substance P, which can alter the immune functions of activated 173 

microglia and astrocytes (63). Independent RNA-seq data confirmed both CRH and TAC1 174 

findings.  These transcripts are also neuromodulators and have action on neurons so they have 175 

roles in addition to immune functions. 176 

To identify specific immune pathways that dIRGs are involved in, we further tested the 177 

enrichment of the dIRGs in specific immune functions. We found six dIRGs-enriched pathways 178 

shared by all six disorders. "Regulation of innate immune response (GO:0045088)" was one of 179 

the six pathways (q.value< 0.05, Table. S7, Fig. 3E). When a subset of the innate immune genes 180 

as defined by the GO database was used as input instead of all IRGs, hierarchical clustering 181 

resulted in the same clusters of psychiatric vs. neurological diseases (Fig. S7). This indicated that 182 

even though immune dysfunction is widespread in the six disorders, signature patterns of the 183 

subset innate immune genes are sufficient to differentiate neurological from psychiatric 184 

disorders.  185 

Immune-related coexpression modules (IRMs) shared by diseases were related to brain 186 

development and aging.  187 
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To determine if neuroimmunity works in silos or cooperates with other functions, we used robust 188 

weighted gene coexpression network analysis (rWGCNA)(64) to construct immune-related co-189 

expression networks on the whole transcriptome. We identified 16 brain co-expression networks 190 

shared across disorders (Fig. 4A, Fig. S7) after adjusting the batch covariate. Three of the 16 191 

networks were enriched for IRGs and were called immune-related co-expression modules (Fig. 192 

4B, C; IRM4, IRG enrichment q.value = 2.15E-2; IRM12, q.value = 1.13E-04; IRM14, q.value = 193 

9.29E-12). These three IRMs were significantly associated with at least two disorders in the 194 

same direction (Fig. 4D). The Eigengene (hub gene) of IRM4 was negatively associated with all 195 

disorders (Fig. 4D).  IRM4 was enriched for neuron markers (Fig. 4E). Two of the modules 196 

(IRM12 and IRM14) were enriched with microglia and endothelial marker genes (Fig. 4E), 197 

respectively, and were both positively associated with IRGs in AD and ASD (Fig. 4D). AD had 198 

the strongest association with all three IRMs (Fig. 4D). The endothelial-related IRM14 and 199 

neuron-related IRM4 were both enriched for tissue development (q.value= 6.69E-5, Fig. 4F, 200 

Table S8) and neuron development (q.value= 6.49E-11, Fig. 4F, Table S8).  Additionally, the 201 

IRM4 was significantly enriched for late fetal cortical markers (q.value= 1.921E-07, Table. S8).  202 

We also assessed the influence of age on the IRMs and found that the age trajectories of these 203 

IRMs in cases had distinct patterns across disorders (Fig. S7D), which further illustrated the 204 

disease-specific temporal dynamics of these IRMs. For example, the neuron-related IRM-4 genes 205 

are continuously up-regulated in AD, with inverted U-shaped curve peaking at age ～80, while 206 

PD shows a continuous downward trend in the same age range.  207 

Disease-specific IRMs in AD, ASD, and PD imply distinct biological processes.  208 
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We also searched for disease-specific IRMs for each disorder. We used rWGCNA to construct 209 

brain co-expression networks in the brains of each disorder and of controls, then compared them 210 

against each other to identify disease-specific IRMs (Fig.5A). Based on preservation results of 211 

one disease versus controls and against all other diseases (Fig. 5B, z-summary < 10), as well as 212 

immune gene enrichment results (Table S9; enrichment q.value < 0.05), we identified six 213 

disease-specific IRMs, including one for AD, three for ASD, and two for PD. We did not detect 214 

disease-specific IRMs for SCZ, BD, or MDD, which are considered psychiatric disorders.  215 

The disease-specific IRMs were enriched for various functions (Fig. 5C, Table S9). The AD-216 

specific IRM was enriched for neuron part (GO:0097458, q.value= 4.57E-4) and presynapse 217 

(GO:0098793, q.value = 4.57E-4). The PD-specific IRM was enriched for positive regulation of 218 

angiogenesis (GO:0045766, q.value = 9.65E-06) and secretory granule (GO:0030141, q.value= 219 

6.31E-06). The ASD-specific IRMs were enriched for developmental biological processes such 220 

as negative regulation of cell proliferation (GO:0008285, q.value= 1.21E-4) and growth factor 221 

receptor binding (GO:0070851, q.value = 1.27E-02). 222 

Common SNPs have a modest contribution to neuroimmune changes.  223 

We used two different approaches to further explore whether the altered IRGs in brain disorders 224 

were influenced by common SNPs.We examined sharing between dIRGs and disease GWAS 225 

signal genes and the correlation relationships between pairs of disorders for their changes of 226 

dIRGs and disease heritability calculated by GWAS.    227 

We tested whether dIRGs, dIRG-enriched pathways, and IRMs were enriched for disease GWAS 228 

signals. We found a few dIRGs overlapping with genes that are located in GWAS loci for all six 229 

diseases, with AD having the largest number of genes (35 genes), and SCZ the second-largest 230 
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(15 genes), including IL6R in AD, C4A in the SCZ. (Table S10). A few dIRG-related pathways 231 

were significantly enriched in AD and SCZ GWAS signals and survived multiple testing 232 

corrections (Table S10). Among them, the amyloid precursor protein catabolic process was 233 

enriched in AD GWAS signals (q.value= 3.9E-7). The leukocyte apoptotic process was enriched 234 

in SCZ GWAS signals (q.value= 0.03). Only IRM-4 was enriched in SCZ GWAS signals (Table 235 

S10).  236 

When two disorders have similar genetic risks, will they have similar changes of IRGs? In other 237 

words, is the genetic similarity between two disorders reflected by the similarity of expression 238 

changes of IRGs? We assessed the relationship between the effect-size correlation of dIRGs and 239 

the genetic correlation from the same pairs of disorders(15). The genetic correlation was 240 

obtained from the Brainstorm Consortium(65). Putting all the pairs of disorders together, we 241 

obtained a correlation of these two kinds of correlations, modest correlation by r value, but 242 

insignificant by p value (Fig. S8, Pearson' r = 0.46, p.value = 0.08). Though there was a small 243 

sample size of pairs of disorders (N=15) in this analysis, the analysis suggested that genetic 244 

factors had a minor contribution to general brain disorders through affecting the IRGs. This 245 

analysis captures collective contributions from all six disorders and cannot resolve individual 246 

contributions.  247 

  248 
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Discussion  249 

Our study focused on the neuroimmune changes represented by gene expression in multiple 250 

neuropsychiatric and neurological disorders. We used transcriptome data of more than 2,000 251 

brains from healthy controls and patients of six major brain disorders. By studying individual 252 

IRGs and related pathways and coexpression networks, we found that brain disorders have both 253 

shared and disease-specific immune-related changes. In addition, we evaluated the effects of 254 

biological factors such as tissue, sex, age, and cell type. We came up with four major findings of 255 

the neuroimmune system in brains of different neuropsychiatric disorders: 1) the innate immune 256 

system carries more alterations than the adaptive immune systems in the six disorders; 2) the 257 

altered immune systems interact with other biological pathways and networks contributing to the 258 

risk of disorders; 3) common SNPs have a limited contribution to immune-related disease risks, 259 

suggesting theenvironmental contribution may be substantial; and 4) the expression profiles of 260 

dIRGs, particularly that of innate immune genes, group neurodevelopment disorder ASD with 261 

neurological diseases (AD and PD) instead of with psychiatric disorders (BD, MDD, and SCZ) 262 

Dysregulation of the innate immune system is a common denominator for all six brain disorders. 263 

We found that more than half of the shared dIRGs and dIRG-enriched pathways were related to 264 

the innate immune system. The two most shared dIRGs, TAC1 and CRH, have known effects on 265 

innate immune activation(66, 67). Both genes were downregulated in patient brains. 266 

Additionally, TLR1/2 mediates microglial activity, which could contribute to neuronal death 267 

through the release of inflammatory mediators(68). Furthermore, innate immunity is critical in 268 

maintaining homeostasis in the brain. For example, the innate immune system has been reported 269 

to function in the CNS's resilience(69) and in synaptic pruning throughout brain growth(70). 270 
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When homeostasis is disrupted, the abnormal innate immunity may impact a wide range of brain 271 

functions(71). 272 

Concerning tissue specificity, our results indicated that there are huge differences in immune   273 

transcriptomes between blood and brain in patients with brain disorders, highlighting the 274 

importance of studying immune systems in brain. This inconsistency can be caused by the blood-275 

brain barrier, which separates the CNS from the peripheral circulation. CNS and blood have 276 

independent responses to immune-related insults(72).  277 

Microglia are highlighted in the immune changes in brains of AD and ASD in this study. 278 

Microglia is the major cell type participating in the brain’s immune system. Our analyses showed 279 

that the IRM12 coexpression module was enriched for microglia genes and associated with 280 

inflammatory transcriptional change in AD and ASD but not the other four diseases. Does this 281 

suggest that microglial dysfunction contributes more to AD and ASD than to the other disorders? 282 

The PsychENCODE study showed the microglial module upregulated in ASD and 283 

downregulated in SCZ and BD(16), but the fold changes in SCZ and BD were much smaller than 284 

that in ASD (Fig 7.B in original paper(16)).  Larger sample size may be needed to detect 285 

microglia contribution to other disorders such as SCZ and BD.  286 

Sex contributes to the disease-related immune changes too. Our results revealed sex-bias 287 

dysregulation of IRGs in brains of ASD and MDD but not in other disorders. These two 288 

disorders are known to have sex differences in prevalence(73-75). Previous studies also have 289 

suggested that sex differences in stress-related neuroinflammation might account for the overall 290 

sex bias in stress-linked psychiatric disorders, including female bias in MDD(76) and male bias 291 

in ASD(77). We did not observe sex-biased IRGs in other diseases with known sex-biased 292 
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prevalence, such as SCZ and AD suggesting that sex differences in SCZ and AD may not 293 

involve IRG changes.  294 

The dIRGs are expected to be enriched for immune-related pathways since we selected genes 295 

from immune systems. Therefore, it is more interesting to learn how the neuroimmune system 296 

cooperates with other brain-related biological processes to influence the disease risk. Our 297 

coexpression network analyses suggested that IRGs' changes in patients’ brains were involved in 298 

developmental processes. Three brain universal IRMs were also enriched with functions related 299 

to development in neurons, microglia, and endothelia. Among them, IRM4 is of particular 300 

interest for connecting neuron, immune system, and development to all six disorders tested in 301 

this study. The contribution of neuro-immune-development to SCZ and ASD is well accepted. 302 

Previous studies discovered the role of the immune system in the development of the CNS(69, 78, 303 

79). Abnormal immune activation during brain development can cause behavioral and 304 

neurochemical abnormalities relevant to disorders(80-84). One additional disease-specific 305 

module, ASD-IRM6, is also associated with development, further implicating the importance of 306 

development in ASD risk. The connections between AD, PD, and neuro-immune-development 307 

through IRM4 remain unclear, as they are late-onset neurodegenerative diseases. The unique age 308 

trajectories of these IRM4 in AD patients suggested aging in the immune system was involved 309 

for the same set of genes.  310 

Our results showed how immune system dysregulation may influence gene expression of the 311 

networked other non-immune genes and contribute to the pathology of these diseases specifically. 312 

Six disease-specific IRMs were detected in AD, ASD, and PD, showing that several functions of 313 

the immune-related networks also involved in corresponding disorders such as presynaptic-314 

related AD-IRM and Growth factor receptors-related ASD-IRMs. Presynaptic proteins are 315 
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essential for synaptic function and are related to cognitive impairments in AD(85). Growth factor 316 

receptors(86) and N-acetylcysteine(87) are involved in the etiology of ASD. Secretogranin may 317 

be a pivotal component of the neuroendocrine pathway and play an essential role in neuronal 318 

communication and neurotransmitter release in PD (88). Furthermore, the immune system has 319 

been found to regulate presynaptic proteins(89), EGFR(90), and secretogranin(88). Our results 320 

indicate that alterations of the immune network can be disease-specific, affecting specific 321 

coexpression networks and driving distinct risk of each disorder.   322 

Debate exists over whether neuroinflammatory alterations in disorders are affected by common 323 

SNPs(91, 92) or by the environment(93, 94). This study offered support for both arguments. On 324 

the genetic risk side, we did not detect statistically significant correlation between overall genetic 325 

risk and IRG changes between pairs of disorders. This IRG-subset result is in contrast with the 326 

results on whole transcriptome(15) where a significant correlation with Spearman’s ρ =0.79 was 327 

reported. Such difference suggests the environmental contributions to the immune-related risks 328 

in these disorders. dIRGs were not significantly enriched in any disease GWAS signals. A 329 

number of dIRGs are also GWAS signals such as IL6R in AD and C4A in SCZ. IL6R has been 330 

identified as a strong candidate gene of AD with both genetic and transcriptome supports(95). 331 

C4A is a well-known risk gene which was identified by SCZ GWAS and is up-regulated in SCZ 332 

(effect size=0.2, qvalue<0.05). Several dIRG-related pathways and coexpression modules were 333 

enriched in GWAS signals of neurological diseases AD and SCZ, respectively. Enrichment for 334 

AD was particularly strong, involving the amyloid precursor protein catabolic process in AD. A 335 

previous study identified this pathway, which is under genetic control in AD(96). The genetic 336 

connection with immunity detected here is certainly indirect. We did not detect any significant 337 

enrichment of dIRG in GWASs of ASD, PD, BD, and MDD. The genetic contribution to 338 

neuroinflammation may be more relevant to AD and SCZ than the other four disorders. Our 339 
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interpretation is that the immune contributions to the risks of all these disorders were mostly 340 

related to the environment.  341 

The environmental contribution to neuropsychiatric disease risk is strongly implicated through 342 

immunity. Our data suggests that these brain diseases are related to stress, an environmental 343 

factor. CRH is one of the most shared dIRGs across disorders. CRH has the core function of 344 

controlling the release of stress hormones. Studies have reported the relationship between 345 

immunity and stress(97, 98) and showed patients with brain disorders had decreased cortisol 346 

responses to social stressors(77). BD-specific immune-related pathway is reflected in genes 347 

changed in a mouse stress model, further emphasizing the contribution of stress to BD.  348 

To our surprise, neurodevelopment disorder ASD was grouped with neurological diseases (AD 349 

and PD) instead of with psychiatric disorders (BD, MDD, and SCZ) according to the changes of 350 

IRGs, particularly innate immune genes. Hierarchical clustering analysis based on the effect size 351 

of IRGs placed the presumed psychiatric disorder ASD with other neurological diseases.  352 

Previous studies have reported that ASD patients exhibited more neurological and 353 

immunological problems(99-102) compared to healthy people and to other brain disorders. As 354 

more etiologies are uncovered, the traditional classification of these diseases is increasingly 355 

challenged(93). Furthermore, we found that dIRGs change more in neurological diseases (AD, 356 

PD, and ASD) than in the psychiatric disorders (BD, SCZ, and MDD). It suggested that 357 

neuroimmunity dysregulation is more severe in neurological diseases than in psychiatric 358 

disorders, led by AD. Neuroimmunity may help to redefine disease classification in the future.  359 

Our study has several limitations. It should be noted that the disease-specific results in our study 360 

could be influenced by statistical power and sample heterogeneity. More data will be needed to 361 

develop the disease-specific signatures of neuropsychiatric disorders in the future. The difference 362 
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in numbers of dIRG among disorders might be related to the sample size of each disease dataset. 363 

However, the sample size cannot explain all the differences. BD (n=188) has more samples than 364 

ASD (n=103) and PD (n=97), but has fewer dIRGs, suggesting BD involves fewer immune 365 

changes in the brain than most other disorders. In contrast, AD has possibly the most inflamed 366 

brain with  more dIRGs than all other disorders, but its sample size is smaller than SCZ. We used 367 

transcriptome data from bulk tissues, which did not reflect the expression of immune genes in 368 

specific brain cell types. In our statistical procedure, we have used SVA to control hidden 369 

covariates, which minimized the cell type effects. The coexpression network analysis still 370 

suggested three cell types. Single-cell or deconvolutional data will be needed to study subtypes 371 

of cells specifically. Age and other factors may influence immune response. We have regressed 372 

out those factors when detecting dIRGs too. In order to resolve causal relationship between 373 

neuroinflammatory changes and disorders, longitudinal study will be needed.  374 

In summary, our results provided a cross-disorder transcriptome study to explore the 375 

neuroimmune system dysfunction in six neurological and psychiatric disorders. More than 60% 376 

of the IRGs had significantly altered expression in at least one of the six disorders. The 377 

functional annotations of the dIRGs highlighted the shared dysfunction of innate immunity, and 378 

its ability to differentiate psychiatric disorders from neurological diseases. Disease-specific 379 

dIRGs and their associated pathways and coexpression modules may explain the distinct clinical 380 

features of each disorder.  Stress environment may have a dominant effect on the observed 381 

changes. Our study suggests that therapeutic targeting of different components of the systems 382 

may lead to distinct effects: some are general for all brain disorders while others could help 383 

specific disorders. 384 
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 727 

Fig. 1. Differential expression of immune genes in six disorders. A. Volcano plot for each 728 

disorder. B. Effect size correlation between microarray data and RNA-seq data. 729 

Fig. 2. Comparison of the effect size of differentially expressed IRGs among 730 

neuropsychiatric disease pairs. A. Numbers of up-regulated and downregulated dIRGs in the 731 

six disorders. Red represents up-regulated dIRGs, blue represents down-regulated dIRGs. B. 732 

Cluster tree of scaled effect size for all disorders based on  1275 IRGs for their fold changes. C. 733 

Significant sex differences by effect size in ASD and MDD. D. dIRGs shared across disorders: 734 

CRH and TAC1. *: fdr q.value<0.05; **fdr q.value<0.01; ***fdr q.value<0.001 735 

Fig. 3. Comparing dIRG-associated function across disorders. A. UpSet plot of dIRGs 736 

overlap between pairs of disorders. Dark cells and lines indicate that the set participates in the 737 

intersection. B. The doughnut chart shows the percentages of different IRGs types. C. UpSet plot 738 

of differential immune pathways overlap. The black dots and the black line show the overlapping 739 

dIRG-pathways between pairs of disorders. Cells that are dark indicate that it participates in the 740 

intersection. D. The doughnut chart shows the percentages of overlapping dIRG-pathways. E. 741 

Gene ontology enrichment analysis results of six pathways shared by dIRGs of all six disorders.  742 

Fig. 4. Shared immune-related coexpression modules A. Robust gene dendrogram obtained by 743 

WGCNA. B. The multidimensional scaling plot demonstrates the relationship between modules. 744 

Modules highlighted by stars are enriched in immune genes (enrichment q-value < 0.05). Edges 745 

are weighted by the strength of correlation between eigengenes of modules. C. The top 20 hub 746 

genes are plotted for the three IRM4, IRM12, and IRM14. A complete list of genes' module 747 

membership (kME) is provided in data Table S8. Edges are weighted by the strength of the 748 
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correlation between genes. D. Relationships of module eigengenes and diseases. Numbers in the 749 

table report the correlations of the corresponding module eigengenes and traits, with the p.values 750 

printed below the correlation coefficients r values. E. Cell marker enrichment of shared IRMs. F. 751 

Enrichment of the shared IRMs in pathways. Yellow: IRM4, Tan: IRM12, Cyan: IRM14 752 

Fig. 5. Disease-specific coexpression modules. A. Workflow for identifying disease-specific 753 

IRMs. B. Module preservation plot of disease-specific IRMs. The median rank and Zsummary 754 

statistics of module preservation of disorder modules in background modules (y-axis) vs. module 755 

size (x-axis). C. Pathway enrichment of  disease-specific immune modules. 756 
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