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Abstract:

The emerging SARS-CoV-2 variants have made great challenges to current vaccine
and pandemic control strategies. B.1.1.529 (Omicron), which was classified as a
variant of concern (VOC) by the World Health Organization on November 26th, 2021,
has quickly become the dominant circulating variant and causing waves of infections.
It is urgent to understand the current immune status of the general population given
that pre-existing immunity has been established by national vaccination or exposure
to past variants. Using sera from 85 individuals (including 21 convalescents of natural
infection, 15 cases suffered a breakthrough infection after vaccination, and 49
vaccinated participants without infection history), we showed that the cross-
neutralizing activity against VOCs such as Omicron can be detected in 53 (62.4%)
cases, although less potent than against the Wuhan-1 strain (WT), with a 3.9-fold
reduction in geometric mean neutralizing titer (GMT) (130.7, 95% CI 88.4-193.3 vs
506, 355.8-719.7, respectively). Subgroup analysis revealed significantly enhanced
neutralizing activity against WT and VOCs in Delta convalescent sera. The
neutralizing antibodies against Omicron were detectable in 75% of convalescents and
44.9% of healthy donors (p = 0.006), with a GMT of 289.5, 180.9-463.3 and 42.6,
31.3-59, respectively. However, the protective effect against VOCs was weaker in
young convalescents (aged < 18y), with a detectable rate of 50% and a GMT of 46.4
against Omicron, similar to vaccinees. The pan-sarbecovirus neutralizing activities
were not observed in vaccinated SARS-CoV-1 survivors. A booster dose significantly
increased the breadth and magnitude of neutralization against WT and VOCs to
different degrees than full vaccination. In addition, we showed that COVID-19
inactivated vaccines can elicit Omicron-specific T cell responses. The positive rates of
ELISpot reactions were 26.7% (4/15) and 43.8% (7/16) in the full vaccination group
and the booster vaccination group, respectively. The neutralizing antibody titers
declined while T-cell responses remain robust over 6 months. These findings will
inform the optimization of public health vaccination and intervention strategies to
protect diverse populations against SARS-CoV-2 variants.
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Introduction

The pandemic of coronavirus disease 2019 (COVID-19) has been ongoing for over
two years, making great challenges to the public health system. Numerous genetically
distinct lineages with their respective mutations have evolved and have been driving
recurrent waves of severe acute respiratory distress syndrome coronavirus-2 (SARS-
CoV-2) infection.

The spike glycoprotein of SARS-CoV-2 has two major antigenic domains, the
receptor-binding domain (RBD) and the N-terminal domain (NTD), both being the
target of neutralizing antibody responses against the virus. Mutations in these regions
can lead to increased transmissibility, higher viral binding affinity, and higher
antibody escape.1 The lineage B.1.1.529 (Omicron) harbors 15 mutations located in
the RBD and 8 mutated residues in the NTD relative to the wildtype (WT) virus.2
Some mutations on the RBD, including K417N, E484A, and N501Y, are associated
with antibody escape.3 This heavily mutated strain has raised serious concerns about
the diminished protection conferred by pre-existing immunity as soon as it occurred.4

Multiple studies have confirmed a large reduction in neutralization titers against
Omicron and the failure of many potent monoclonal antibodies (mAbs) to neutralize
the variant.5-7 The Omicron variant largely evades antibody-mediated immunity and is
associated with increased transmissibility, a higher viral load, longer duration of
infectiousness, and high rates of breakthrough infection and reinfection, resulting in
the Omicron variant rapidly becoming the globally dominant variant.8,9 However, the
clinical data administered that Omicron-infected individuals have a significantly
reduced odds of severe disease compared with individuals infected earlier with the
Delta variant.10 Some of this reduced severity is probably a result of previous
immunity elicited by exposure to past variants, vaccines, and boosters.

The difference between Omicron and other VOCs is that this fifth VOC has emerged
at a time when vaccine immunity is increasing in the world. People are
“immunologically prepared” after the two-year pandemic of COVID-19. As in China,
87.8% of its population has been vaccinated against SARS-CoV-2. A total of 1.23
billion have received the required two doses to complete vaccinations, adding that
494.4 million had received a booster shot as of January 29, 2022.11 However, despite
the high national rate, vaccination coverage is still patchy among the elderly and the
child and adolescent. Besides, waning antibody titers have raised concerns about the
durability of the vaccine.12 Furthermore, although current vaccination strategies now
propose the administration of a third dose, the clinical efficacy and protection against
VOCs remain to be determined. Therefore, it is critical to understand the
comprehensive immune responses against SARS-CoV-2 variants in diverse
populations.

Here, we characterized the specific humoral and cellular immunity against SARS-
CoV-2 variants in different study participants. Using pseudovirus-based neutralization
assay, we assessed the cross-reactivity of neutralizing antibodies against the Wuhan-1
(WT), B.1.1.7 (Alpha), B.1.351 (Beta), B.1.617.2 (Delta), and B.1.1.529 (Omicron)
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variants. Additionally, we evaluated specific T-cell responses against Omicron after a
2- and 3- dose vaccination. We found that WT and VOCs are well neutralized by
serum from convalescent individuals who have been vaccinated priorly, although
neutralization of Omicron was consistently lower. Booster vaccination enhanced
Omicron-specific neutralization, but still at significantly lower levels compared to WT.
Robust T cell responses against Omicron were observed in vaccinated healthy donors,
especially those who have received a booster dose.

Methods

Human subjects

Blood samples were collected from 85 individuals, including 36 delta convalescent
patients and 49 vaccinated healthy donors (registered in Chinses Clinical Trial
Registry, ChiCTR2100054156). We enrolled convalescents of different age groups to
explore possible differences, including the children and adolescents (aged < 18y), the
adults (aged 18 - 60y), and the elderlies (aged > 60y). The infection status was
confirmed via polymerase chain reactions. The vaccination records were required as
well as other demographic data. Serum and peripheral blood mononuclear cells
(PBMC) samples were isolated and stored at -80℃ until analysis. Briefly, blood from
study participants at convalescent time points was processed in a BSL2 laboratory at
Xiamen University. Serum samples were heat-inactivated at 56℃ for 30 minutes
before use. PBMC from all collected blood samples were isolated by Ficoll-Paque
density gradient centrifugation. Study approval was obtained from the Ethics Institute
of Xiamen University Xiang'an Hospital (XAHLL2021025). All participants provided
written informed consent.

Cell Lines

HEK293T cells were purchased from Procell and cultured in DMEM supplemented
with 10% fetal bovine serum (FBS). Cells were grown at 37℃ in a 5% CO2 setting.
Since SARS-CoV-2 uses the SARS-CoV receptor angiotensin-converting enzyme 2
(ACE2) for entry and the transmembrane serine protease 2 (TMPRSS2) for S protein
priming, we co-transfected plasmids encoding ACE2 (pLV-ACE2-3xFLAG-IRES-
puro, HedgehogBio Science and Technology Ltd.) and TMPRSS2 (pLV-TMPRSS2-
GFP, Sino Biological) into 293T cells to generate a stable cell line. The cells were also
cultured at 37℃ and 5% CO2. Confirmation of ACE2 and TMPRSS2 expression in
293T-ACE2-TMPRSS2 cells was done via western blot (Supplementary Figure S1).

SARS-CoV-2 pseudovirus neutralization assay

The vesicular stomatitis virus (VSV) based pseudoviruses expressing the S protein of
several SARS-CoV-2 variants were purchased from Vazyme Biotech, including the
WT and 4 VOCs (B.1.1.7 Alpha, B.1.351 Beta, B.1.617.2 Delta, and B.1.1.529
Omicron). The luciferase gene was incorporated into the VSV vector and can be
expressed after infection with the pseudotyped virus. The TCID50 (50% tissue culture
infectious dose) value13 was used to quantify virus concentration according to the
manufacturer’s instructions.
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Neutralization assays were performed on 293T-ACE2-TMPRSS2 cells. Serum
samples were 1:16 diluted, followed by a 3-fold serial dilution. The diluted sera
(50L) were mixed with pseudotyped SARS-CoV-2 viruses (650 TCID50 per well) in
96-well plates and incubated at 37℃ and 5% CO2 for 1 h. Then the 293T-ACE2-
TMPRSS2 cells were added and co-cultured for the next 24h.14 The
chemiluminescence signals were measured in relative luminescence units (RLU)
using a Bright GloTM luciferase assay system with a GloMax® Navigator Microplate
Luminometer. The neutralizing titers (NAT50) were defined as the 50% inhibitory
dilution (ID50) which was calculated with the highest dilution of plasma that resulted
in a 50% reduction of relative light units compared with virus control. NAT50 was
calculated with the following formula:

NAT50 = 100 × (1 – (value with serum − value in ‘non-infected’) / (value in ‘no
serum’ − value in ‘non-infected’).

NAT50 below 16 was considered as negative. The NAT50 values within groups were
summarized as a geometric mean neutralizing titers (GMT) with a 95% confidence
interval (95% CI).

Flow cytometry

The thawed PBMC were incubated overnight at 37°C and 5% CO2 in RPMI 1640 +
10% FBS. The next day, cells were harvested and then seeded at 2×105 cells per well
in 24-well plates. For either assay, 10 μg/mL recombinant SARS-CoV-2 B.1.1.529
spike RBD protein (Sino Biological) was added to the experimental well while the
DMSO in PBS was added to the negative control well. The cells were incubated for
36h at 37℃ and 5% CO2 before flow cytometry analysis. PBMC were surface stained
with fluorescently labeled antibodies to CD3 (FITC), CD19 (PE/Cyanine7), CD4
(PerCP/Cyanine5.5), CD8a (APC), CD56 (BV421), and CD16 (PE) in the dark at 4℃
for 30 min. Subsequently, the cells were washed with PBS and stained with Zombie
dye (NIR) in the dark at room temperature for 10 min. All FACS antibodies were
purchased from Biolegend. After being washed and resuspended, the samples were
analyzed using a CytoFlex S cytometer (Beckman Coulter). For each assay, 10,000
events were sampled after the exclusion of debris, doublets, and dead cells. The
cellular immune responses against Omicron were measured as a percentage of (CD19+)
for B or (CD3+) for T or (CD16+CD56+) for NK or (CD3+CD4+) for CD4+ T or
(CD3+CD8+) for CD8+ T cells after stimulation of PBMCs with the spike protein.

Interferon Gamma (IFN-γ) ELISpot assay

IFN-γ secreting T cells were detected by a commercial Human IFN-γ precoated
ELISpot kit (Dakewe) according to the manufacturer’s instructions. Briefly, for either
assay, approximately 1×105 PBMCs per well were plated into 96-well ELISpot plates,
then incubated in the presence of Omicron spike RBD protein (10μg/mL)
(experimental wells), phytohemagglutinin (PHA, 5μg/mL) (positive controls), or
DMSO (negative controls) for 36h at 37℃ and 5% CO2. The cells were subsequently
lysed with 4℃ deionized water and washed 5 times with PBS. Following the wash,
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100μL biotinylated antibody (1:500) and 100μL streptavidin-HRP antibody (1:500)
were added to each well and the mixture was incubated at 37℃ for 1h. Then, the plate
was washed and 100µL/well AEC color developing solution was added. The color
reaction was developed for 20 min at room temperature in the dark and stopped by
adding 200μL/well of deionized water. Finally, the spot-forming units (SFU), which
indicate Omicron-spike-RBD-specific T cells, were counted using an automatic
ELISpot Reader. The results were considered positive if experimental wells were no
less than twice the negative controls (the signal-to-noise ratio ≥ 2).15

Statistical analysis

Data and statistical analyses were performed using GraphPad Prism 8.0.2 and SPSS
26.0. Flow cytometry data were analyzed using FlowJo 10.4.0. The Pearson χ2 test or
Fisher’s exact test was performed for a two-group analysis. One-way ANOVA with
Tukey’s multiple comparisons test was used to compare differences among multiple
groups. Where applicable, the statistical tests used and the definition of the center
were indicated in the figure legends. Statistical significance was defined as p < 0.05.
Error bars throughout all figures represent 95% confidence interval or one standard
deviation where indicated.

Results

Population characteristics

Detailed information of the 85 individuals was shown in Table 1. Briefly, the Delta
convalescent cases (n = 36) suffered COVID-19 from September 13th to September
18th, 2021 in Xiamen, and the blood samples were obtained between 15 to 40 days
post-infection. Among the Delta convalescents, fifteen individuals (15/36, 41.7%)
experienced subsequent breakthrough infection after two doses of inactivated virus
vaccine (BBIBP-CorV, Sinopharm, Beijing CNBG; or CoronaVac, SinoVac). All the
children and adolescents (8/8, 100%) in the Delta convalescent group remain
unvaccinated, while nearly half of the adults (10/18, 55.6%) and elderlies (5/10, 50%)
received two doses of vaccines. Among the healthy donors, 10 subjects experienced
SARS-CoV-1 infection in 2003 in Beijing, who were frontline health care workers
during SARS. All the healthy donors received 2 or 3 doses of vaccines except one of
the SARS-CoV-1 convalescents. The blood samples were collected between 7 to 381
days after the final vaccination.

Reduced cross-neutralizing activity to SARS-CoV-2 variants

As neutralizing antibodies are the major correlate of protection against COVID-19,
we first determine the general neutralizing antibody (nAb) responses against WT and
four VOCs, including Alpha, Beta, Delta, and Omicron. The results showed a
substantial decline in both breadth and potency of all nAbs against the VOCs
compared with WT (Figure 1A), no matter the nAbs elicited by vaccination or SARS-
CoV-2 infection (Figure 1B). Neutralization against WT was detected in 94.1% (80/85)
cases, while in 72.9% (62/85) case, 56.4% (48/85) case, 78.8% (67/85) case and
62.4% (53/85) cases when against Alpha, Beta, Delta, and Omicron variants,
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respectively (p < 0.0001). The viral neutralization titers (GMT) against the Alpha
variant decreased 1.6-fold (a ratio of WT/variant) in pseudovirus assay compared to
WT (GMT 506, 95% CI 355.8-719.7), while a 2.7-fold, a 2.2-fold, and a 3.9-fold
reduction were observed in GMT against Beta, Delta, and Omicron, respectively. The
GMT against the VOCs were 313.5 (95% CI 195.5-502.7), 188.4 (95% CI 115.5-
307.1), 232.6 (95% CI 147.6-366.7) and 130.7 (95% CI 88.4-193.3), respectively.
These results indicate a general reduction in neutralizing activities of sera against
SARS-CoV-2 variants, the degree of decline was in the following order: Omicron >
Beta > Delta > Alpha. Generally, the Omicron variant revealed lower neutralizing
sensitivity than the Alpha and Delta variants, similar to the Beta variant.

Increased broad-spectrum neutralizing antibodies after Delta infection

To better characterize the neutralization activity of convalescent sera and vaccine sera,
we compared the nAbs between the Delta convalescents and the healthy donors
(Figure 1B). Impressively, the Delta convalescent sera showed significantly increased
neutralizing activities against WT and VOCs. The GMT of convalescent sera against
WT and VOCs ranged from 1697.6 to 289.5; while the values ranged from 197.4 to
38.8 in vaccine sera, as shown in Figure 1B and Supplementary Table S1. The nAbs
were detectable in 75%-97.2% cases of the Delta convalescents and 38.8%-91.8%
participants of the healthy donors.

We further compared the neutralizing activities in different age groups of the Delta
convalescents (Figure 1C). We observed a significant increase in the magnitude and
breadth of neutralization in the adults and the elderly. However, the increased
activities were inapparent in the children and adolescents. For instance, the GMT of
convalescent sera against Omicron was 502.6 and 216.7 in the adults and the elderlies,
respectively. While the GMT was only 46.4 in the children and adolescents, similar to
the vaccinated people (GMT 42.6). Since the children and adolescents had not been
vaccinated, we further compared the differences between vaccinated and unvaccinated
individuals aged over eighteen. As shown in Figure 1C, people who got infected after
being vaccinated (vaccinated-infected) were more resistant to SARS-CoV-2 variants,
compared with people who suffered SARS-CoV-2 infection without vaccination
(unvaccinated-infected). The neutralizing abilities elicited by infection were less
potent in younger cases (aged < 18) when compared with the unvaccinated-infected
adults (aged > 18), indicating a focus on the vulnerable population.

Lack of pan-sarbecovirus neutralizing activity in SARS-CoV-1 survivors

Tan et al. reported a potent cross-clade pan-sarbecovirus nAbs in SARS-CoV-1
convalescents who were immunized with the BNT162b2 mRNA vaccine.16 Thus we
explored the differences between SARS-CoV-1 convalescents and other healthy
donors. All participants received 2 or 3 doses of inactivated vaccines except one of the
SARS-CoV-1 convalescents. Although the GMT of the SARS-CoV-1 convalescent
sera against WT is 3.1-fold higher than that of the other healthy donors, the potency of
neutralization against VOCs was similar between the two subgroups, as shown in
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Figure 1D. The nAbs against WT or VOCs were undetectable in the only participant
who had not been vaccinated.

A third dose increases the breadth and magnitude of neutralizing antibody
responses

A third dose of the COVID-19 vaccines may increase neutralization against VOCs.
We applied subgroup analysis between healthy donors who received 2 doses or 3
doses of vaccines (Figure 1E). The booster dose resulted in a 4.8~10-fold increase in
neutralizing activity in 100% participants against WT compared with the second
vaccination. We also observed an increase in the breadth and levels of neutralizing
antibodies against SARS-CoV-2 variants. Eight out of 18 (44.4%) individuals who
received the third dose displayed detectable serum nAbs against Omicron with a GMT
of 50 (95% CI 26.6-94.1), compared with 42.9% (9/21) sera detectable with a GMT of
37.5 (95% CI 26.2-53.8) in cases who received the second doses.

We also observed that the nAbs decreased over time after vaccination, as shown in
Figure 2A. A sharp decrease in serum nAbs against VOCs and WT was observed at
180-240 days post the final vaccination. The Omicron variant showed a similar
decreasing pattern as the Beta and Delta variants, while the Alpha was similar to the
WT. NAbs against SARS-CoV-2 variants remain consistent in the Delta convalescents
within 30-40 days post-infection (Figure 2B).

Omicron-specific T cell responses in vaccinated healthy donors

Previous studies show that SARS-CoV-2 VOCs partially escape humoral but not T
cell responses.17,18 The T cell responses could be induced by prior infection, no matter
the neutralizing antibody response is reduced or absent.19 Here we aimed to elucidate
whether the Omicron-specific T cell responses persist before infection, and the
association between nAbs and T cell responses.

We first evaluated the PBMC immune responses against Omicron, measured as a
percentage of lymphocyte subsets after stimulation of PBMCs with the Omicron-spike
protein. As shown in Figure 3A, Supplementary Figure S2, and Supplementary Table
S2, we did not detect significant changes in proportions of T, B, and NK cells after
stimulation with Omicron-S-RBD protein. Similarly, the subgroup analysis revealed
no differences in cellular immune responses in people who received a third dose of
vaccination, or who survived from SARS-CoV-1 infection (Figure 3A).

To further assess virus-specific T cell responses, we performed IFN-γ ELISpot
analysis using PBMCs treated with recombinant S-RBD of the Omicron variant
(Figure 3B, Supplementary Figure S3, and Supplementary Table S3). We observed
that the IFN-γ-secreting S-RBD-specific T cells existed in most participants. Although
the numbers of IFN-γ-secreting T cells were similar, the positive reactions (defined as
the signal-to-noise ratio ≥ 2) were higher in cases who received a booster dose (7/16,
43.8%), compared to those who received a second dose (4/15, 26.7%), although
without significant difference. No significant difference in T cell reaction intensity
was detected between SARS-CoV-1 convalescent and other healthy donors, with
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positive reaction rates of 30% (3/10) and 36.4% (8/22), respectively. Furthermore, the
virus-specific immune response of T cells lasted over 6 months post-vaccination
(Figure 3C). In addition, a significant positive correlation was observed between the
activation intensity of T-cell responses and NAT50 (p = 0.004, R2 = 0.4630), as shown
in Figure 3D. Notably, four participants showed positive T cell reactions while their
NAT50 values were under the limit of detection. The longest vaccination interval
among the four individuals was 225 days, indicating a long-lasting T cell response to
SARS-CoV-2, regardless of nAbs levels.

Discussion

In the current study, we characterized SARS-CoV-2-specific humoral and cellular
immunity in different Chinese populations. Sera from vaccinated-infected patients
revealed the most powerful cross-neutralizing abilities against SARS-CoV-2 variants.
Followed by sera from natural infection convalescents, sera from individuals who
received a third dose of inactivated vaccine, and the last, sera from healthy donors
who received a second dose of inactivated vaccine. A robust Omicron-specific T cell
response was observed in vaccinated healthy donors. We also found that the
neutralizing antibody titers were significantly correlated with the intensity of Omicron
RBD-specific T-cell responses. The neutralizing antibody titers declined over time
while T-cell responses remain consistent or even increase. Since both B and T cells
participate in immune-mediated protection to viral infection, our results rationed the
current strategy of vaccination, with or without infection history. In addition, the
broad antibody responses were weaker in younger convalescents (aged < 18),
underscoring an extra focus on these vulnerable populations.

Consistent with most researches, SARS-CoV-2 VOCs showed immune escape
capacities from both convalescent sera and vaccine sera. Pseudovirus-based
neutralization assay showed reductions in GMTs against the variants compared to the
WT, Omicron particularly. However, we observed that breakthrough infection
significantly boosts serum neutralizing capacity elicited by post-vaccination. The
nAbs against WT and VOCs could be detected in all adult vaccinated convalescents,
with approximately 11-fold higher GMT against WT and 18-fold higher against
Omicron, compared with vaccinated individuals with no infection history. The GMT
against other mutant strains was consistently higher. Recent studies have suggested
that vaccination boost cross-variant neutralizing antibodies elicited by SARS-CoV-2
infection.20,21 But the effect of breakthrough infection on the neutralizing antibody
response is scarce. A preprint observes robust cross-neutralization against Omicron
are induced in vaccinees that experienced breakthrough infections.22 Furthermore, the
comparison between human immune sera following breakthrough infection and
vaccination following natural infection showed no difference. They both broadly
neutralize SARS-CoV-2 variants to a similar degree.23 Together, it is assumed that
vaccination plus COVID-19 infection, regardless of which occurs before or after, can
boost broad and robust neutralizing antibodies against SARS-CoV-2 variants. The
results underscore the importance of vaccination, regardless of infection history.
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However, the broad neutralization elicited by infection was much weaker in younger
convalescents. The results closely match those obtained in previous studies, which
revealed a low protective serological response in both infected and vaccinated
adolescents.24,25 A reduced breadth of anti-SARS-CoV-2-specific antibodies were
observed in children, predominantly generating IgG antibodies specific for the S
protein but not the N protein.25 These results suggest a distinct humoral immune
response in children compared to adults, with implications for age targeting vaccine
implementation and effective child protection strategies.

Furthermore, our data suggested a third dose of inactivated vaccine substantially
improves neutralization against variants including Omicron. These findings are
supported by other studies.26-29 However, the variants still showed incomplete escape
from booster-enhanced neutralization compared to WT, raising concerns about the
efficacy of booster vaccination in the real world. The clinical evidence is still rare. A
real-world analysis during the Delta pandemic confirmed that a booster dose
substantially lower rates of confirmed Covid-19 and severe illness in adults and the
elderly.30 Also, a study in nonhuman primates indicates that even low titers of nAbs
are sufficient to prevent experimental SARS-CoV-2 infection.31 The protection
efficacy was apparent if CD8+ T cell responses are mounted, indicating that T-cell
immune response may ameliorate the deficiency of nAbs in defending against SARS-
CoV-2 infection.

The T-cell immune response is an important defense mechanism against the SARS-
CoV-2 variants. The virus-specific T cell repertoires could be shaped following
natural infection or vaccination.32-34 Inspiringly, only 3%-7% of previously identified
T cell epitopes are affected by mutations in the various VOCs, indicating minimal
escape at the T-cell level.35,36 The SARS-CoV-2-specific T cell immune repertoires
could still recognize the highly mutated S protein of Omicron.37 The study showed
approximately 2 in 104 PBMCs were SARS-CoV-2-specific, which is broadly
comparable to our findings (1 in 104 PBMCs). Even better, accumulating pieces of
evidence suggest that T cell responses to SARS-CoV-2 antigens remain consistent or
increase over time, whereas antibody responses wane,32,33 consistent with our data.
Besides, we observed a higher detection rate of Omicron-specific T cell response in 3-
dose vaccinated participants, compared to 2-dose vaccinated individuals. However,
whether the difference is caused by the additional antigen exposure from a booster
shot or just the result of T cell clonal expansions, remains to be studied.

We further demonstrated the positive correlation between the magnitude of T cell
immune response and the titer of sera neutralizing antibodies. Our result is supported
by other studies. Zuo et al. demonstrated that the intensity of the T cell response at 6
months correlates both with peak antibody level and a reduced rate of antibody
waning against nucleoprotein.33 Similarly, Tarke et al. reported a correlation between
humoral response and the ability of donors' PBMCs to become enriched with SARS-
CoV-2 spike glycoprotein-reactive CD4+ and CD8+ T cells.34 Together, we assumed
that a higher humoral immune response may induce a stronger cellular response. This
may further rationalize the current booster vaccination strategy, since the long-term T
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cell immunological memory to SARS-CoV-2 is essential for the development of herd
immunity, which is also the aim of vaccination approaches.

Although analyses were performed in a relatively small number of subjects, we show
that breakthrough infection or booster vaccination restored and increased the
neutralizing capacity against VOCs including Omicron. Adults and the elderly
revealed more effective humoral responses than the child and adolescents.
Furthermore, vaccine recipients retain T-cell immunity to the Omicron variant,
potentially making up the deficiency of neutralization in preventing or limiting severe
COVID-19. The long-term adaptive immune may be key to protection against SARS-
CoV-2 variants and even future coronaviruses. Our study supports the current
vaccination strategy and calls upon the public health system to prioritize the most
vulnerable children.
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Figure 1. Neutralizing antibody titers against SARS-CoV-2 wild type (WT) and variants of

concern (VOCs). (A) The 50% neutralization titers (NAT50) were determined via VSV

pseudovirus neutralization assay against WT (black dots), Alpha (yellow dots), Beta (purple dots),

Delta (green dots), and Omicron (red dots) variants in all samples. (B) Comparison between

vaccination sera and convalescent sera. (C) Subgroup analysis of age and vaccination status in

Delta convalescents. (D) Subgroup analysis of SARS-CoV-1 infection history in Healthy donors.

(E) Subgroup analysis of vaccination status in Healthy donors.

Data are presented as scatter dot plots with error bars indicating the geometric mean titers (GMT)

with a 95% confidence interval (CI). The GMT values are shown at the bottom of the dots.

Fold-change of GMT compared to WT by VOCs are shown at the top of each group. Pie charts

show the proportion of vaccinees within each group that had detectable neutralization against the

indicated SARS-CoV-2 variants. All neutralization and ELISA assays were conducted in

biological duplicates.

Figure 2. Neutralizing antibody titers decreased over time. The change of nAbs during the

interval between last dose vaccination and blood sampling in healthy donors (A) and the time

interval between disease onset and blood sampling in Delta convalescents (B). The nAbs show a

sharp decline between 180-240 days across all VOCs and WT. In Delta convalescents, the nAbs

slightly decreased within 30 days post-infection. The different colored dots represent nAbs against

WT (black dots), Alpha (yellow dots), Beta (purple dots), Delta (green dots), and Omicron (red

dots).
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Figure 3. Cellular immune response to recombinant S-RBD proteins of Omicron in healthy

donors. (A) The phenotypic analysis results of PBMCs from healthy donors before and after

stimulation with Omicron S-RBD protein, followed by subgroup analysis of different vaccination

status (having received the 2nd or 3rd dose of vaccination), and then the subgroup analysis between

SARS-CoV-1 convalescents and other healthy donors. (B) IFN-γ ELISpot analysis of PBMCs

from healthy donors to recombinant Omicron S-RBD proteins, followed by subgroup analysis of

different vaccination status (having received the 2nd or 3rd dose of vaccination), and then the

subgroup analysis between SARS-CoV-1 convalescents and other healthy donors. The pie charts

above represent corresponding proportions of positive ELISpot results within each group. (C) The

signal-to-noise (S: N) ratio of SFU at different time intervals after the last dose of vaccine. (D)

The correction analysis of signal-to-noise ratio and neutralizing antibody titers (NAT50) against

Omicron S-RBD protein. * p < 0.05, **p < 0.01.
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Table 1. Characteristics of enrolled cases

Healthy donors Delta

convalescents

(n=36)

SARS-CoV-1

convalescents (n = 10)

Others (n = 39)

Age

< 18, n (%) - - 8 (22.2%)

18-60, n (%) 10 (100%) 39 (100%) 18 (50%)

> 60, n (%) - - 10 (27.8%)

Gender

Female, n (%) 10 (100%) 15 (38.5%) 17 (47.2%)

Vaccination status

Unvaccinated, n (%) 1 (10%) - 21 (58.3%)

2-dose, n (%) 2 (20%) 21 (53.8%) 15 (41.7%)

3-dose, n (%) 7 (70%) 18 (46.2%) -

Time interval* (days) 55 (55-55) 163 (54.5-205) 31.5 (25-35)
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*Time interval for healthy donors indicates the period between their last vaccination and blood

sample collection. For Delta convalescents, it indicates the period between infection and blood

sample collection. Data are presented as n (%) or median (IQR).
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