Nerve excitability as a biomarker for amyotrophic lateral sclerosis: a systematic review and meta-analysis

Anna Lugg¹, Mason Schindle², Allison Sivak³, Hatice Tankisi⁴, Kelvin E. Jones¹,⁵*

1. Faculty of Kinesiology, Sport, and Recreation, University of Alberta, Edmonton, Alberta, Canada
2. Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada
3. University of Alberta Library, Edmonton, Alberta, Canada
4. Department of Clinical Neurophysiology, Aarhus University Hospital, Aarhus, Denmark
5. Neuroscience and Mental Health Institute, Edmonton, Alberta, Canada

ORCID
AL 0000-0003-3824-8696
AS 0000-0002-8100-9888
HT 0000-0001-8495-9769
KEJ 0000-0003-4764-7031

*Corresponding Author:
Kelvin E. Jones, PhD
Associate Professor, Faculty of Kinesiology, Sport, and Recreation
University of Alberta, Edmonton, Alberta, Canada
email: kejones@ualberta.ca
Phone: 780-492-0650

Keywords
neurophysiology, diagnostic test, motor neuron, human, nerve conduction, axonal excitability

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
ABSTRACT

Objective: To determine which nerve excitability outcome measures are potential biomarkers for ALS via systematic review and meta-analysis.

Methods: Potential studies were identified from the following databases: MEDLINE, PubMed Central, CINAHL Plus, EMBASE, HealthSTAR, Scopus, and Web of Science up to March 2020. Only studies performed in human participants and assessing median motor axons were included. Forest Plot analyses using a random-effects model to determine pooled effect (Z-score), heterogeneity (I²) and Cohen’s d were used to identify potential biomarkers.

Results: From 2866 studies, 26 (patients=942, controls=719) were used in the systematic review and 23 in the meta-analysis. Seven axonal excitability indices met the three criteria for: significant Z-score, heterogeneity I²<40% and Cohen’s d >0.2 (in descending rank order): TEd 90-100 ms, strength-duration time constant (SDTC), superexcitability, TEd 40-60 ms, resting I/V slope, 50% depolarizing, and subexcitability. A sensitivity analysis restricted to patients with ‘early’ ALS indicated that four indices are potential early biomarkers of ALS (Z ranging from 2.99 to 2.16, in descending rank order): TEd 10-20 ms, TEd 90-100 ms, superexcitability, and SDTC.

Conclusion: Seven excitability indices differentiate ALS patients from healthy controls, four of which may serve as early biomarkers for ALS. The candidate biomarkers may be used to monitor disease progression, predict survivability, and measure treatment response in clinical trials. High quality diagnostic test accuracy studies are warranted to firmly establish the utility of these indices in individuals suspected of an ALS diagnosis.
INTRODUCTION

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder characterized by progressive degeneration of upper motor neurons (UMNs) and lower motor neurons (LMNs) with an incidence of 1-2 per 100,000 and median survival of 3-5 years from symptom onset.\(^1\)\(^-\)\(^6\) The clinical features of ALS are highly variable depending on the extent of UMN and LMN involvement, location of disease onset, spread, and presence of extra-motor symptoms.\(^5\),\(^7\) The combined heterogeneity of ALS and the absence of established biomarkers renders a difficult diagnosis and limits individual patient prognosis, disease surveillance and therapeutic development.

Currently, no definitive diagnostic test for ALS exists; diagnosis is made if an individual meets the revised El Escorial, Awaji or the recent Gold Coast criteria: a set of clinical signs augmented by electromyography.\(^8\),\(^9\) Disease heterogeneity and lack of biomarkers contributes to misdiagnosis of ALS and diagnostic delay.\(^10\)\(^-\)\(^12\) Diagnostic delay is a barrier to early intervention with disease-modifying drugs that may be most effective in early ALS.\(^13\)\(^-\)\(^16\) Therefore, there is a need to improve accuracy and speed of ALS diagnosis. Identifying prognostic biomarkers to monitor disease progression and treatment response is also important. The rate of disease progression and survival of ALS patients is highly variable, limiting the ability to predict functional decline and survival.\(^7\),\(^17\) Heterogeneity has implications for efficient development of novel therapeutics in ALS, with different ALS phenotypes having variable therapeutic responses. Identifying biomarkers sensitive to disease activity may permit stratified enrollment for improved efficiency in clinical trials.

Several candidate biomarkers have been identified through genetic testing, biological fluid analysis, neuroimaging and neurophysiology studies.\(^16\),\(^18\),\(^19\) Genetic tests provide definitive diagnosis and pathogenetic mechanisms in approximately 10% of ALS cases but have limited utility for monitoring treatment response.\(^7\),\(^20\) Investigations for UMN pathology include neurofilaments, magnetic resonance imaging (MRI) and transcranial magnetic stimulation (TMS). Elevated neurofilaments in cerebrospinal
fluid and plasma have diagnostic, prognostic and monitoring potential in ALS but this is not unique to ALS pathophysiology. MRI studies have corroborated the pathological elements of neurodegeneration that occur in ALS: degeneration of the motor cortex and corticospinal tract, as well as extramotor (frontotemporal) regions, with the extent of degeneration in these regions associated with shorter survival. TMS studies have identified cortical dysfunction as an important early and specific biomarker in ALS. Recent developments for diagnostic tests of LMN pathology include fasciculations and ultrasound. The recent publication of consensus guidelines for nerve excitability has affirmed its use for quantifying LMN pathology.

Nerve excitability techniques assess the biophysical properties of the axonal membrane and ion channel function. Nerve excitability testing is completed using a harmonized protocol, called TROND, and specialized software (QTrac, UCL Institute of Neurology, London, UK, available from Digitimer Ltd at www.Digitimer.com). A test yields approximately 30 different excitability indices distributed across five subtests: stimulus-response (SR) curve, strength-duration properties, recovery cycle (RC), threshold electrotonus (TE), and current-voltage (I/V) relationship. ALS was the first pathophysiology for which the nerve excitability test was employed and studies have consistently identified pathological changes in sodium (Na⁺) and potassium (K⁺) channels. However, a recent study suggests that approximately 99% of the differences between axons affected by ALS and healthy controls (HCs) could be attributed to a non-selective reduction in the expression of all ion channels, not exclusively Na⁺ and K⁺ channels. Given that there are approximately 30 measures generated from a single excitability test, it is important to first determine which excitability indices distinguish axons of ALS patients from HCs and therefore have LMN biomarker potential.

Currently, only narrative reviews and qualitative syntheses comparing nerve excitability in ALS and controls are available. Therefore, we conducted a systematic review and meta-analysis of the existing studies to determine: which excitability indices distinguish ALS patients from HCs, the reliability
and effect sizes of those differences, and whether the same indices are appropriate in earlier stage investigations of people with ALS.

METHODS

A systematic review and meta-analysis were performed according to the Preferred Reporting Items for a Systematic Review and Meta-analysis of Diagnostic Test Accuracy Studies guidelines and the Cochrane Handbook for Diagnostic Test Accuracy. The last date of the search was March 12, 2020. (Note: the study was not registered with PROSPERO given circumstances associated with the COVID-19 pandemic.) A Figshare repository has been created for sharing data and supplementary materials at https://figshare.com/s/76a237bcc221604f8a2f.

Patient Engagement

Patient engagement interviews were conducted with two individuals living with ALS prior to conducting this review. The purpose was to ground the research in the community and determine whether this review would be meaningful for individuals living with ALS. These individuals were consulted at each stage throughout the review to maintain patient engagement.

Criteria for Considering Studies for this Review

Types of Studies

Studies comparing median motor (abductor pollicis brevis (APB) muscle) nerve excitability in ALS patients and HCs were considered for inclusion. Reporting of all excitability measures was not required for inclusion in the meta-analysis. Narrative reviews, theoretical or modelling studies, and animal studies were excluded. Studies not published in English were excluded. Peer-reviewed articles and published dissertations were included; abstracts were excluded.

Participants
Participants were individuals diagnosed with ALS according to the El Escorial50, revised El Escorial8, or the Awaji Criteria51 and HCs. ALS patients must meet the classification for definite, probable, probable laboratory-supported, or possible ALS.8,50,51 Both familial ALS (fALS) and sporadic ALS (sALS) were included. All ALS phenotypes were included (i.e., bulbar-onset versus limb-onset). Screening of the HCs was evaluated as part of the formal quality assessment.

Index Test

The index test is the nerve excitability test, administered according to the standardized TROND protocol.35 Studies using a TROND protocol developed prior to the 1999 protocol were evaluated for inclusion on a case-by-case basis.37

Reference Standard

The reference standard was the El Escorial50, revised El Escorial8, or the Awaji Criteria51.

Search Methods for Identification of Studies

Electronic Searches

A search was executed by an expert searcher/health librarian (AS) on the following databases: OVID MEDLINE, PubMed Central, EBSCO CINAHL, OVID EMBASE, OVID HealthSTAR, Scopus, Web of Science – All Databases, and EBSCO SPORTDiscus. See Appendix A for the strategy used to search MEDLINE. The searches were completed using controlled vocabulary (e.g., MeSH) and key words representing variations of the concepts “amyotrophic lateral sclerosis” and “nerve/axonal excitability.” All searches were performed on March 12, 2020. Detailed search strategies for each database are available in the online supplemental tables 1-7.

Data Collection and Analysis
Selection of Studies

Studies were screened using Covidence systematic review software (Veritas Health Innovation, Melbourne, Australia. Available at www.covidence.org). Search results (titles) were exported from the databases directly to Covidence (AS). Duplicate studies were removed when importing into Covidence. Any additional duplicates found were removed by reviewers during screening. Two reviewers (AL and MS) independently screened titles and abstracts of all identified studies, with disagreements resolved by a third reviewer (KJ). The included citations moved to full-text review. Full-text articles were uploaded to Covidence; two reviewers (AL and KJ) independently assessed the articles, with conflicts resolved by a third reviewer (HT) to determine the final selection of articles.

Data Extraction and Management

A data extraction form was developed within Covidence. Two reviewers (AL and KJ) independently extracted the following variables from the included articles: author information, publication year, country of primary correspondence, study design, reference standard, eligibility criteria, number of participants, mean (or median) age of participants, sex ratio of participants, mean (or median) disease duration, medications, and stratification of patients. Data was also extracted for all reported nerve excitability indices. One reviewer (AL) checked the data entered in the form for errors or discrepancies and resolved such conflicts.

Assessment of Methodological Quality

Methodological quality was assessed using a form created within Covidence. Two independent reviewers (HT and KJ) assessed the methodological quality of included studies using the Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2) tool. QUADAS-2 involves a structured assessment using signaling questions in four domains: (1) patient selection, (2) index test, (3) reference
standard, and (4) flow (of patients through the study) and timing (of the index test and reference
standard). Each domain is assessed in terms of the risk of bias, and the first three domains also include
an assessment of applicability concerns. Review-specific modifications to the QUADAS-2 tool were
made; a domain for evaluating case-control studies based on the Newcastle-Ottawa Scale (NOS) was
added (modified tool available in online supplemental Table 8).53

Statistical Analysis and Data Synthesis

Data was exported from Covidence to Review Manager, Version 5.4 (RevMan 5.4) software
(available at \url{https://training.cochrane.org/online-learning/core-software-cochrane-reviews/revman}).
We then performed a meta-analysis to obtain a quantitative evaluation of nerve excitability in ALS
patients and HCs for all sufficiently reported (n≥4) excitability indices. The results for each measure were
represented with forest plots. A sensitivity analysis of excitability measures reported in ALS patients
with preserved compound muscle action potential (CMAP) was performed to investigate potential early
indicators. All statistical analyses were performed using the RevMan 5.4 software. We applied a
random-effects model to reduce statistical heterogeneity in the extracted data and to obtain the mean
of a distribution of true effects.54 The mean difference and 95\% confidence intervals were computed for
each excitability measure. Statistical significance of the effect was determined using the Z-test for
overall effect. The results were regarded as statistically significant if \(p<0.05\). Cohen’s d was calculated
for each excitability measure to determine standardized differences in the means of ALS and HCs.
Indices with a Cohen’s d below 0.2 have negligible effect size and were excluded as potential
biomarkers. Heterogeneity was examined by applying the \(I^2\) statistic.55 \(I^2\) values of 25\%, 50\%, and 75\%
correspond to low, moderate, and high heterogeneity between studies.56 Indices with heterogeneity
below 40\% were considered acceptable.57 Pooled means and standard deviations for each of the nerve
excitability indices were calculated for ALS patients and HCs. Mean ± SD were calculated for sample size
and sex distribution (%male) across studies. Pooled means and standard deviations were calculated for participant age, disease duration, and revised ALS Functional Rating Scale (ALSFRS-R).

RESULTS

Study Selection

A total of 4867 articles were retrieved from the search: OVID MEDLINE (1065), PubMed Central (2115), EBSCO CINAHL (491), OVID EMBASE (164), OVID HealthSTAR (230), Scopus (651), Web of Science – All Databases (141), and SPORTDiscus (10). Results were exported from the databases to Covidence; 2001 duplicates were removed. We screened the title and abstract of 2866 articles. Following screening, the full-text eligibility of 43 articles was assessed. After full-text review, we selected 26 articles fitting the criteria for the systematic review, 23 of which were included in the meta-analysis. The procedure for study selection and reasons for exclusion are summarized in Figure 1.

Study Characteristics

Twenty-six articles consisting of a total of 942 ALS patients and 719 HCs were included in the systematic review. Studies were published in the last 25 years, from 1996 to 2020. The included studies were conducted in five countries: Australia (n=14), Japan (n=9), Germany (n=1), Korea (n=1), and Portugal (n=1). All studies used either the El Escorial (n=5), revised El Escorial (n=11), or Awaji (n=5) criteria as the reference standard. Three studies used both the revised El Escorial and Awaji criteria. One study used a combination of genetic testing (C9orf72) and Awaji criteria. One study did not report the specific reference standard used. Study characteristics are summarized in online supplemental Table 9.

Participant Characteristics
The range of sample sizes included in the studies was broad, as reported in Table 1. The pooled mean age of the ALS patients was older than the HCs with a modestly larger proportion of males in the ALS group (Table 1). Ten studies reported average disease duration (17.7 months, range, 12.5 to 25.9) while seven studies reported median disease duration (ranging from 9.50 to 16.1 months). The pooled mean ALSFRS-R was 40.5 (8 studies, range, 39.0 to 42.1). A summary of the participant characteristics is provided in Table 1 (more detail in online supplemental Table 9).

Table 1. Summary of participant characteristics. Sample size and sex are represented as mean(SD). Age, disease duration, and ALSFRS-R are represented as pooled mean(pooled SD); the range for these characteristics is the range of the means in the included studies. n/a = not applicable

<table>
<thead>
<tr>
<th></th>
<th>ALS</th>
<th>HC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample size</td>
<td>33.6(30.0)</td>
<td>27.6(9.20)</td>
</tr>
<tr>
<td>Mean Age (years)</td>
<td>61.4(9.40)</td>
<td>54.6(10.5)</td>
</tr>
<tr>
<td>Sex (% male)</td>
<td>61.6(10.1)</td>
<td>51.7(10.8)</td>
</tr>
<tr>
<td>Mean Disease duration (months)</td>
<td>17.7(14.9)</td>
<td>n/a</td>
</tr>
<tr>
<td>Mean ALSFRS-R</td>
<td>40.5(5.00)</td>
<td>n/a</td>
</tr>
</tbody>
</table>

Comparison of Nerve Excitability in Patients with ALS and Healthy Controls

Sixteen out of 30 nerve excitability indices were reported by four or more studies and were analyzed. Ten indices showed significant pooled effect (Z ranging from 9.88 to 2.81, in descending rank order): TEd 90-100 ms, strength-duration time constant (SDTC), superexcitability, CMAP, TEd 40-60 ms, TEd 10-20 ms, resting I/V slope, 50% depolarizing, subexcitability, and rheobase. CMAP (I² = 88%) and TEd 10-20 ms (I² = 51%) were above the cut-off of 40% heterogeneity. Rheobase was below the small effect size cut-off based on Cohen’s d. Therefore, seven excitability indices are being proposed as
candidate biomarkers. Table 2 gives a summary of the number of studies reporting a measure, mean difference between ALS and HCs, heterogeneity, overall effect and p-value, and Cohen’s d. Additional forest plots for other excitability measure are available in online supplemental figures 1-12. Pooled means(SD) for nerve excitability indices are reported in online supplemental Table 10.

Not all indices generated by an nerve excitability test were fully reported; a bias was to report indices that demonstrated significant differences between ALS patients and HCs. Two out of twelve (17%) measures with significant pooled effect were reported in fewer than four studies, and nine out of fifteen (60%) measures that did not have significant pooled effect were reported in fewer than four studies. Measures that were not different between ALS and HCs were often reported without raw data and could not be included in the analysis.

Table 2. Summary statistics for axonal excitability indices reported by four or more studies. Indices descending rank ordered (top to bottom) for overall effect (Z).

<table>
<thead>
<tr>
<th>Excitability Index</th>
<th># Studies reporting index</th>
<th>Heterogeneity (I²)</th>
<th>Overall Effect (Z)</th>
<th>P value</th>
<th>Cohen’s d</th>
</tr>
</thead>
<tbody>
<tr>
<td>TEd 90-100ms</td>
<td>17</td>
<td>38</td>
<td>9.88</td>
<td><0.00001</td>
<td>0.72</td>
</tr>
<tr>
<td>SDTC</td>
<td>21</td>
<td>3</td>
<td>9</td>
<td><0.00001</td>
<td>0.44</td>
</tr>
<tr>
<td>Superexcitability</td>
<td>17</td>
<td>35</td>
<td>8.54</td>
<td><0.00001</td>
<td>0.60</td>
</tr>
<tr>
<td>CMAP Amplitude</td>
<td>19</td>
<td>88</td>
<td>8.51</td>
<td><0.00001</td>
<td>1.2</td>
</tr>
<tr>
<td>TEd 40-60ms</td>
<td>8</td>
<td>4</td>
<td>5.57</td>
<td><0.00001</td>
<td>0.52</td>
</tr>
<tr>
<td>TEd 10-20ms</td>
<td>10</td>
<td>51</td>
<td>4.6</td>
<td><0.00001</td>
<td>0.28</td>
</tr>
<tr>
<td>Resting I/V Slope</td>
<td>6</td>
<td>0</td>
<td>4.35</td>
<td><0.00001</td>
<td>0.44</td>
</tr>
<tr>
<td>50% Depolarizing</td>
<td>4</td>
<td>0</td>
<td>4.14</td>
<td><0.00001</td>
<td>0.42</td>
</tr>
<tr>
<td>Subexcitability</td>
<td>15</td>
<td>37</td>
<td>4.07</td>
<td><0.00001</td>
<td>0.29</td>
</tr>
<tr>
<td>Rheobase</td>
<td>11</td>
<td>0</td>
<td>2.81</td>
<td>0.005</td>
<td>0.02</td>
</tr>
<tr>
<td>TEh 90-100ms</td>
<td>14</td>
<td>24</td>
<td>1.93</td>
<td>0.05</td>
<td>0.13</td>
</tr>
<tr>
<td>100% Hyperpolarizing</td>
<td>5</td>
<td>52</td>
<td>1.4</td>
<td>0.16</td>
<td>0.12</td>
</tr>
<tr>
<td>Hyperpolarizing I/V Slope</td>
<td>11</td>
<td>67</td>
<td>1.04</td>
<td>0.3</td>
<td>0.10</td>
</tr>
<tr>
<td>RRP</td>
<td>11</td>
<td>0</td>
<td>0.59</td>
<td>0.56</td>
<td>0.01</td>
</tr>
<tr>
<td>Refractoriness</td>
<td>7</td>
<td>45</td>
<td>0.34</td>
<td>0.74</td>
<td>0.07</td>
</tr>
<tr>
<td>TEh 10-20ms</td>
<td>4</td>
<td>82</td>
<td>0.09</td>
<td>0.93</td>
<td>0.12</td>
</tr>
</tbody>
</table>
Compound Muscle Action Potential

Nineteen studies reported maximum CMAP amplitude (ALS = 644, HC = 533), with marked heterogeneity ($I^2=88\%$). 30,41,44–46,58–70 CMAP is significantly reduced in ALS patients compared to HCs, with a mean difference of -3.58 mV (95%CI: -4.41 to -2.76).

Four studies included ALS patients with similar CMAP to HCs, suggesting testing was done earlier in the disease course ($Z=1.62$, $p=0.10$; $I^2=0\%$). 30,43,45,58 A sensitivity analysis on these four studies was performed to determine whether changes in nerve excitability could be detected prior to a decline in CMAP. The included studies were: Kanai et al. (2006), CMAP >5mV; Brum (2015), CMAP >2.84mV (Group 1); Menon (2015); and Iwai (2016), CMAP >5mV. The forest plots for measures that had significant pooled effect in the sensitivity analysis are shown in Figures 2-5.

Strength-Duration Properties

Data from 21 studies was analyzed to compare SDTC (ALS = 678, HC = 558). 29,30,41–46,58–62,65–72 SDTC was significantly longer in ALS patients compared to HCs, with a mean difference of 0.05 ms (95%CI: 0.04 to 0.06) and minimal heterogeneity ($I^2=3\%$, Figure 2). Our sensitivity analysis showed that SDTC can differentiate between patients with early ALS and HCs ($Z=2.16$, $p=0.03$).

Eleven studies reported rheobase (ALS = 298, HC = 320). 30,41,43,46,58–61,65,68,70 The mean difference was -0.29 mA (95%CI: -0.49 to -0.09), suggesting rheobase is reduced in ALS patients compared to HCs. While the overall effect was significant, the effect size was negligible (d=0.02) excluding this measure from further consideration. The sensitivity analysis demonstrated no difference in rheobase in early ALS and HCs.

Recovery Cycle
Superexcitability and subexcitability had significant pooled effect (17 studies, ALS = 624, HC = 442). Peak superexcitability was more negative in ALS compared to HCs, with a mean difference of -4.59% (95%CI: -5.64 to -3.54, Figure 3). Superexcitability distinguished patients with early ALS from HCs in the sensitivity analysis (Z=2.8, p=0.005). Subexcitability (15 studies, ALS = 586, HC 407) was significantly lower in ALS patients compared to HCs, with a mean difference of -1.69% (95%CI: -2.51 to -0.88). The sensitivity analysis demonstrated no difference in subexcitability.

Relative refractory period (RRP) and refractoriness were similar in patients and healthy controls. Eleven studies reported RRP (ALS = 283, HC = 298) with an insignificant mean difference of 0.03ms (95%CI: -0.08 to 0.15). Refractoriness was reported in seven studies (ALS = 358, HC = 175) with an insignificant mean difference of 1.25% (95%CI: -6.07 to 8.58). The sensitivity analysis revealed no difference in RRP or refractoriness between early ALS and HCs.

Threshold Electrotonus

Depolarizing threshold electrotonus excitability indices were significantly greater in ALS patients compared to HCs. In contrast, hyperpolarizing threshold electrotonus indices were similar for ALS patients and HCs. Ten studies reported TEd 10-20ms (ALS = 429, HC = 244) with a significant mean difference of 2.72% (95%CI: 1.56 to 3.87) but marked heterogeneity (I²=51%) as illustrated in Figure 4. Eight studies reported TEd 40-60ms (ALS = 181, HC = 189) with a mean difference of 3.18% (95%CI: 2.06 to 4.31). Data from 17 studies were analyzed to compare TEd 90-100s (ALS = 613, HC = 445), with a mean difference of 4.24% (95%CI: 3.40 to 5.08) as shown in Figure 5. TEd 90-100ms had the largest pooled effect of all excitability measures (Z=9.88). The results of the sensitivity analysis showed that TEd 10-20ms (Z=2.99, p=0.003) and TEd 90-100ms (Z=2.96, p=0.003) distinguished between early ALS patients and HCs.
Four studies reported TEh 10-20ms (ALS = 85, HC = 85) which had an insignificant mean difference of 0.18% (95%CI: -3.93 to 4.29).58,65,71,72 A sensitivity analysis could not be completed due to absence of reporting. Similarly, TEh 90-100ms had an insignificant mean difference of -2.89% (95%CI: -5.83 to 0.04, 14 studies, ALS = 540, HC = 371).30,43–46,58,60,63–66,70–72 The sensitivity analysis revealed no difference in TEh 90-100ms between early ALS and HCs.

Current-Threshold (I/V) Relationship

Data from four studies was analyzed to compare 50% depolarizing current (ALS = 181, HC = 96).43,63,64,71 ALS patients exhibited greater threshold reduction during 50% depolarizing current than HCs, with a mean difference of 3.02% (95%CI: 1.59 to 4.45). A sensitivity analysis could not be completed due to absence of reporting in the included studies. Results for 100% hyperpolarizing current were reported in five studies (ALS = 321, HC = 139) and had an insignificant mean difference of 10.84 (95%CI: -4.39 to 26.07).43,45,63,64,71 The sensitivity analysis revealed no difference in 100% hyperpolarizing current.

Resting I/V slope was analyzed from six studies (ALS = 155, HC = 145).41,58,61,65,67,71 Resting I/V slope was significantly reduced in ALS patients compared to HCs, with a mean difference of -0.05 (95%CI: -0.07 to -0.03). A sensitivity analysis could not be completed due to absence of reporting in the included studies. Hyperpolarizing I/V slope did not show a significant mean difference, 0.01 (95%CI: -0.01 to 0.03, 11 studies, ALS = 280, HC = 298).29,30,41,46,58,60,61,65,67,68,70 The sensitivity analysis showed no difference in hyperpolarizing I/V slope.

Methodological Quality

QUADAS-2 results for individual articles included in the systematic review (n=26) are displayed in online supplemental Table 11; a summary of the author’s judgements across all included articles is
shown in online supplemental Figure 13. Most studies (n=21) were judged to be high risk of bias in the patient selection domain due to the use of non-consecutive sampling and case-control design. The remaining studies were assessed as unclear (n=3) or low (n=2) risk of bias. Case-control is an expected study design early in the career of a medical test; therefore, an additional domain was added to the QUADAS-2 tool to assess case-control design based on the NOS criteria. The risk of bias assessment was as follows: low (n=9), unclear (n=14), or high (n=3). The unclear and high risk of bias assessments were due to inadequate reporting of healthy control selection, screening and exclusion criteria. The majority of studies (n=24) scored low for index test risk of bias; two studies had unclear risk of bias. Most studies (n=23) were judged as low risk of bias in the reference standard domain. The remaining studies had unclear (n=1) or high (n=2) risk of bias. Most studies (n=16) had low risk of bias in the flow and timing domain, while eight and two studies had unclear and high risk of bias, respectively. Seventeen studies scored low for applicability concerns related to patient selection. Eight studies were judged as unclear primarily due to long disease durations. A single study scored high for applicability concerns due to the use of axonal excitability testing on single axons; this study was excluded from the meta-analysis. Most studies (n=21) were judged as low for applicability concerns in the index test domain. The remaining studies had unclear (n=3) or high (n=2) applicability concerns. The majority of studies (n=24) had low applicability concerns for the reference standard.

DISCUSSION

This systematic review and meta-analysis demonstrated that there are seven candidate biomarkers of LMN pathology in ALS and that four of these are present at earlier stages of the disease. The candidate biomarkers come from different subtests of the TROND nerve excitability protocol [37, 40] and include: TEd 90-100ms, SDTC, superexcitability, TEd 40-60ms, resting I/V slope, 50% depolarizing current, and subexcitability.
Stimulus-Response (SR)

A decrement in CMAP is well established in ALS patients with considerable axonal degeneration.47,73,74 Therefore, it is unsurprising that the meta-analysis demonstrated that CMAP is significantly lower in ALS patients. However, a reduction in CMAP requires substantial axonal loss before becoming clinically apparent due to collateral sprouting and reinnervation.74 While some studies have proposed a reduction in CMAP as a biomarker for ALS, the results were highly variable across studies and this change is not specific to ALS. A decrement in CMAP is observed in other motor neuron disorders, such as PMA and Hirayama disease, as well as carpal tunnel syndrome.39,75 Given that reduced CMAP is not apparent until later in the disease stage and is not specific for ALS, its utility as a biomarker is limited.

Strength-Duration Properties

Studies have consistently identified a prolonged SDTC in ALS, a finding attributed to upregulation of persistent Na+ conductance.29,41,43–46,59–62,65,67,71,72 Prolonged SDTC has been shown to be a strong, independent predictor of rapid functional decline and shorter survival in ALS patients.76,77 Further, SDTC may function as an important prognostic biomarker in ALS. In contrast, the utility of rheobase as a biomarker is limited. Despite having significant pooled effect, the mean difference in rheobase was small and demonstrated 99% overlap between ALS and controls. Therefore, rheobase is not a strong biomarker for ALS.

Recovery Cycle (RC)

In ALS patients, the threshold for action potential generation is lower during the superexcitable period compared to HCs. Similar to SDTC, longitudinal changes in superexcitability are associated with shorter survival in ALS patients.59,76 The change of the subexcitable phase in ALS may arise from a
combination of passive electrotonic and active components underlying the depolarizing afterpotential.78,79

Threshold Electrotonus (TE)

Studies have consistently identified greater threshold changes in depolarizing TE of ALS patients compared to HCs. In contrast, threshold changes in hyperpolarizing TE are similar for ALS patients and HCs. Three measures of TEd were significantly different between ALS and HCs: TEd 10-20ms, TEd 40-60ms, and TEd 90-100ms. However, TEd 10-20ms had marked heterogeneity across studies, and may therefore be limited as a biomarker for ALS. These changes in TEd have been shown to become more pronounced upon follow-up, and reflect a reduction in K+ channel conductance, particularly slow K+ conductance.59,80 Further, threshold changes in TEd may serve as important diagnostic and prognostic indicators, specifically at 90-100ms, which had the largest pooled effect amongst all indices analyzed59,76.

Current-Voltage (I/V) Relationship

Resting I/V slope is significantly reduced in ALS patients compared to HCs, suggesting a reduction in conductance, and therefore, ion channels in the axonal membrane. This finding is consistent with the previous interpretation of reduced ion channel conductance in ALS.47 Additionally, there is a greater threshold reduction in response to 50% depolarizing current in ALS, consistent with the observation in TEd, suggesting reduced K+ conductance to oppose the depolarizing conditioning pulse.

Axonal Excitability in Early ALS

The sensitivity analysis on patients with early-stage disease (based on CMAP) identified four of the seven indices: TEd 10-20ms, TEd 90-100ms, superexcitability, and SDTC. This finding is consistent with findings of previous studies comparing early ALS (preserved CMAP) and late ALS (decrement in
CMAP).43,45 These early indicators may aid diagnosis of ALS as the abnormalities are observed prior to a reduction in CMAP, which requires substantial axonal loss before becoming clinically apparent.47,74,81

These measures may also be useful for monitoring disease progression and response to treatment, especially if early intervention is achieved. As the disease advances, it appears that ALS patients may experience progressive abnormalities in axonal excitability, demonstrated by an increase in the number of excitability measures that differentiate ALS patients from HCs. This inference is consistent with findings that axonal dysfunction is more prominent in patients with a greater reduction of CMAP.45

However, longitudinal excitability studies including follow-up from the time of early disease stage are necessary to test this hypothesis.

Insights for Pathophysiology

Disturbances in membrane excitability and axonal ion channel function have been identified since the earliest application of axonal excitability techniques in ALS.40 Specifically, excitability abnormalities in ALS have been attributed to increased Na+ and decreased K+ conductances.45,46,59,80

Upregulation of persistent Na+ currents produces a drive towards depolarization. This depolarizing drive is further augmented by a reduction in the hyperpolarizing slow and fast K+ currents, resulting in membrane hyperexcitability.46 Axonal excitability studies have consistently identified prolonged SDTC in ALS, suggesting an upregulation of nodal persistent Na+ currents.43,45,46,59,63 This increase in SDTC has been associated with axonal degeneration and provides evidence for the pathological role of persistent Na+ channels in ALS.40–43,46,59,67 However, reduced K+ conductance has also been suggested to lengthen SDTC.43 Several studies have found evidence for a reduction of K+ channels, as demonstrated by the abnormalities in superexcitability, subexcitability, depolarizing TE, and threshold reduction to 50% depolarizing current.43,45,46,63 Abnormalities in Na+ and K+ channel function may reflect several of the axonal excitability changes observed in ALS patients. However, a recent study suggests that altering the function of persistent Na+ channels and slow and fast K+ channels alone cannot explain the observed
changes in ALS. Rather, the changes in ALS may be best attributed to a non-selective reduction in all axonal ion channels caused by a lack of supply of axonal proteins. This study suggests that the axonal dysfunction occurring in ALS may be caused by a protein homeostasis issue, resulting in abnormal membrane excitability. This finding is supported by the reduction in resting I/V slope found in this meta-analysis, suggesting reduced axonal membrane conductance, specifically K⁺ channels open at rest.

Although the exact mechanisms by which axonal excitability changes are involved in neurodegeneration in ALS remain to be elucidated, the findings of this meta-analysis substantiate the circulating thought in narrative reviews that ALS patients experience abnormalities in ion channel conductance and resulting axonal excitability. Further, this meta-analysis provides evidence beyond a narrative review for the use of specific nerve excitability measures as LMN biomarkers for ALS.

Limitations

There are limitations to this systematic review and meta-analysis. First, the literature is saturated with case-control studies comparing axonal dysfunction in diagnosed ALS patients and HCs; the inclusion of disease controls is lacking. Therefore, while some excitability measures clearly differentiate ALS patients from HCs, due to the absence of disease controls we are unable to determine whether these measures are specific to ALS, or are representative of conditions affecting axonal health. Future diagnostic test accuracy studies investigating axonal excitability changes in ALS should include comparison to disease controls and calculate measures of sensitivity and specificity. Second, not all measures generated during an axonal excitability test were reported equally across studies; a bias was to report indices that demonstrated significant differences. This limitation may be addressed in the future by encouraging sharing of raw data and conduction of mega-analyses. Additionally, some patients were reported more than once in studies by the same authors. We were unable to separate these repeated patients from the results. However, the number of repeated patients was minimal, and we do
not suspect this skewed the results. Lastly, the data included in the meta-analysis was cross-sectional; we are unable to determine longitudinal changes in excitability. Future studies investigating axonal excitability longitudinally are warranted to fully elucidate the prognostic potential of the indices.

Conclusion

The potential for biomarkers to transform ALS diagnosis, prognostic stratification, and future therapeutic development has made the hunt for biomarkers a priority in ALS research. The seven candidate biomarkers derived from axonal excitability tests identified in this study may be useful adjuncts to the other candidate biomarkers that exist including neuroimaging techniques, TMS studies, and circulating neurofilament levels. Adding axonal excitability indices to the spectrum of candidate biomarkers for ALS may address the issue of heterogeneity by improving personalized monitoring of disease progression, prognostication, survival prediction, and monitoring of treatment response in future drug and clinical trials. Future diagnostic test accuracy (DTA) studies including disease controls are warranted to firmly establish the clinical utility of using the seven axonal excitability indices for routine clinical evaluation in individuals suspected of ALS or another mimic disorder.

ACKNOWLEDGEMENTS

We thank Dr. Meghan Sebastianski (Alberta SPOR Support Unit) for providing advice on the meta-analysis procedure. We would also like to thank the members of the ALS community for their input in shaping this review.

FUNDING
This work was supported by the Natural Sciences and Engineering Research Council of Canada (RGPIN-2017-05624). This funding agency had no further role in any aspect of the study or the writing of this report.

CONTRIBUTORS

KJ and AL had full access to the data set of this study and take responsibility for the integrity of data and the accuracy of data analysis. Conception and design: KJ, AL, and MS. Systematic search: AS. Articles screening: KJ, AL, MS, and HT. Data extraction, statistical analysis, and interpretation of data: KJ and AL. First draft of manuscript: AL. Critical revision of manuscript: KJ, AS, MS, and HT. Supervision: KJ. All authors made substantial contributions to the intellectual content of the paper and gave final approval for the final version of the manuscript.

COMPETING INTERESTS

None declared.

PROVENANCE AND PEER REVIEW

Not commissioned; externally peer reviewed.

DATA SHARING STATEMENT

All data used in this meta-analysis are available either in the main article or in supplementary materials available on Figshare https://figshare.com/s/76a237bcc221604f8a2f.
REFERENCES

58. Brum MT. Axonal hyperpolarization in amyotrophic lateral sclerosis. Published online 2015.

FIGURES

Figure 1. Prisma flow chart of study selection and reasons for exclusion.
Figure 2. Forest plot of SDTC in ALS patients and HCs. Overall effect size was significantly different between ALS patients and HCs. Diamond represents overall effect size.
Figure 3. Forest plot of superexcitability in ALS patients and HCs. Overall effect size was significantly different between ALS patients and HCs. Diamond represents overall effect size.
Figure 4. Forest plot of TEd 10-20ms in ALS patients and HCs. Overall effect size was significantly different between ALS patients and HCs. Diamond represents overall effect size.
Figure 5. Forest plot of TEd 90-100ms in ALS patients and HCs. Overall effect size was significantly different between ALS patients and HCs. Diamond represents overall effect size.
APPENDIX

Appendix A

MEDLINE Search Strategy

1. exp Motor Neuron Disease/ or exp Amyotrophic Lateral Sclerosis/
2. (moto$1 neuron$1 disease$1 or moto?neuron$1 disease).mp.
3. ((Lou Gehrig$1 adj5 syndrome$1) or (Lou Gehrig$1 adj5 disease)).mp.
4. charcot disease.tw.
5. Amyotrophic Lateral Sclerosis or als.ti,ab,kf.
6. or/1-5
7. Electric Stimulation / mt [Methods] or chronaxy/ or electromyography / mt
8. (chronaxy or neural conduction).ti,ab,kf.
9. ((axonal excitab*) or (nerve excitab*)).ti,ab,kf.
10. Evoked Potentials, Motor / ph [Physiology] or Axons / ph or Action Potentials / ph or Neural Conduction / ph [Physiology]
11. or/7-10
12. 11 AND 6
13. animals/ not (exp animals/ and humans/)
14. 12 not 13
Records identified through database searching
(n = 4867)
- MEDLINE (n = 1065)
- PubMed (n = 2115)
- CINAHL (n = 491)
- EMBASE (n = 164)
- HealthSTAR (n = 230)
- Scopus (n = 651)
- Web of Science (n = 141)
- SPORTDiscus (n = 10)

Additional records identified through other sources
(n = 0)

Records after duplicates
(n = 2866)

Records screened
(n = 2866)

Records excluded
(n = 2823)

Full-text articles assessed for eligibility
(n = 43)

Full-text articles excluded, with reasons
(n = 17)
- Wrong outcomes (n = 10)
- Abstract only (n = 2)
- Wrong patient population (n = 2)
- Wrong study design (n = 2)
- Wrong comparator (n = 1)

Studies included in qualitative synthesis
(n = 26)

Studies included in quantitative synthesis (meta-analysis)
(n = 23)
<table>
<thead>
<tr>
<th>Study or Subgroup</th>
<th>Weight</th>
<th>Mean Difference IV, Random, 95% CI</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mogyoros 1998</td>
<td>1.8%</td>
<td>0.08 [-0.00, 0.15]</td>
<td>1998</td>
</tr>
<tr>
<td>Mogyoros 1998a</td>
<td>1.2%</td>
<td>0.06 [-0.03, 0.15]</td>
<td>1998</td>
</tr>
<tr>
<td>Vucic 2006a</td>
<td>2.0%</td>
<td>0.08 [0.01, 0.15]</td>
<td>2006</td>
</tr>
<tr>
<td>Kanai 2006 - CMAP 1-5mV</td>
<td>4.9%</td>
<td>0.03 [-0.01, 0.07]</td>
<td>2006</td>
</tr>
<tr>
<td>Kanai 2006 - CMAP greater than 5mV</td>
<td>5.0%</td>
<td>0.06 [0.02, 0.10]</td>
<td>2006</td>
</tr>
<tr>
<td>Kanai 2006 - CMAP less than 1mV</td>
<td>0.7%</td>
<td>0.04 [-0.08, 0.16]</td>
<td>2006</td>
</tr>
<tr>
<td>Tamura 2006</td>
<td>5.0%</td>
<td>0.06 [0.02, 0.10]</td>
<td>2006</td>
</tr>
<tr>
<td>Vucic 2006</td>
<td>1.9%</td>
<td>0.04 [-0.03, 0.11]</td>
<td>2006</td>
</tr>
<tr>
<td>Vucic 2007</td>
<td>1.3%</td>
<td>0.09 [0.00, 0.18]</td>
<td>2007</td>
</tr>
<tr>
<td>Vucic 2010 - fALS</td>
<td>0.2%</td>
<td>0.14 [-0.06, 0.34]</td>
<td>2010</td>
</tr>
<tr>
<td>Vucic 2010 - sALS</td>
<td>3.1%</td>
<td>0.11 [0.05, 0.17]</td>
<td>2010</td>
</tr>
<tr>
<td>Shibuta 2010</td>
<td>1.9%</td>
<td>0.05 [-0.02, 0.12]</td>
<td>2010</td>
</tr>
<tr>
<td>Cheah 2012</td>
<td>4.9%</td>
<td>0.05 [0.01, 0.09]</td>
<td>2012</td>
</tr>
<tr>
<td>Vucic 2013</td>
<td>11.8%</td>
<td>0.02 [-0.01, 0.05]</td>
<td>2013</td>
</tr>
<tr>
<td>Shibuta 2013</td>
<td>2.4%</td>
<td>0.04 [-0.02, 0.10]</td>
<td>2013</td>
</tr>
<tr>
<td>Shibuya 2013</td>
<td>2.0%</td>
<td>0.09 [0.02, 0.16]</td>
<td>2013</td>
</tr>
<tr>
<td>Menon 2014</td>
<td>3.1%</td>
<td>0.04 [-0.02, 0.10]</td>
<td>2014</td>
</tr>
<tr>
<td>Menon 2014a</td>
<td>3.1%</td>
<td>0.05 [-0.01, 0.11]</td>
<td>2014</td>
</tr>
<tr>
<td>Brum 2015 - CMAP greater than 2.84mV</td>
<td>1.1%</td>
<td>0.01 [-0.08, 0.11]</td>
<td>2015</td>
</tr>
<tr>
<td>Brum 2015 - CMAP less than 2.84mV</td>
<td>0.8%</td>
<td>-0.00 [-0.11, 0.11]</td>
<td>2015</td>
</tr>
<tr>
<td>Geevasinga 2015 - fALS</td>
<td>5.0%</td>
<td>0.06 [0.02, 0.10]</td>
<td>2015</td>
</tr>
<tr>
<td>Geevasinga 2015 - sALS</td>
<td>5.0%</td>
<td>0.08 [0.04, 0.12]</td>
<td>2015</td>
</tr>
<tr>
<td>Menon 2015</td>
<td>3.1%</td>
<td>0.00 [-0.06, 0.06]</td>
<td>2015</td>
</tr>
<tr>
<td>Geevasinga 2016</td>
<td>9.9%</td>
<td>0.04 [0.01, 0.07]</td>
<td>2016</td>
</tr>
<tr>
<td>Iwai 2016 - CMAP less than 5mV</td>
<td>5.0%</td>
<td>0.07 [0.03, 0.11]</td>
<td>2016</td>
</tr>
<tr>
<td>Iwai 2016 - CMAP greater than 5mV</td>
<td>11.8%</td>
<td>0.02 [-0.01, 0.05]</td>
<td>2016</td>
</tr>
<tr>
<td>Pyun 2020</td>
<td>2.0%</td>
<td>0.02 [-0.05, 0.09]</td>
<td>2020</td>
</tr>
</tbody>
</table>

Total (95% CI) 100.0% 0.05 [0.04, 0.06]

Heterogeneity: Tau² = 0.00; Chi² = 26.74, df = 26 (P = 0.42); I² = 3%

Test for overall effect: Z = 9.00 (P < 0.00001)
<table>
<thead>
<tr>
<th>Study or Subgroup</th>
<th>Weight</th>
<th>Mean Difference</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mogyros 1998</td>
<td>5.0%</td>
<td>-1.80 [-5.42, 1.82]</td>
<td>1998</td>
</tr>
<tr>
<td>Kanai 2006 - CMAP 1-5mV</td>
<td>3.3%</td>
<td>-9.20 [-14.20, -4.20]</td>
<td>2006</td>
</tr>
<tr>
<td>Kanai 2006 - CMAP greater than 5mV</td>
<td>4.3%</td>
<td>-4.90 [-9.04, -0.76]</td>
<td>2006</td>
</tr>
<tr>
<td>Kanai 2006 - CMAP less than 1mV</td>
<td>1.2%</td>
<td>-2.30 [-11.38, 6.78]</td>
<td>2006</td>
</tr>
<tr>
<td>Tamura 2006</td>
<td>4.3%</td>
<td>-5.80 [-9.92, -1.68]</td>
<td>2006</td>
</tr>
<tr>
<td>Vucic 2006a</td>
<td>5.9%</td>
<td>-4.52 [-7.67, -1.37]</td>
<td>2006</td>
</tr>
<tr>
<td>Vucic 2007</td>
<td>3.5%</td>
<td>-1.00 [-5.78, 3.78]</td>
<td>2007</td>
</tr>
<tr>
<td>Shibuta 2010</td>
<td>4.8%</td>
<td>-5.70 [-9.46, -1.94]</td>
<td>2010</td>
</tr>
<tr>
<td>Vucic 2010 - tALS</td>
<td>2.5%</td>
<td>-0.70 [-6.58, 5.18]</td>
<td>2010</td>
</tr>
<tr>
<td>Vucic 2010 - sALS</td>
<td>4.4%</td>
<td>-3.50 [-7.52, 0.52]</td>
<td>2010</td>
</tr>
<tr>
<td>Noto 2011 - DL 4.6-5.6ms</td>
<td>1.3%</td>
<td>0.40 [-3.31, 9.11]</td>
<td>2011</td>
</tr>
<tr>
<td>Noto 2011 - DL greater than 5.7ms</td>
<td>2.0%</td>
<td>-7.90 [-14.70, -1.10]</td>
<td>2011</td>
</tr>
<tr>
<td>Noto 2011 - DL less than 4.5ms</td>
<td>5.7%</td>
<td>-4.40 [-7.63, -1.17]</td>
<td>2011</td>
</tr>
<tr>
<td>Shibuta 2013</td>
<td>4.6%</td>
<td>-4.60 [-8.52, -0.68]</td>
<td>2013</td>
</tr>
<tr>
<td>Vucic 2013</td>
<td>3.4%</td>
<td>-6.70 [-11.62, -1.78]</td>
<td>2013</td>
</tr>
<tr>
<td>Menon 2014</td>
<td>4.6%</td>
<td>-4.90 [-8.79, -1.01]</td>
<td>2014</td>
</tr>
<tr>
<td>Menon 2014a</td>
<td>4.4%</td>
<td>-4.30 [-8.32, -0.28]</td>
<td>2014</td>
</tr>
<tr>
<td>Brum 2015 - CMAP greater than 2.84mV</td>
<td>4.1%</td>
<td>-6.69 [-10.96, -2.42]</td>
<td>2015</td>
</tr>
<tr>
<td>Brum 2015 - CMAP less than 2.84mV</td>
<td>4.1%</td>
<td>-6.69 [-10.96, -2.42]</td>
<td>2015</td>
</tr>
<tr>
<td>Menon 2015</td>
<td>4.6%</td>
<td>0.10 [-3.79, 3.99]</td>
<td>2015</td>
</tr>
<tr>
<td>Geevasinga 2016</td>
<td>4.9%</td>
<td>-4.90 [-8.58, -1.22]</td>
<td>2016</td>
</tr>
<tr>
<td>Iwai 2016 - CMAP greater than 5mV</td>
<td>6.6%</td>
<td>-7.20 [-10.03, -4.37]</td>
<td>2016</td>
</tr>
<tr>
<td>Iwai 2016 - CMAP less than 5mV</td>
<td>6.1%</td>
<td>-7.90 [-10.96, -4.84]</td>
<td>2016</td>
</tr>
<tr>
<td>Pyun 2020</td>
<td>4.4%</td>
<td>0.70 [-3.34, 4.74]</td>
<td>2020</td>
</tr>
</tbody>
</table>

Total (95% CI)

100.0% -4.59 [-5.64, -3.54]

Heterogeneity: Tau² = 2.31; Chi² = 35.31, df = 23 (P = 0.05); I² = 35%

Test for overall effect: Z = 8.54 (P < 0.00001)
<table>
<thead>
<tr>
<th>Study or Subgroup</th>
<th>Weight</th>
<th>Mean Difference IV, Random, 95% CI</th>
<th>Year</th>
<th>Weight</th>
<th>Mean Difference IV, Random, 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kanai 2006 - CMAP 1-5mV</td>
<td>6.5%</td>
<td>3.40 [0.14, 6.66]</td>
<td>2006</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kanai 2006 - CMAP greater than 5mV</td>
<td>7.9%</td>
<td>1.60 [-1.04, 4.24]</td>
<td>2006</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kanai 2006 - CMAP less than 1mV</td>
<td>3.8%</td>
<td>1.00 [-4.02, 6.02]</td>
<td>2006</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nakata 2006</td>
<td>5.3%</td>
<td>0.70 [-3.22, 4.62]</td>
<td>2006</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shibuta 2010</td>
<td>7.4%</td>
<td>3.40 [0.57, 6.23]</td>
<td>2010</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Noto 2011 - DL 4.6-5.6ms</td>
<td>1.8%</td>
<td>-0.20 [-8.14, 7.74]</td>
<td>2011</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Noto 2011 - DL greater than 5.7ms</td>
<td>2.0%</td>
<td>4.40 [-3.24, 12.04]</td>
<td>2011</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Noto 2011 - DL less than 4.5ms</td>
<td>8.3%</td>
<td>-0.20 [-2.68, 2.28]</td>
<td>2011</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shibuta 2013</td>
<td>7.2%</td>
<td>1.80 [-1.13, 4.73]</td>
<td>2013</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shibuya 2013</td>
<td>5.0%</td>
<td>2.10 [-1.98, 6.18]</td>
<td>2013</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brum 2015 - CMAP greater than 2.84mV</td>
<td>9.3%</td>
<td>3.59 [1.49, 5.69]</td>
<td>2015</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brum 2015 - CMAP less than 2.84mV</td>
<td>5.8%</td>
<td>9.18 [5.56, 12.79]</td>
<td>2015</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Menon 2015</td>
<td>7.9%</td>
<td>0.30 [-2.34, 2.94]</td>
<td>2015</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Iwai 2016 - CMAP greater than 5mV</td>
<td>8.9%</td>
<td>3.90 [1.66, 6.14]</td>
<td>2016</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Iwai 2016 - CMAP less than 5mV</td>
<td>6.5%</td>
<td>6.00 [2.73, 9.27]</td>
<td>2016</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pyun 2020</td>
<td>6.6%</td>
<td>1.80 [-1.42, 5.02]</td>
<td>2020</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total (95% CI)</td>
<td>100.0%</td>
<td>2.72 [1.56, 3.87]</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Heterogeneity: Tau² = 2.61; Chi² = 30.42, df = 15 (P = 0.01); I² = 51%

Test for overall effect: Z = 4.60 (P < 0.00001)
<table>
<thead>
<tr>
<th>Study or Subgroup</th>
<th>Weight</th>
<th>Mean Difference IV, Random, 95% CI</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kanai 2006 - CMAP 1-5mV</td>
<td>4.2%</td>
<td>8.20 [4.94, 11.46]</td>
<td>2006</td>
</tr>
<tr>
<td>Kanai 2006 - CMAP greater than 5mV</td>
<td>5.1%</td>
<td>3.80 [1.01, 6.59]</td>
<td>2006</td>
</tr>
<tr>
<td>Kanai 2006 - CMAP less than 1mV</td>
<td>1.9%</td>
<td>7.40 [1.82, 12.98]</td>
<td>2006</td>
</tr>
<tr>
<td>Nakata 2006</td>
<td>3.9%</td>
<td>2.70 [-0.77, 6.17]</td>
<td>2006</td>
</tr>
<tr>
<td>Tamura 2006</td>
<td>5.8%</td>
<td>2.90 [0.44, 5.36]</td>
<td>2006</td>
</tr>
<tr>
<td>Vucic 2006a</td>
<td>4.6%</td>
<td>4.20 [1.13, 7.27]</td>
<td>2006</td>
</tr>
<tr>
<td>Shibuta 2010</td>
<td>5.4%</td>
<td>3.80 [1.16, 6.44]</td>
<td>2010</td>
</tr>
<tr>
<td>Noto 2011 - DL 4.6-5.6ms</td>
<td>3.4%</td>
<td>0.40 [-3.42, 4.22]</td>
<td>2011</td>
</tr>
<tr>
<td>Noto 2011 - DL greater than 5.7ms</td>
<td>2.4%</td>
<td>2.40 [-2.37, 7.17]</td>
<td>2011</td>
</tr>
<tr>
<td>Noto 2011 - DL less than 4.5ms</td>
<td>5.9%</td>
<td>3.50 [1.08, 5.92]</td>
<td>2011</td>
</tr>
<tr>
<td>Shibuta 2013</td>
<td>5.9%</td>
<td>3.20 [0.78, 5.62]</td>
<td>2013</td>
</tr>
<tr>
<td>Shibuya 2013</td>
<td>4.1%</td>
<td>4.00 [0.67, 7.33]</td>
<td>2013</td>
</tr>
<tr>
<td>Vucic 2013</td>
<td>3.5%</td>
<td>3.90 [0.18, 7.62]</td>
<td>2013</td>
</tr>
<tr>
<td>Menon 2014</td>
<td>4.1%</td>
<td>5.60 [2.27, 8.93]</td>
<td>2014</td>
</tr>
<tr>
<td>Menon 2014a</td>
<td>4.1%</td>
<td>5.60 [2.27, 8.93]</td>
<td>2014</td>
</tr>
<tr>
<td>Brum 2015 - CMAP greater than 2.84mV</td>
<td>1.3%</td>
<td>-1.95 [-8.96, 5.06]</td>
<td>2015</td>
</tr>
<tr>
<td>Brum 2015 - CMAP less than 2.84mV</td>
<td>1.3%</td>
<td>-0.51 [-7.53, 6.51]</td>
<td>2015</td>
</tr>
<tr>
<td>Geevasinga 2015 - fALS</td>
<td>3.3%</td>
<td>5.40 [1.49, 9.31]</td>
<td>2015</td>
</tr>
<tr>
<td>Geevasinga 2015 - sALS</td>
<td>4.7%</td>
<td>4.70 [1.71, 7.69]</td>
<td>2015</td>
</tr>
<tr>
<td>Menon 2015</td>
<td>5.6%</td>
<td>1.90 [-0.66, 4.46]</td>
<td>2015</td>
</tr>
<tr>
<td>Iwai 2016 - CMAP greater than 5mV</td>
<td>6.0%</td>
<td>5.10 [2.27, 7.46]</td>
<td>2016</td>
</tr>
<tr>
<td>Iwai 2016 - CMAP less than 5mV</td>
<td>4.8%</td>
<td>9.30 [6.36, 12.24]</td>
<td>2016</td>
</tr>
<tr>
<td>Pyun 2020</td>
<td>4.9%</td>
<td>4.30 [1.41, 7.19]</td>
<td>2020</td>
</tr>
</tbody>
</table>

Total (95% CI) 100.0% 4.24 [3.40, 5.08]

Heterogeneity: Tau² = 1.60; Chi² = 37.06, df = 23 (P = 0.03); I² = 38%
Test for overall effect: Z = 9.88 (P < 0.00001)