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ABSTRACT 31 

Background 32 

Comprehensive information about the accuracy of antigen rapid diagnostic tests (Ag-RDTs) for 33 

SARS-CoV-2 is essential to guide public health decision makers in choosing the best tests and testing 34 

policies. In August 2021, we published a systematic review and meta-analysis about the accuracy of 35 

Ag-RDTs. We now update this work and analyze the factors influencing test sensitivity in further detail. 36 

Methods and findings 37 

We registered the review on PROSPERO (registration number: CRD42020225140). We systemat-38 

ically searched multiple databases (PubMed, Web of Science Core Collection, medRvix, bioRvix, and 39 

FIND) for publications evaluating the accuracy of Ag-RDTs for SARS-CoV-2 until August 31, 2021. De-40 

scriptive analyses of all studies were performed, and when more than 4 studies were available, a ran-41 

dom-effects meta-analysis was used to estimate pooled sensitivity and specificity with reverse tran-42 

scription polymerase chain reaction (RT-PCR) testing as a reference. To evaluate factors influencing 43 

test sensitivity, we performed 3 different analyses using multivariate mixed-effects meta-regression 44 

models. We included 194 studies with 221,878 Ag-RDTs performed. Overall, the pooled estimates of 45 

Ag-RDT sensitivity and specificity were 72.0% (95% confidence interval [CI] 69.8 to 74.2) and 98.9% 46 

(95% CI 98.6 to 99.1), respectively. When manufacturer instructions were followed, sensitivity in-47 

creased to 76.4% (95%CI 73.8 to 78.8). Sensitivity was markedly better on samples with lower RT-PCR 48 

cycle threshold (Ct) values (sensitivity of 97.9% [95% CI 96.9 to 98.9] and 90.6% [95% CI 88.3 to 93.0] 49 

for Ct-values <20 and <25, compared to 54.4% [95% CI 47.3 to 61.5] and 18.7% [95% CI 13.9 to 23.4] 50 

for Ct-values ≥25 and ≥30) and was estimated to increase by 2.9 percentage points (95% CI 1.7 to 4.0) 51 

for every unit decrease in mean Ct-value when adjusting for testing procedure and patients’ symptom 52 

status. Concordantly, we found the mean Ct-value to be lower for true positive (22.2 [95% CI 21.5 to 53 

22.8]) compared to false negative (30.4 [95% CI 29.7 to 31.1]) results. Testing in the first week from 54 

symptom onset resulted in substantially higher sensitivity (81.9% [95% CI 77.7 to 85.5]) compared to 55 

testing after 1 week (51.8%, 95% CI 41.5 to 61.9). Similarly, sensitivity was higher in symptomatic 56 
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(76.2% [95% CI 73.3 to 78.9]) compared to asymptomatic (56.8% [95% CI 50.9 to 62.4]) persons. How-57 

ever, both effects were mainly driven by the Ct-value of the sample. With regards to sample type, 58 

highest sensitivity was found for nasopharyngeal (NP) and combined NP/oropharyngeal samples 59 

(70.8% [95% CI 68.3 to 73.2]), as well as in anterior nasal/mid-turbinate samples (77.3% [95% CI 73.0 60 

to 81.0]). 61 

Conclusion 62 

Ag-RDTs detect most of the individuals infected with SARS-CoV-2, and almost all when high viral 63 

loads are present (>90%). With viral load, as estimated by Ct-value, being the most influential factor 64 

on their sensitivity, they are especially useful to detect persons with high viral load who are most likely 65 

to transmit the virus. To further quantify the effects of other factors influencing test sensitivity, stand-66 

ardization of clinical accuracy studies and access to patient level Ct-values and duration of symptoms 67 

are needed.  68 
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INTRODUCTION 69 

Antigen rapid diagnostic tests (Ag-RDTs) for SARS-CoV-2 have proven to be a cornerstone in 70 

fighting the COVID-19 pandemic, as they provide results quickly and are easy to use [1]. Nevertheless, 71 

the Ag-RDTs’ performance differs widely between manufacturers, the way they are performed, and 72 

the patients in which they are used [2, 3]. Thus, a comprehensive synthesis of evidence on commer-73 

cially available Ag-RDTs and the factors influencing their accuracy is vital to guide public health decision 74 

makers in choosing the right test for their needs [4]. 75 

We previously conducted a living systematic review (available online at www.diagnosticsglob-76 

alhealth.org and updated weekly until August 31, 2021), summarizing the accuracy of commercially 77 

available Ag-RDTs reported in scientific literature. In an earlier analysis, including studies up until April 78 

30, 2021, the pooled estimates of Ag-RDT sensitivity and specificity were 71.2% (95% confidence inter-79 

val (CI) 68.2% to 74.0%) and 98.9% (95% CI 98.6% to 99.1%), respectively, with the SARS-CoV-2 Antigen 80 

Test (LumiraDx, UK; henceforth called LumiraDx) being the most sensitive [4]. Since then, many addi-81 

tional studies have been published with a substantial increase in studies assessing asymptomatic par-82 

ticipants, allowing for further sub-analysis of findings [3]. In prior studies, we and others found Ag-RDT 83 

sensitivity to decrease significantly in persons with lower viral load, as estimated by Ct-value, as well 84 

as asymptomatic persons or persons with more than 7 days since symptom onset (DOS > 7) [4]. How-85 

ever, studies including symptomatic patients enroll persons typically within days since onset of symp-86 

toms [5], when viral load is highest [6, 7]. On the contrary, studies including only asymptomatic persons 87 

have a higher chance of including persons at a later stage in the disease and thus with lower viral load. 88 

Therefore, the decrease in Ag-RDT sensitivity might only be driven by viral load, irrespective of persons’ 89 

symptom status. 90 

With the present work, we aim not only to give an updated overview on the accuracy of commer-91 

cially available Ag-RDTs, but also to further explore the impact of viral load, the presence of symptoms 92 

and testing procedure on the accuracy of Ag-RDTs.  93 
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METHODS 94 

We developed a study protocol following standard guidelines for systematic reviews [8, 9], which 95 

is available in the supplements (S1 Text). We also completed the PRISMA checklist (S1 PRISMA Check-96 

list), and registered the review on PROSPERO (registration number: CRD42020225140). 97 

 98 

Search strategy 99 

We performed a search of the databases PubMed, Web of Science, medRxiv, and bioRxiv. The 100 

search terms were developed with an experienced medical librarian (M. Grilli), using combinations of 101 

subject headings (when applicable) and text-words for the concepts of the search question. The main 102 

search terms were “Severe Acute Respiratory Syndrome Corona-virus 2”, “COVID-19”, “Betacorona-103 

virus”, “Coronavirus”, and “Point of Care Testing” with no language restrictions. The full list of search 104 

terms is available in S2 Text. We also manually searched the website of FIND, the global alliance for 105 

diagnostics (https://www.finddx.org/sarscov2-eval-antigen/), for additional relevant studies. We per-106 

formed the search bi-weekly through August 31, 2021. The last manual search of the FIND website was 107 

performed on September 10, 2021. In addition to conducting the present review, we updated our 108 

website www.diagnosticsglobalhealth.org weekly with the latest search results based on the methods 109 

outlined below. 110 

 111 

Inclusion criteria 112 

We included studies evaluating the accuracy of commercially available Ag-RDTs to establish a di-113 

agnosis of SARS-CoV-2 infection at the point-of-care (POC), against reverse transcription polymerase 114 

chain reaction (RT-PCR) or cell culture as reference standard. We included all study populations irre-115 

spective of age, presence of symptoms or study location. We considered cohort studies, nested cohort 116 

studies, case–control or cross-sectional studies, and randomized studies. We included both peer-re-117 

viewed publications and preprints. 118 
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We excluded studies, in which patients were tested for the purpose of monitoring or ending quar-119 

antine. Also, publications with a population size smaller than 10 were excluded (although the size 120 

threshold of 10 is arbitrary, such small studies are more likely to give unreliable estimates of sensitivity 121 

and specificity). Analytical accuracy studies, where tests are performed on spiked samples with a 122 

known quantity of virus, were also excluded. 123 

 124 

Index tests 125 

Ag-RDTs for SARS-CoV-2 aim to detect infection by recognizing viral proteins (typically the SARS-126 

CoV-2 nucleoprotein). Most Ag-RDTs dedicated for point-of-care deployment use specific labeled an-127 

tibodies attached to a nitrocellulose matrix strip (lateral flow assay), to capture and detect the viral 128 

antigen. Successful binding of the antibodies to the antigen either is detected visually by the appear-129 

ance of a line on the matrix strip or through a specific reader instrument for fluorescence detection. 130 

Other point-of-care instrument-based tests use chips or cartridges that enable an automated immu-131 

noassay testing procedure. Ag-RDTs typically provide results within 10 to 30 minutes [10]. 132 

 133 

Reference standard 134 

Viral culture detects viable virus that is relevant for transmission but is only available in research 135 

settings. Since RT-PCR tests are more widely available and SARS-CoV-2 RNA (as reflected by RT-PCR 136 

cycle threshold [Ct] value) highly correlates with SARS-CoV-2 antigen quantities [11], we considered 137 

RT-PCR an acceptable reference standard for the purposes of this systematic review. Where an inter-138 

national standard for the correlation of the viral load to the Ct-values was used, we also report the 139 

viral load [12]. 140 

 141 

The study selection, data extraction, assessment of the quality of studies and their independence 142 

from manufacturers were performed as per prior description [4]. The data items extracted can be 143 

found in the Supplement (S1 Table). 144 
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 145 

Statistical analysis and data synthesis 146 

We extracted raw data from the studies and recalculated performance estimates where possible 147 

based on the extracted data. Also, some primary studies reported the median Ct-value along with the 148 

first and third interquartile range (IQR) and/or minimum and maximum values rather than the sample 149 

mean and standard deviation. To incorporate these studies in our analyses, we applied the Quantile 150 

Estimation approach [13] to estimate the mean and standard deviation of the Ct-values. In an effort to 151 

use as much of the heterogeneous data as possible, the cutoffs for the Ct value groups were relaxed 152 

by 2–3 points within each range. The <20 group included values reported up to ≤20, the <25 group 153 

included values reported as ≤24 or <25 or 20–25, and the <30 group included values from ≤29 to ≤33 154 

and 25–30. The ≥25 group included values reported as ≥25 or 25 to 30, and the ≥30 group included 155 

values from ≥30 to ≥35. For the same reason, when categorizing by age, the age group <18 years (chil-156 

dren) included samples from persons whose age was reported as <16 or <18 years, whereas the age 157 

group ≥18 years (adults) included samples from persons whose age was reported as ≥16 or ≥18 years. 158 

Also, for the symptom duration groups, the ≤7 days group included ≤4, ≤5, ≤6, 6 to 7, ≤7 and ≤9 days, 159 

and the >7 days group >5, 6 to 10, 6-21, >7 and 8 to 14 days. The raw data can be found in the supple-160 

ments (S2 Table) and with more details online (https://doi.org/10.11588/data/T3MIB0). We prepared 161 

forest plots for the sensitivity and specificity of each test and visually evaluated the heterogeneity 162 

between studies. 163 

If 4 or more datasets were available with at least 20 RT-PCR-positive samples per dataset for a 164 

predefined analysis, a meta-analysis was performed. We report pooled estimates of sensitivity and 165 

specificity for SARS-CoV-2 detection along with 95% confidence intervals (CIs) using a bivariate model 166 

(implemented with the “reitsma” command from the R package “mada,” version 0.5.10). In subgroup 167 

analyses (below), where papers presented data only on sensitivity, a univariate random effects inverse 168 

variance meta-analysis was performed (using the “metagen” command from the R package “meta”, 169 

version 5.1-1, and the “rma” command from the R package “metafor”, version 3.0-2). When there were 170 
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fewer than 4 studies for an index test, only a descriptive analysis was performed, and accuracy ranges 171 

are reported. 172 

We predefined subgroups for meta-analysis based on the following characteristics: Ct value 173 

range, testing procedure in accordance with manufacturer’s instructions as detailed in the instructions 174 

for use (IFU) (henceforth called IFU-conforming) versus not IFU-conforming, age (<18 versus ≥18 175 

years), sample type, presence or absence of symptoms, symptom duration (<7 days versus ≥7 days), 176 

viral load, and type of RT-PCR assay used. We also provide mean Ct-value across true positive and false 177 

negative test results. For categorization by sample type, we assessed (1) nasopharyngeal (NP) alone or 178 

combined with other (e.g., oropharyngeal [OP]), (2) OP alone, (3) anterior nasal (AN) or mid-turbinate 179 

(MT), (4) a combination of bronchoalveolar lavage and throat wash (BAL/TW), or (5) saliva.  180 

We applied multivariate linear mixed-effect meta-regression models to explore factors that affect 181 

diagnostic test sensitivity. Based on our previous analysis [4], we a priori defined an individual’s time 182 

since infection and sample type and condition as underlying factors, influencing test sensitivity through 183 

an individual’s symptom status (symptomatic vs. asymptomatic), the samples’ viral load (estimated by 184 

the mean Ct-value as presented in the study for the sub cohort of interest) and the testing procedure 185 

(IFU- vs. not IFU-conforming). We performed 3 different analyses, each of which obtained unadjusted 186 

and adjusted estimates (i.e., an estimate of the association between a factor and test sensitivity, hold-187 

ing the other covariates in the model constant) of the effect of factors on test sensitivity. 188 

In the first analysis, we estimated the direct effect of symptom status, viral load and testing pro-189 

cedure on test sensitivity. For the second and third analysis, we restricted the meta-regression models 190 

to data sets of symptomatic persons due to a lack of data. Specifically, the second analysis assessed 191 

the effect of time since infection (estimated as the sample mean of symptom duration), viral load, and 192 

testing procedure on test sensitivity. The third analysis also assessed the effect of time since infection, 193 

viral load, and testing procedure on test sensitivity, but depicted the time since infection as a binary 194 

covariate of the symptom duration subgroup (≤7 vs >7 days). Further details on the implementation of 195 

the meta-regression models and the underlying casual diagrams are available in the Supplement (S3 196 
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Text, S3a to S3c). Data sets with less than 5 RT-PCR positives were excluded. We considered an effect 197 

to be statistically significant when the regression coefficient’s 95% confidence interval did not include 198 

0. The analyses were performed using the “metafor” R package, version 3.0-2 [14].  199 

As recommended to investigate publication bias for diagnostic test accuracy meta-analyses, we 200 

performed the Deeks test for funnel-plot asymmetry [15] (using the “midas” command in Stata, ver-201 

sion 15); a p-value < 0.10 for the slope coefficient indicates significant asymmetry. 202 

 203 

Sensitivity analysis 204 

3 sensitivity analyses were performed: estimation of sensitivity and specificity excluding case–205 

control studies, estimation of sensitivity and specificity excluding not peer-reviewed studies, and esti-206 

mation of sensitivity and specificity excluding studies that were potentially influenced through test 207 

manufacturers. We compared the results of each sensitivity analysis against the overall results to as-208 

sess the potential bias introduced by case–control, not peer-reviewed, and manufacturer-influenced 209 

studies. 210 

 211 

RESULTS 212 

SUMMARY OF STUDIES  213 

The systematic search resulted in 31,254 articles. After removing duplicates, 11,462 articles were 214 

screened and 433 papers were considered eligible for full-text review. Of these, 259 were excluded 215 

because they did not present primary data or the Ag-RDT was not commercially available, leaving 174 216 

studies to be included in the systematic review [16-189]. A list of the studies excluded and their reason 217 

for exclusion can be found in the Supplement (S4 Text). Further 20 studies were included from the 218 

FIND website [190-209] (Fig 1). 219 

 220 
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 221 

Fig 1: PRISMA flow diagram 222 

Based on Page, M.J., et al. [210]. Abbreviations: Ag-RDT = antigen rapid diagnostic tests; IFU = 223 

instructions for use. 224 

 225 

At the end of the data extraction process, 21 studies were still in preprint form [16, 17, 21, 47, 50, 226 

55, 58, 65, 69, 74, 84, 100, 116, 121, 129, 160, 167, 168, 173, 174, 186]. All studies were written in 227 

English, except for 3 in Spanish [53, 62, 134], 1 in Turkish [95], and 1 in French [153]. Out of the 196 228 

studies, 26 conducted a case-control study [21, 32, 34, 66, 67, 72, 81, 84, 88-90, 93, 94, 96, 103, 108, 229 

135, 140, 144, 145, 151, 156, 166, 168, 182, 184], while the remaining 168 were cross-sectional or 230 

cohort studies. The reference method was RT-PCR in all except 1 study, which used viral culture [135]. 231 

The 194 studies were divided into 333 data sets. Across these, 76 different Ag-RDTs were evalu-232 

ated (75 lateral flow assays, of which 63 are interpreted visually and 12 required an automated, pro-233 

prietary reader; 1 assay is an automated immunoassay). The most common reasons for testing were 234 
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the occurrence of symptoms (98 data sets; 29.4% of data sets) and screening of asymptomatic persons 235 

with (3; 0.9%) or without (22; 6.6%) close contact to a SARS-CoV-2 confirmed case. In 142 (42.6%) of 236 

the data sets, individuals were tested due to more than 1 of the reasons mentioned and for 68 (20.4%) 237 

the reason for testing was unclear. 238 

In total, 221,878 Ag-RDTs were performed, with a mean number of samples per study of 666 239 

(Range 15 to 22,994). The age of the individuals tested was specified for only 90,986 samples, of which 240 

84,124 (92.5%) were from adults (age group ≥18) and 6,862 (7.5%) from children (age group <18). 241 

Symptomatic persons comprised 74,118 (33.4%) samples, while 97,982 (44.2%) samples originated 242 

from asymptomatic persons, and for 49,778 (22.4%) samples the participant’s symptom status was not 243 

stated by the authors. The most common sample type evaluated was NP and mixed NP/OP (117,187 244 

samples, 52.8%), followed by AN/MT (86,354 samples, 38.9%). There was substantially less testing 245 

done on the other sample types, with 3,586 (1.6%) tests done from OP samples, 1,256 (0.6%) from 246 

saliva, 219 (0.1%) from BAL/TW and for 13,276 (6.0%) tests the type of sample was not specified in the 247 

respective studies. 248 

A summary of the tests evaluated in clinical accuracy studies, including study author, sample size, 249 

sample type, sample condition, IFU conformity, and symptom status can be found in Supplement (S2 250 

Table). The Standard Q test (SD Biosensor, South Korea; distributed in Europe by Roche, Germany; 251 

henceforth called Standard Q) was the most frequently used with 57 (17.1%) data sets and 36,246 252 

(16.3%) tests, while the Panbio test (Abbott Rapid Diagnostics, Germany; henceforth called Panbio) 253 

was assessed in 55 (16.5%) data sets with 38,620 (17.4%) tests performed. Detailed results for each 254 

clinical accuracy study are available in the Supplement (S1 Fig). 255 

 256 

METHODOLOGICAL QUALITY OF STUDIES 257 

The findings on study quality using the QUADAS 2 tool are presented in Fig 2a and b. In 294 258 

(88.3%) data sets a relevant study population was assessed. However, for only 68 (20.4%) of the data 259 

sets the selection of study participants was considered representative of the setting and population 260 
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chosen (i.e., they avoided inappropriate exclusions or a case-control design and enrollment occurred 261 

consecutive or randomly). 262 

 263 

 264 

Fig 2a&b: (a)Methodological quality of the clinical accuracy studies (risk of bias) (b) Methodo-265 

logical quality of the clinical accuracy studies (applicability) 266 

 267 

The conduct and interpretation of the index tests was considered to have low risk of bias in 176 268 

(52.9%) data sets (e.g., through appropriate blinding of persons interpreting the visual read-out). How-269 

ever, for 155 (46.5%) data sets sufficient information to clearly judge the risk of bias was not provided. 270 

In only 151 (45.3%) data sets the Ag-RDTs were performed according to IFU, while 138 (41.4%) were 271 

not IFU-conforming, potentially impacting the diagnostic accuracy; for 44 (13.2%) data sets the IFU 272 

status was unclear. The most common deviations from the IFU were (1) use of samples that were pre-273 

diluted in transport media not recommended by the manufacturer (113 data sets; 12 unclear), (2) use 274 

of banked samples (103 data sets; 12 unclear), and (3) a sample type that was not recommended for 275 

Ag-RDTs (8 data sets; 11 unclear). 276 

In 126 (37.8%) data sets the reference standard was performed before the Ag-RDT, or the opera-277 

tor conducting the reference standard was blinded to the Ag-RDT results, resulting in a low risk of bias. 278 
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In almost all other data sets (206; 61.9%) this risk could not be assessed, due to missing information 279 

and for 1 data set (0.3%) intermediate concern was raised. The applicability of the reference test was 280 

judged to be of low concern for all data sets, as viral culture or RT-PCR are considered to adequately 281 

define the target condition for the purpose of this study. 282 

In 327 (98.2%) data sets, the sample for the index test and reference test were obtained at the 283 

same time, while this was unclear in 6 (1.8%). In 226 (67.9%) data sets, the same RT-PCR assay was 284 

used as the reference of all included samples, while in 85 (25.5%) data sets multiple RT-PCR assays 285 

were used as the reference. For 22 (6.6%) data sets, the RT-PCR used as reference standard was un-286 

clear. Furthermore, for 19 (5.7%) data sets, there was a concern that not all selected study participants 287 

were included in the analysis. 288 

Finally, 45 (23.3%) of the studies received financial support from the Ag-RDT manufacturer. In 13 289 

of these as well as in 2 others (in total 7.7% of all studies), employment of the authors by the manu-290 

facturer of the Ag-RDT studied was indicated. The respective studies are listed in the Supplement (S5 291 

Text). Overall, a competing interest was found in 47 (24.2%) of the studies. Detailed assessment of 292 

each QUADAS domain can be found in the Supplement (S2 Fig). 293 

 294 

DETECTION OF SARS-COV-2 INFECTION 295 

Overall, 38 data sets were excluded from the meta-analysis, as they included fewer than 20 RT-296 

PCR positive samples. An additional 28 data sets were missing either sensitivity or specificity and were 297 

only considered for univariate analyses. The remaining 267 data sets, evaluating 198,584 tests, pro-298 

vided sufficient data for bivariate analysis. The results are presented in Fig 3a-e. Detailed results for 299 

the subgroup analysis are available in the Supplement (S3 Fig, S4 Fig, S5 Fig, S6 Fig and S7 Fig). 300 

Including any test and type of sample, the pooled estimates of sensitivity and specificity were 301 

72.0% (95%CI 69.8 to 74.2) and 98.9% (95%CI 98.6 to 99.1), respectively. If testing was performed 302 

according to IFU, sensitivity increased to 76.4% (95%CI 73.8 to 78.8) compared to not IFU-conforming 303 
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testing with a sensitivity of 66.7% (95%CI 62.6 to 70.6). Pooled specificity was similar in both groups: 304 

99.1% (95% CI 98.8-99.3) and 98.4% (95% CI 97.8 to 98.8), respectively (Fig 3a). 305 

 306 

Subgroup analysis by Ct-value 307 

In samples with Ct-values <20 a very high estimate of sensitivity was found (97.9% [95% CI 96.9 308 

to 98.9]). The pooled sensitivity for Ct-values <25 was markedly better at 90.6% (95% CI 88.3 to 93.0) 309 

compared to the group with Ct  25 at 54.4% (95% CI 47.3 to 61.5). A similar pattern was observed 310 

when the Ct-values were analyzed using cut-offs <30 or ≥30, resulting in an estimated sensitivity of 311 

76.8% (95% CI 73.1 to 80.4) and 18.7% (95% CI 13.9 to 23.4), respectively (Fig 3b). 312 

When pooling Ct-value estimates for true positive (TP) Ag-RDT results (TP; 5,083 samples; 69 data 313 

sets) and false negative (FN) (2,408 samples; 78 data sets) Ag-RDT results, the mean Ct-values were 314 

22.2 (95% CI 21.5 to 22.8) and 30.4 (95% CI 29.7 to 31.1), respectively (S8 Fig). Across both TP and FN 315 

samples, mean Ct-value was 26.3 (95% CI 25.5 to 27.1). This demonstrates that RT-PCR positive sam-316 

ples missed by Ag-RDT have a substantially lower viral load (higher Ct-value) compared to those that 317 

were detected. Individual forest plots for each data set with mean Ct-values are presented in the Sup-318 

plement (S9 Fig). 319 

 320 

Subgroup analysis by sample type 321 

Most data sets evaluated NP or combined NP/OP swabs (197 data sets and 104,341 samples) as 322 

the sample type for the Ag-RDT. NP or combined NP/OP swabs achieved a pooled sensitivity of 70.8% 323 

(95% CI 68.3 to 73.2) and specificity of 98.8% (95% CI 98.6 to 99.1). Data sets that used AN/MT swabs 324 

for Ag-RDTs (52 data sets and 84,020 samples) showed a summary estimate for sensitivity of 77.3% 325 

(95% CI 73.0 to 81.0) and specificity of 99.1% (95% CI 98.6 to 99.4). However, 2 studies that reported 326 

direct head-to-head comparison of NP and AN/MT samples from the same participants using the same 327 

Ag-RDT (Standard Q) reported equivalent performance [112, 113]. In contrast, saliva swabs (4 data 328 

sets, 1,216 samples) showed the lowest pooled sensitivity with only 50.1% (95% CI 7.7 to 92.3) (Fig 3c). 329 
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In 3 of the data sets utilizing a saliva sample, saliva was collected as whole mouth fluid [20, 88, 150]. 330 

The fourth used a cheek swab for sample collection [51]. 331 

Due to only 3 data sets with 3586 samples, we were not able to estimate pooed sensitivity and 332 

specificity for OP samples. Median sensitivity and specificity were 59.4% (range 50.0% to 81.0%) and 333 

99.1% (range 99.0% to 100.0%), respectively. We were also not able to perform a subgroup meta-334 

analysis for BAL/TW due to insufficient data, with only 1 study with 73 samples evaluating the Biocredit 335 

Covid-19 Antigen rapid test kit (RapiGEN, South Korea; henceforth called Rapigen), Panbio and Stand-336 

ard Q available and sensitivity ranging between 33.3% and 88.1% [151]. However, the use of BAL/TW 337 

sampling would be considered not IFU-conforming.  338 

 339 

Subgroup analysis in symptomatic and asymptomatic participants 340 

Within the data sets possible to meta-analyze, 55,186 (43.2%) samples were from symptomatic 341 

and 72,457 (56.8%) from asymptomatic persons. The pooled sensitivity for symptomatic persons was 342 

markedly higher compared to asymptomatic persons with 76.2% (95% CI 73.3 to 78.9) vs. 56.8% (95% 343 

CI 50.9 to 62.4). Specificity was above 98.6% for both groups (Fig 3d). 344 

 345 

Subgroup analysis comparing symptom duration 346 

Data were analyzed for 9,470 persons from 26 data sets with symptoms less than 7 days, while 347 

for persons with symptoms  7 days fewer data were available (620 persons, 13 data sets). The pooled 348 

sensitivity estimate for individuals with symptoms <7 days was 81.9% (95% CI 77.7 to 85.5), which is 349 

markedly higher than the 51.8% (95% CI 41.5 to 61.9) sensitivity for individuals tested  7 days from 350 

onset of symptoms (Fig 3d). 351 

 352 

Subgroup analysis by age 353 

For adults (age group ≥18), it was possible to pool estimates across 62,433 samples, whereas the 354 

pediatric group (age group <18) included 5,137 samples. There was only a small difference with 355 
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overlapping confidence intervals in sensitivity with 74.8% (95% CI 71.5 to 77.8) and 69.8% (95% CI 61.0 356 

to 77.3) for the adult and pediatric group, respectively. For those data sets that reported a median Ct-357 

value per age group, the Ct-value was slightly lower in the adult (median 22.6; Q1 = 20.5; Q3 = 24.6; 358 

48 data sets) compared to the pediatric group (median 23.2; Q1 = 20.3; Q3 = 25.2; 3 data sets). Speci-359 

ficity was similar in both groups with over 99% (Fig 3e). 360 

 361 

 362 
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Fig 3a-e: Pooled sensitivity and specificity by IFU conformity, Ct-value*, sample type, symptom 363 

status, duration of symptoms and age 364 

*Low Ct-values are the RT-PCR semi-quantitative correlate for a high virus concentration. Abbre-365 

viations: N = number of, CI = confidence interval, IFU = instructions for use, NP = nasopharyngeal, AN 366 

= anterior nasal, MT = mid turbinate, *only sensitivity calculated 367 

 368 

META REGRESSION 369 

The first analysis, assessing all variables that could influence sensitivity (symptom status, testing 370 

procedure [IFU-conforming vs. not IFU-conforming], and mean Ct-value), included 65 data sets of 371 

symptomatic and 18 of asymptomatic persons. The second and third analysis assessed only sympto-372 

matic persons with 28 and 50 data sets, respectively. The full list of data sets for each analysis and 373 

detailed results are available in the Supplement (S3 Text). 374 

In the first analysis, we found viral load (as estimated by Ct-value) to be the driving factor of 375 

sensitivity. Sensitivity was estimated to increase by 2.9 percentage points (95% CI 1.7 to 4.0) for every 376 

unit the mean Ct-value decreased (Fig 4, Supplement Text S3d), after adjusting for symptom status and 377 

testing procedure. In addition, sensitivity was estimated to be 20.0 percentage points (95% CI 13.7 to 378 

26.3) higher for samples from symptomatic compared to asymptomatic participants. However, when 379 

controlling for testing procedure and mean Ct-value, this difference declined to only 11.1 percentage 380 

points (95% CI 4.8 to 17.4). The difference between IFU-conforming vs. not IFU-conforming testing 381 

procedure was not significant (5.2 percentage points [95% CI -2.6 to 13.0] higher for IFU-conforming) 382 

after controlling for symptom status and mean Ct-value. 383 

 384 
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 385 

Fig 4: Pooled estimate of sensitivity across mean Ct-values holding symptom status and IFU-386 

status constant at their respective means 387 

Dotted lines are the corresponding 95% confidence intervals. The size of each point is a function 388 

of the weight of the data set in the model, where larger data sets have larger points. Abbreviations: Ct 389 

= cycle threshold 390 

 391 

When assessing only symptomatic participants, test sensitivity was estimated to decrease by 3.2 392 

percentage points (95% CI -1.5 to 7.9) for every 1 day increase in average duration of symptoms (mean 393 

duration of symptoms ranged from 2.75 to 6.47 days). However, with the confidence interval including 394 

the value zero, this effect was not statistically significant. When controlling for mean Ct-value and test-395 

ing procedure, the estimated effect of the average duration of symptoms was close to 0 (0.7 percent-396 

age points [95% CI -5.0 to 6.4], Supplement Text S3e). 397 

Concordantly, for samples collected after 7 days of symptom onset sensitivity was estimated to 398 

be 22.9 percentage points [95%CI 10.3 to 35.4] lower compared to those collected within 7 days. When 399 

controlling for mean Ct-value and testing procedure, the model still showed a decrease in sensitivity 400 
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for samples collected after 7 days of symptom onset, but again closer to zero and no longer statistically 401 

significant (-13.8 percentage points [95% CI -27.7 to 0.1], Supplement Text S3f).  402 

 403 

ANALYSIS OF INDIVIDUAL TESTS 404 

Based on 179 data sets with 143,803 tests performed, we were able to perform bivariate meta-405 

analysis of the sensitivity and specificity for 12 different Ag-RDTs (Fig 5). Across these, pooled estimates 406 

of sensitivity and specificity on all samples were 71.6% (95%CI 69.0 to 74.1) and 99.0% (95% CI 98.8 to 407 

99.2), which were very similar to the overall pooled estimate across all meta-analyzed data sets (72.0% 408 

and 98.9%, above). 409 

 410 

 411 

Fig 5: Bivariate analysis of 12 Ag-RDTs 412 

Pooled sensitivity and specificity were calculated based on reported sample size, true positives, 413 

true negatives, false positives, and false negatives. Abbreviations: N = number of, CI = confidence in-414 

terval 415 

 416 

The highest pooled sensitivity was found for the SARS-CoV-2 Antigen Test (LumiraDx, United King-417 

dom; henceforth called LumiraDx) and the Standard Q nasal test (SD Biosensor, South Korea; 418 
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distributed in Europe by Roche, Germany; henceforth called Standard Q nasal) with 82.7% (95% CI 73.2 419 

to 89.4) and 81.4% (95% CI 73.8 to 87.2), respectively. However, all tests except the COVID-19 Ag Respi-420 

Strip (Coris BioConcept, Belgium; henceforth called Coris; sensitivity 48.4% (95% CI 36.1 to 61.0) had 421 

confidence intervals that were overlapping. The pooled specificity was above 98% for all of the tests, 422 

except for the Standard F test (SD Biosensor, South Korea; henceforth called Standard F) and LumiraDx 423 

with specificities of 97.9% (95% CI 96.9 to 98.5) and 96.9% (95% CI 94.4 to 98.3), respectively. Hierar-424 

chical summary receiver-operating characteristic for LumiraDx and Standard Q nasal are available in 425 

the Supplement (S10 Fig). 426 

For 2 Ag-RDTs, we were only able to perform a univariate analysis, due to insufficient data. Sen-427 

sitivities for the COVID-19 Rapid Antigen Test Cassette (SureScreen, United Kingdom; henceforth called 428 

SureScreen V) and the Nadal COVID-19 Ag Test (Nal von Minden, Germany; henceforth called Nadal) 429 

were similar with 57.7% (95% CI 40.9 to 74.4) and 56.6% (95% CI 26.9 to 86.3), respectively (Fig S11). 430 

Specificity was only possible to calculate for the Nadal, which was lowest throughout the per test anal-431 

ysis with 91.1% (95% CI 80.2 to 100). For the remaining 62 Ag-RDTs, there were insufficient numbers 432 

of data sets for a uni-or bivariate meta-analysis, but performance estimates for each of these tests are 433 

descriptively compared in the Supplement (S3 Table). 434 

For Panbio and Standard Q, it was also possible to pool sensitivity per Ct-value subgroup for each 435 

individual test. Panbio and Standard Q reached sensitivities of 97.2% (95% CI 95.3 to 99.2) and 98.1% 436 

(95% CI 96.3 to 99.9) for Ct-value <20, 89.8% (95% CI 85.4 to 94.3) and 92.6% (95% CI 88.5 to 96.7) for 437 

Ct-value <25 and 73.7% (95% CI 66.0 to 81.3) and 75.7% (95% CI 67.9 to 83.4) for Ct-value <30, respec-438 

tively. For Ct-value ≥20 sensitivities for Panbio and Standard Q were 89.2% (95% CI 82.1 to 96.3) and 439 

89.0% (95% CI 81.0 to 96.9), 51.3% (95% CI 32.9 to 69.7) and 57.0% (95% CI 36.9 to 77.0) for Ct-value 440 

≥25, and 22.8% (95% CI 11.3 to 34.3) and 23.7% (95% CI 13.6 to 33.8) for Ct-value ≥30, respectively (S4 441 

Fig A-F). For BinaxNow (Abbott Rapid Diagnostics, Germany), LumiraDx, SD Biosensor, Standard F, Coris 442 

and INNOVA SARS-CoV-2 Antigen Rapid Qualitative Test (Innova Medical Group, USA; henceforth 443 

called Innova) sufficient data to pool sensitivity was only available for certain Ct-values, which are 444 
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available in the Supplement (S4 Fig A-F) as well. In addition, for 8 tests it was possible to calculate 445 

pooled sensitivity and specificity estimates only including data sets that conformed to the IFU. These 446 

are also listed in the Supplement (S4 Table). 447 

In total, 31 studies accounting for 106 data sets conducted head-to-head clinical accuracy evalu-448 

ations of different tests using the same sample(s) from the same participant. These data sets are out-449 

lined in the Supplement (S2 Table). 9 studies performed their head-to-head evaluation as per IFU and 450 

on symptomatic individuals. Across 4 studies, the Standard Q nasal (sensitivity 80.5% to 91.2%) and 451 

the Standard Q (sensitivity 73.2% to 91.2%) showed a similar range of sensitivity [112, 126, 211]. 1 452 

study reported a sensitivity of 60.4% (95% CI 54.9 to 65.6) for the Standard Q and 56.8% (95% CI 51.3 453 

to 62.2) for the Panbio in a mixed study population of symptomatic, asymptomatic and high-risk con-454 

tact persons [186]. Another study described a sensitivity of 56.4% (95% CI 44.7 to 67.6) for the Rapigen 455 

and 52.6% (95% CI 40.9 to 64) for the SGTi-flex COVID-19 Ag (Sugentech, South Korea) [160]. 1 study 456 

included only very few samples and using a not IFU-conforming sample type (BAL), limiting the ability 457 

to draw conclusions from the results [151]. 458 

 459 

SENSITIVITY ANALYSIS 460 

We performed 3 sensitivity analyses including 213 data sets for non-case-control studies, 216 461 

data sets including only peer reviewed studies and 190 data sets including only data sets without any 462 

manufacturer influence. When excluding case-control studies, the sensitivity and specificity remained 463 

at 71.9% (95% CI 69.4 to 74.2) and 99.0% (95% CI 98.8 to 99.2), respectively. Similar, when assessing 464 

only peer reviewed studies sensitivity and specificity did not change significantly with 71.1% (95% CI 465 

68.5 to 73.6) and 98.9% (95% CI 98.6 to 99.1), respectively. If studies that could have potentially been 466 

influenced by test manufacturers were excluded, sensitivity decreased marginally, but with overlap-467 

ping confidence intervals (sensitivity of 70.3% [95% CI 67.6 to 72.9] and specificity of 99.0% [95% CI 468 

98.7 to 99.2]). 469 

  470 
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DISCUSSION 471 

After reviewing 194 clinical accuracy studies, we found Ag-RDTs to be 76.4% (95%CI 73.8 to 78.8) 472 

sensitive and 99.1% (95% CI 98.8 to 99.3) specific in detecting SARS-CoV-2 compared to RT-PCR when 473 

performed according to manufacturers’ instructions. Viral load as estimated by Ct-value was the de-474 

ciding factor for sensitivity, confirming prior work [11]. There was a significant correlation between 475 

test sensitivity and Ct-value, with sensitivity increasing by 2.9 percentage points for every unit decrease 476 

in mean Ct-value when controlling for symptom status and testing procedure. The pooled Ct-value for 477 

TP was on average over 8 points lower than for FN results (Ct-value of 22.2 for TP compared to 30.4 478 

for FN results). A decrease in performance when not following manufacturer’s instructions was sug-479 

gested but was not significant (-5.2 percentage points [95% CI -13.0 to 2.6]). 480 

Furthermore, sensitivity was found to be higher when samples were from symptomatic (76.2% 481 

sensitivity) compared to asymptomatic participants (56.8% sensitivity). This was confirmed in the re-482 

gression model, estimating sensitivity to be 20.0 percentage points higher in samples that originated 483 

from symptomatic participants. In our previous analysis, we assumed that the increase in sensitivity is 484 

not due to the symptom status as such, but results from the fact that in symptomatic study populations 485 

chances are higher to include participants at the beginning of the disease with high viral load [4]. In 486 

the present analysis, this assumption shows to be largely true. Controlling for Ct-value, the RT-PCR 487 

correlate for viral load, the effect of symptomatic vs. asymptomatic participants on test sensitivity 488 

strongly decreased to 11.1 percentage points. As others found symptomatic and asymptomatic indi-489 

viduals to have the same viral load when at the same stage of the disease [6], we would have expected 490 

the regression coefficient to have decreased even further to 0. This non-zero difference in sensitivity 491 

between symptomatic and asymptomatic participants may be due to the lack of access to individual 492 

participant Ct-values, which required our analyses to control for the mean Ct-value over all participants 493 

in a data set rather than the individual Ct-values. Furthermore, some variability is likely introduced by 494 

the testing for the Ag-RDT and the RT-PCR not to occur from the sample. Therefore, some degree of 495 

residual confounding is likely present.  496 
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We also found sensitivity to be higher when participants were tested within 7 days of symptom 497 

onset (81.9% sensitivity) compared to > 7 days (51.8% sensitivity). Concordantly, our regression model 498 

estimated that sensitivity decreases by 3.2 percentage points for every 1 day increase in mean symp-499 

tom duration. Again, this decrease in sensitivity is driven by viral load as was seen when controlling for 500 

Ct-value. Importantly, it is not yet clear how the emergence of new SARS-CoV-2 variants of concern 501 

and the growing vaccination coverage will affect Ag-RDTs sensitivity in the early days after symptom 502 

onset. Most of the studies included in this analysis were performed at the time the wildtype and Alpha 503 

variant were circulating. While data confirmed similar Ag-RDT sensitivity in the Delta variant compared 504 

to wildtype, for the Omicron SARS-CoV-2 variant the first data in analytical studies suggests similar and 505 

possibly lower performance [212, 213]. Vaccination did not affect viral kinetics in the first week [214] 506 

and is unlikely to do so for the Omicron variant [215]. To further inform public health decision makers 507 

on the best strategy to apply Ag-RDTs, clinical accuracy studies in settings with high prevalence of the 508 

Omicron variant are urgently needed.  509 

Looking at specific tests, LumiraDx and Standard Q nasal showed the highest sensitivity, perform-510 

ing above the 80% sensitivity target defined by the World Health Organization. However, while the 511 

Standard Q nasal was 99.1% (95% CI 98.4 to 99.5) specific, the LumiraDx only had a specificity of 96.9% 512 

(95% CI 94.4-98.3), which is just below the WHO target of 97%. The reason for the lower specificity is 513 

unclear, particularly as independent analytical studies also confirmed the test had no cross-reactivity 514 

[102]. Sample to sample variability must be considered, particularly as the sensitivity of the index tests 515 

approaches that of the reference test. The 2 most often evaluated tests, namely Panbio (32,370 sam-516 

ples; sensitivity of 71.9%) and Standard Q (35,664 samples; sensitivity of 70.9%), performed slightly 517 

below the overall average. Similarly, Panbio and Standard Q were also the most extensively evaluated 518 

Ag-RDTs in the prior analysis, and with a sensitivity slightly above average [4]. Nonetheless, this up-519 

dated analysis indicates that there is limited added value is to be expected from any further analysis 520 

of Ag-RDTs’ overall sensitivity or the sensitivity of the most widely-evaluated tests. However, it will be 521 

important to continue to reassess tests’ analytical sensitivity for detection of new specific variants 522 
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(e.g., Omicron). Also, it would be of interest to evaluate the characteristics of specific formats of Ag-523 

RDTs, such as Ag-RDTs that are self-performed or those that are instrument-based. 524 

Furthermore, sensitivity strongly differed between studies that conducted the Ag-RDTs as per 525 

manufacturer’s instructions and those that did not (sensitivity of 66.7% for not IFU-conforming vs. 526 

76.4% for IFU-conforming). With regards to sample types, saliva showed a markedly lower sensitivity 527 

of 50.1%, compared to NP or AN/MT samples, confirming what we found in our previous analysis [4]. 528 

Especially in light of the current debate on whether saliva or throat swabs might be a more sensitive 529 

sample to detect the SARS-CoV-2 Omicron variant than NP or AN/MT samples [216-218], further re-530 

search is urgently needed to quantify the difference in viral load resulting from different sample types 531 

and thus the effect of sample type on test sensitivity. 532 

In concordance with the above, many studies reporting an unusually low sensitivity performed 533 

the Ag-RDT not as per IFU [26, 28, 40, 66, 97, 108, 133, 184] or used saliva samples [20, 150, 155, 219]. 534 

However, 2 studies with IFU-conforming testing procedure on NP or AN/MT sample, still showed a low 535 

sensitivity. This quite likely results from the on average low viral load in 1 study [49], and the asymp-536 

tomatic study population in the other [175]. On the contrary, compared to the other studies unusual 537 

high sensitivity was found in studies where average viral load was high [45, 84, 144, 145] or participants 538 

were mainly within the first week of symptom onset [42, 54, 135]. 539 

The main strength of our study lies in its living approach. The ability to update our methodology 540 

as the body of evidence grows has enabled more improved analysis. For example, while data were too 541 

heterogenous for a meta-regression during the prior analysis, with additional datasets we are now able 542 

to analyze the relationship between an Ag-RDT’s sensitivity, the samples’ Ct-value, and the partici-543 

pants’ symptom status in depth. Similarly, we decided to focus on clinical accuracy studies for POC Ag-544 

RDTs in this current review as analytical accuracy studies require a dedicated approach to be compa-545 

rable. Furthermore, the main results of our latest extractions are publicly available on our website. 546 

This has not only equipped public health professionals with an up-to-date overview on the current 547 
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research landscape [220, 221], but also led other researchers and the test manufacturers to check our 548 

data, improving the quality of our report through continuous peer-review. 549 

Nonetheless, our study is limited in that we use RT-PCR as a reference standard to assess the 550 

accuracy of Ag-RDTs, which might be a less appropriate reference standard than viral culture [135, 551 

222]. However, viral culture is available in research settings only and its validity as a true proxy of actual 552 

transmissibility is not proven, therefore we find RT-PCR a suitable reference standard for the clinical 553 

accuracy studies included in this review. Furthermore, we fully acknowledge that Ct-value is not equiv-554 

alent to viral load, and that the correlation between Ct-value and viral load varies between RT-PCR 555 

assays; nonetheless, we believe that the analysis of pooled Ct-value data across a very large data set 556 

is a useful strategy to understand the overall contribution of viral load to Ag-RDT performance. Finally, 557 

we are aware that the test specific sensitivities and specificities can be influenced by differences in 558 

study design. However, we aimed to counterbalance this effect by assessing relevant aspects in study 559 

design for each study and analyzing outliers. To enhance comparability in between clinical accuracy 560 

studies, future studies should include individuals at a similar stage in the disease, use the same sample 561 

types and adhere to the WHO standard for measuring SARS-CoV-2 viral load [12]. 562 

 563 

CONCLUSION 564 

In summary, Ag-RDTs detect most of the persons infected with SARS-CoV-2 when performed ac-565 

cording to the manufacturers’ instructions. While this confirms the results of our previous analysis, the 566 

present analysis highlights that the sample’s viral load is the most influential factor underlying test 567 

sensitivity. Thus, Ag-RDTs can play a vital role in detecting persons with high viral load and therefore 568 

likely to be at highest risk of transmitting the virus. This holds true even in the absence of patient 569 

symptoms or differences in the duration of symptoms. To foster further research analyzing specific Ag-570 

RDTs and the factors influencing their sensitivity in more detail, standardization of clinical accuracy 571 

studies and access to patient level Ct-value and duration of symptoms are essential.  572 
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