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ABSTRACT 

Up to one of every six individuals diagnosed with one cancer will be diagnosed with a second 

primary cancer in their lifetime. Genetic factors contributing to the development of multiple primary 

cancers, beyond known cancer syndromes, have been underexplored. To characterize genetic 

susceptibility to multiple cancers, we conducted a pan-cancer, whole-exome sequencing study of 

individuals drawn from two large prospective cohorts (6,429 cases, 165,853 controls). We created 

two groupings of individuals diagnosed with multiple primary cancers: 1) an overall combined set 

with at least two cancers across any of 36 organ sites; and 2) cancer-specific sets defined by an 

index cancer at one of 16 organ sites with at least 50 cases from each study population. We then 

investigated whether variants identified from exome sequencing were associated with these sets 

of multiple cancer cases in comparison to individuals with one and, separately, no cancers. We 

identified 22 variant-phenotype associations, 10 of which have not been previously discovered 

and were significantly overrepresented among individuals with multiple cancers, compared to 

those with a single cancer. Overall, we describe variants and genes that may play a fundamental 

role in the development of multiple primary cancers and improve our understanding of shared 

mechanisms underlying carcinogenesis. Further investigation of these findings may lead to new 

screening strategies for individuals at risk for multiple primary cancers.   
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INTRODUCTION 1 

The substantial global burden of cancer coupled with increasing survival due to improved 2 

screening, surveillance, and treatments has yielded a growing number of cancer survivors who 3 

are at risk of developing a second primary cancer in their lifetime1,2. The prevalence of multiple 4 

primary cancers globally is estimated to be between 2 and 17%, with the wide range likely due to 5 

differences in cancer registration practices, case definitions, population characteristics, and 6 

follow-up times1,2. Cancer predisposition syndromes, such as Li-Fraumeni, Lynch, and hereditary 7 

breast and ovarian cancer, are known to increase the risk of multiple primary cancers; however, 8 

less than 2% of all cancers are attributed to hereditary cancer syndromes1. Genetic risk factors 9 

for multiple primary cancers beyond known syndromes are not well understood. 10 

 11 

Genome-wide association studies (GWAS) have implicated many common, low penetrance 12 

variants in 5p15 (TERT-CLPTM1L)3, 6p21 (HLA)4,5, 8q246, and other loci in the risk of several 13 

cancer types. Additional studies have investigated pleiotropy in these regions or characterized 14 

cross-cancer susceptibility variants7,8. A pleiotropic locus has the potential to not only affect risk 15 

of many different cancer types, but also increase the likelihood that a single individual develops 16 

multiple primary cancers. In our prior work, we discovered that the rare pleiotropic variant 17 

HOXB13 G84E had a stronger association with the risk of developing multiple primary cancers 18 

than of a single cancer9. This suggests that there may be increased power to detect pleiotropic 19 

variation in individuals with multiple primary cancers relative to those with only a single cancer. 20 

Identifying widespread pleiotropic signals is informative for understanding shared genetic 21 

mechanisms of carcinogenesis, toward the identification of informative markers for cancer 22 

prevention and precision medicine.  23 

 24 

In this study, we survey the landscape of rare and common variation in individuals with multiple 25 

primary cancers, single cancers, and cancer-free controls through whole-exome sequencing 26 
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(WES) in two large, multi-ancestry studies. We evaluate associations previously discovered in 27 

studies of individuals with a single cancer and find novel pleiotropic variation in individuals with 28 

multiple primaries.   29 

 30 

MATERIAL AND METHODS 31 

Study Populations and Phenotyping 32 

Our study included ancestrally diverse individuals with multiple primary cancers or no cancer from 33 

two large prospective studies: the Kaiser Permanente Research Bank (KPRB) and the UK 34 

Biobank (UKB). From the KPRB, we included individuals who were previously genotyped through 35 

the Research Program on Genes, Environment and Health (RPGEH) and the ProHealth Study. 36 

For the UKB, we specifically studied participants from the 200K release of WES data, which also 37 

included individuals diagnosed with a single cancer10.  38 

 39 

For both study populations, ascertainment of cancer diagnoses has been previously 40 

described11,12. Both studies included prevalent and incident diagnoses of malignant, borderline, 41 

and in situ primary tumors12. ICD codes indicating non-melanoma skin cancer or metastatic 42 

cancer were not considered primary tumors. Cancers were primarily defined according to the 43 

SEER site recode paradigm13. However, for hematologic cancers, we incorporated morphology 44 

following WHO classifications14, placing cancers into three major subtypes: lymphoid neoplasms, 45 

myeloid neoplasms, and NK- and T-cell neoplasms (Table S1). Cases were individuals with ICD-46 

9 or ICD-10 codes for primary tumors at two or more distinct organ sites. In the KPRB, controls 47 

without a cancer diagnosis were matched 1:1 to cases on age at specimen collection, sex, 48 

genotyping array (which matched on self-reported race/ethnicity), and reagent kit.  In the UKB, 49 

controls included all individuals without a cancer diagnosis.  50 

 51 
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In both study populations, we excluded duplicates/twins and first-degree relatives, retaining the 52 

individual from each related pair who had higher coverage at targeted sites. Following quality 53 

control (QC) of WES data (described below), the KPRB and UKB study populations used in this 54 

project included 3,111 and 3,318 cases with multiple primary cancers and 3,136 and 162,717 55 

cancer-free controls, respectively. The UKB also contributed 29,091 individuals with a single 56 

cancer diagnosis. While our study was primarily unselected for cancer type, prostate cancer cases 57 

were oversampled in the KPRB due to inclusion of individuals from the ProHealth Study. 58 

 59 

Genetic Ancestry and Principal Components Analysis 60 

Genetic ancestry was defined using genome-wide, imputed array data that underwent extensive 61 

QC, as previously described12. Ancestry principal components (PCs) were computed using 62 

flashPCA215 by projecting our study samples onto PCs defined by 1000G phase 3 reference 63 

populations16. Individuals were assigned to the closest reference population using distance from 64 

the top 10 PCs. Individuals with ancestral PCs greater than five standard deviations from the 65 

reference population mean were excluded. The final analytic dataset included individuals of 66 

European, African, East Asian, South Asian, and Hispanic/Latino ancestry (Figure S1). A total of 67 

N = 646 (10.2%) and N= 8,739 (5.26%) individuals were of non-European ancestry in the KPRB 68 

and UKB, respectively (Table 1).   69 

 70 

Whole-Exome Sequencing and Quality Control 71 

The Regeneron Genetics Center used the Illumina NovaSeq 6000 platform to perform WES for 72 

both study populations. Sample preparation and QC were performed using a high-throughput, 73 

fully-automated process that has been previously described in detail17. Briefly, following 74 

sequencing, reads were aligned to the GRCh38 reference genome and variants were called with 75 

WeCall17 for the KPRB and DeepVariant18 for the UKB. Samples with gender discordance, 20x 76 

coverage at less than 80% of targeted sites, and/or contamination greater than 5% were excluded.  77 
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 78 

Additional QC was applied to filter low quality variants and related individuals. First, genotype 79 

calls with low depth of coverage (DP) were updated to missing (DP < 7 for SNPs and DP < 10 for 80 

indels). Then, sites with low allele balance (AB) were removed. Specifically, variants without at 81 

least one sample having AB ³ 15% for SNPs or AB ³ 20% for indels were excluded. Additionally, 82 

variants with missingness > 10% and HWE p-value < 10-15 were excluded. Following these steps, 83 

a total of ~3.51M high-quality sites were retained for the KPRB and ~15.92M were retained for 84 

the UKB; excluding singletons, there were ~1.36M and ~8.22M variants, respectively. In the UKB, 85 

the larger number of variants observed was due to rare variation present in the larger sample 86 

size; when restricting to common variants (MAF > 1%), there were ~186K and ~137K variants, 87 

respectively for the KPRB and UKB. 88 

 89 

Association Analyses in Individuals with Multiple Cancers versus Cancer-Free Controls 90 

Genetic association analyses of single variants and genes investigated the following cancer 91 

phenotypes: (1) diagnosis with at least two primary cancers across any of the 36 organ sites ("any 92 

2+ primary cancers”) and (2) groupings of individuals defined by a shared index cancer at one of 93 

16 organ sites with at least 50 cases from each study population. ("cancer-specific analyses”). 94 

Primary analyses compared multiple cancer cases to cancer-free controls. Within our cancer-95 

specific analyses of 16 organ sites, there were cases shared across our index cancer groupings. 96 

For example, the set of individuals with at least one diagnosis of breast cancer overlaps with those 97 

having at least one ovarian cancer diagnosis.  98 

 99 

Single-variant and gene-based association analyses were performed using REGENIE v2.2.4, a 100 

machine-learning approach for performing whole-genome regression that adjusts for case-control 101 

imbalance by applying saddlepoint approximation when the standard case-control p-value is less 102 

than 0.0519. We assessed single-variant associations for high-quality variants with minor allele 103 
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count (MAC) > 2. WES variants were functionally annotated using SnpEff v5.020 and dbNFSP 104 

v3.521 accessed through ANNOVAR22. Missense variants were classified using five algorithms: 105 

(1) SIFT (“D”); (2) HDIV from Polyphen2; (3) HVAR from Polyphen2; (4) LRT (“D”); and (5) 106 

MutationTaster (“A” or “D”). For our gene-based burden analyses, we used three minor allele 107 

frequency cut-offs (MAF < 0.5%, 1%, or 5%), including singletons, computed within each 108 

population. Following previous work, three gene-based models were evaluated23: (1) all rare 109 

variants with predicted loss-of-function (pLOF) by SnpEff, (2) pLOF and missense rare variants 110 

predicted to be deleterious by the above five classification algorithms, and (3) pLOF and missense 111 

rare variants predicted to be deleterious by at least one algorithm. Out of all allele frequency and 112 

burden combinations, we report the burden test with the lowest p-value. In the case of ties, we 113 

report the most restrictive grouping (fewest number of variants included). In our gene-based and 114 

single-variant analyses, we adjusted for covariates including age, top 10 PCs, and sex (except 115 

for sex-specific index cancers of the breast, cervix, ovary, uterus, other female genital organ, and 116 

prostate). In the KPRB population, we additionally adjusted for genotyping array and reagent kit, 117 

as they were used to perform case-control matching. In the UKB, we adjusted for flow cell (S2 vs 118 

S4), which differed for the initial 50K and subsequent 150K release of WES samples. 119 

 120 

Single-variant and gene-based burden analyses for each phenotype were combined across study 121 

populations in a fixed-effects meta-analysis using METASOFT24 and metafor v3.0.225, 122 

respectively. For our single-variant analyses, we report all suggestive, independent [linkage 123 

disequilibrium (LD) r2 < 0.2] associations with p < 5x10-6. For our gene-based analyses, we report 124 

all associations adjusted for the number of genes tested (p < 2.65x10-6 = 0.05/ 18,842). We report 125 

meta-analysis p-values (Main Text), except when a variant was unique to a single study 126 

population (Supplements).   127 

 128 

Distinguishing Susceptibility Signals for Multiple Cancers versus Single Cancers 129 
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We also evaluated whether the variants and genes associated with the diagnosis of multiple 130 

primary cancers (versus non-cancer controls) remained associated when comparing individuals 131 

with multiple cancers to those diagnosed with a single cancer. These analyses assessed whether 132 

the variants or genes were pleiotropic for developing multiple cancers or general markers of 133 

susceptibility to a specific cancer. We undertook these analyses in the UKB sample only, since 134 

individuals diagnosed with a single primary cancer were not sequenced in the KPRB. Single-135 

variant and gene-level analyses were implemented as described above. For each variant or gene 136 

of interest identified in our case-control analyses, we performed a case-case analysis comparing 137 

individuals diagnosed with multiple cancers to those diagnosed with a single cancer. For our 138 

cancer-specific analyses, we compared individuals diagnosed with the index cancer plus any 139 

other cancer to those diagnosed with the index cancer only. For example, for a finding discovered 140 

in our cancer-specific analysis of prostate cancer, we performed a case-case analysis comparing 141 

individuals diagnosed with prostate cancer plus any other cancer to individuals with only a 142 

prostate cancer diagnosis.  143 

 144 

RESULTS 145 

Characterization of Multiple Primary Cancer Diagnoses in Two Large Study Populations 146 

Our meta-analyses included 6,429 cases with multiple primary cancers and 165,853 cancer-free 147 

controls (Table 1). All cases had at least two independent primary cancer diagnoses, and 656 148 

cases had more than two diagnoses (Figure S2). In the KPRB, the maximum number of cancer 149 

diagnoses for an individual was 6 (n = 1) and in the UKB, the maximum number was 5 (n = 2). 150 

Overall, 36 unique cancer sites were represented across multiple cancer cases in the two study 151 

populations, with 180 unique pairs of sites (e.g., breast and melanoma) and 298 unique pairs of 152 

sites and diagnostic sequence (e.g., breast followed by melanoma) (Table S2). Only 51 of the 153 

298 ordered pairs had at least 25 cancer cases when grouping individuals by first and second 154 

cancer diagnosis (i.e., ignoring any subsequent cancer diagnoses; Table S2, Figure 1). The top 155 
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ordered pairs represented in the combined study populations were prostate then melanoma (N = 156 

221), cervix then breast (N = 202), melanoma then prostate (N = 180), breast then melanoma (N 157 

= 174), and prostate then colorectal (N = 170). Prostate, breast, melanoma, colorectal, and cervix 158 

were the most common sites of first cancer diagnoses (Figure 1). The prevalence of each cancer 159 

pair was similar in the KPRB and UKB (Figure S3). As most individual cancer pairs were 160 

underpowered for downstream analysis, we considered all multi-cancer cases combined, as well 161 

as groupings of individuals with a shared index cancer (16 cancers) (Figure S4, Table S3). Among 162 

those with multiple cancers, the cancers with the largest number of cases were prostate (N = 163 

1,977; oversampled in KPRB), breast (N = 1,874), melanoma (N = 1,443), colorectal (N = 1,324), 164 

and urinary bladder (N = 829).  165 

 166 

Exome-wide Single Variant Association Analyses 167 

We found 22 associations (p < 5x10-6) between individual variants and the multiple cancer 168 

phenotypes (i.e., either any 2+ primary cancers or cancer-specific analyses) (Figure 2, Table S4). 169 

We found an additional four associations (Figure S5) in our cancer-specific analyses of lymphoid 170 

and myeloid neoplasms; however, we assumed them to represent somatic alterations in the blood 171 

as they had low allele balance across our heterogenous samples (Figure S6) and occur in genes 172 

known to be impacted by clonal hematopoiesis of indeterminate potential (CHIP)26. Results were 173 

relatively homogeneous across the KPRB and UKB study populations (Table S4). 174 

 175 

We detected two variants associated with any 2+ primary cancers, rs555607708 (OR [95% CI] = 176 

2.72 [1.79, 4.15], p = 3.10x10-6), a frameshift variant in CHEK2 known to be associated with risk 177 

at many cancer sites27, and rs146381257 (OR [95% CI] = 7.82 [3.28, 18.62], p = 3.45x10-6), a 178 

5’upstream variant in ZNF106. The risk-increasing allele for rs555607708 (CHEK2) was most 179 

commonly found among individuals with at least one breast cancer (41.9%), prostate cancer 180 

(30.6%), melanoma (22.6%), or cervical cancer (16.1%) (Figure 2). For rs146381257 (ZNF106), 181 



 10 

frequencies were increased in prostate cancer (33.3%), lung cancer (28.6%), breast cancer 182 

(28.6%), lymphoid neoplasms (23.8%), urinary bladder cancer (19.0%), pancreatic cancer 183 

(14.3%), and kidney cancer (14.3%).  184 

 185 

Cancer-specific analyses identified 10 associations between previously reported risk variants for 186 

a single cancer and risk of diagnosis with that cancer plus any other cancer (Figure 2). Notably, 187 

we detected an association with the MC1R variant rs1805008 for melanoma28 (OR [95% CI] = 188 

1.56 [1.35, 1.81], p = 2.73x10-9), when comparing all individuals with at least one melanoma 189 

diagnosis plus any other cancer diagnosis to cancer-free controls. We also replicated the 190 

previously associated prostate-specific antigen (PSA) variant, rs1763254229 (KLK3, OR [95% CI] 191 

= 1.49 [1.28, 1.73], p = 3.87x10-7) in individuals with at least one prostate cancer diagnosis. In 192 

addition, we replicated associations between missense risk variant rs6998061 (8q24 locus, 193 

POU5F1B) and multiple tumor types in both our prostate cancer-specific analysis30 (OR [95% CI] 194 

= 1.23 [1.13, 1.33], p = 4.39x10-7) and our colorectal cancer-specific analysis31 (OR [95% CI] = 195 

1.25 [1.15, 1.37], p = 1.06x10-7). 196 

 197 

The remaining variants demonstrating associations with multiple cancer phenotypes were not 198 

previously associated with any single cancer (Figure 2). They included a variant discovered in our 199 

breast cancer-specific analysis, rs143745791 (NCBP1, OR [95% CI] = 5.95 [2.79, 12.67], p = 200 

3.76x10-6), for which 16.2% of carriers, restricted to cases, had a breast and cervical cancer 201 

diagnosis, and a variant discovered in our urinary bladder cancer-specific analysis, rs141647689 202 

(SDK1, OR [95% CI] = 9.29 [3.63, 23.80], p = 3.45x10-6), for which 14.3% of carriers also had 203 

prostate cancer (Figure 2). Three variants found in our lymphoid neoplasm-specific analysis had 204 

increased frequencies in cases who also had a diagnosis of prostate cancer: rs535484207 205 

(RANBP2, OR [95% CI] = 256.01 [26.82, 2,442.95], p = 1.46x10-6), rs139586367 (UFL1, OR [95% 206 

CI] = 284.06 [27.95, 2,886.15], p = 1.79x10-6), and rs191064896 (ADGRB1, OR [95% CI] = 108.36 207 
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[15.02, 781.08], p = 3.32x10-6), where 21.4%, 40.0%, and 25.0% of carriers for the risk-increasing 208 

allele, for each respective variant, had both cancers. The ADGRB1 variant was also present at 209 

increased frequencies among individuals with a lymphoid neoplasm and breast cancer diagnosis 210 

(25.0%, Figure 2). 211 

 212 

Gene-Based Analyses of Multiple Cancers 213 

Out of 18,842 genes tested, we found 11 significant associations (p < 2.65x10-6) across our 214 

analyses of any 2+ primary cancers and our cancer-specific analyses (Figure 3, Table S5). An 215 

additional four CHIP genes (ASXL1, TET2, JAK2, and DDX41) were significantly associated with 216 

myeloid neoplasms and are likely driven by somatic alterations (Figure S7). 217 

 218 

In our analyses of any 2+ primary cancers and our breast cancer-specific analysis, we replicated 219 

associations for known pleiotropic genes, BRCA2 (pLOF, p = 3.76x10-11 and 1.91x10-9) and 220 

CHEK2 (pLOF + missense, p = 2.95x10-11 and 1.67x10-8) (Figure 3). BRCA2 also emerged in our 221 

ovarian cancer-specific analysis (pLOF, p = 1.91x10-9). We found associations between the 222 

known prostate cancer gene ATM and any 2+ primary cancers and in our prostate cancer-specific 223 

analysis (pLOF + missense, p = 9.84x10-7 and 2.56x10-6). Additional associations were observed 224 

between SAMHD1 and SLC642 and any 2+ primary cancers (pLOF + missense, p = 2.40x10-7 225 

and p = 5.44x10-7, respectively). BRCA1 also surfaced in the breast cancer-specific analysis 226 

(pLOF, p = 6.68x10-8), as did AHCTF1 in the head and neck cancer-specific analysis (pLOF + 227 

missense, p = 1.25x10-6).  228 

 229 

Functional variants in BRCA1 and BRCA2 were present at increased frequencies in individuals 230 

with a breast cancer diagnosis and ovary as an additional cancer site (Figure 3), such that 28.6% 231 

and 13.6% of individuals, respectively, were a carrier for at least one variant in the burden set. 232 

For BRCA1, there was also an increase of carriers with an additional melanoma (9.52%) or lung 233 
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cancer (9.52%) diagnosis. For BRCA2, there was an increase of carriers with an additional uterine 234 

(8.47%), lung (6.78%), or colorectal cancer (6.78%).  235 

 236 

Comparison of Mutation Burden in Individuals with Multiple versus Single Cancers 237 

Out of the 22 associated variants (above), 10 remained associated when comparing individuals 238 

with multiple cancers to those with single cancers (Table S6; p < 0.05). Two of these variants 239 

were positively associated in our analysis of any 2+ primary cancers: rs555607708 (CHEK2; OR 240 

[95% CI] = 1.57 [1.09, 2.25], p = 0.015) and rs146381257 (ZNF106; OR [95% CI] = 5.38 [1.07, 241 

27.18], p = 0.042). The other eight variants were positively associated with diagnosis of a specific 242 

index cancer plus any other cancer versus the specific cancer alone (Table S6). Two of these 243 

eight variants were associated in our breast cancer-specific case-case analysis: rs7872034, a 244 

missense variant in SMC2 (OR [95% CI] = 1.16 [1.05, 1.27], p = 0.0025) and rs143745791, a 245 

missense variant in NCBP1 (OR [95% CI] = 3.71 [2.08, 6.61], p = 8.37x10-6). 246 

 247 

Of the 11 findings from the gene-level burden analyses (above), seven remained positively 248 

associated with multiple cancers in comparison with single cancers (p<0.05; Table S7). Four of 249 

these genes were discovered in our case-case analysis of any 2+ primary cancers: ATM (OR 250 

[95% CI] = 1.20 [1.06, 1.36], p = 0.00399), CHEK2 (OR [95% CI] = 1.56 [1.23, 1.98], p = 2.31x10-251 

4), SAMHD1 (OR [95% CI] = 1.56 [1.14, 2.13], p = 5.34x10-3), and BRCA2 (OR [95% CI] = 1.86 252 

[1.31, 2.65], p = 5.43x10-4). ATM (OR [95% CI] = 1.31[1.01, 1.68], p = 0.038) was positively 253 

associated in our prostate cancer-specific case-case analysis, and the two remaining genes were 254 

positively associated in our breast cancer-specific case-case analysis: BRCA1 (OR [95% CI] = 255 

2.38 [1.07, 5.30], p = 0.034) and BRCA2 (OR [95% CI] = 1.97 [1.22, 3.18], p = 0.0055).  256 

 257 

DISCUSSION  258 
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We investigated the genetic basis of carcinogenic pleiotropy through whole exome sequencing of 259 

individuals diagnosed with multiple primary cancers from two large, multi-ancestry study 260 

populations. Comparing individuals with multiple cancers to cancer-free controls uncovered 22 261 

independently associated variants, ten of which remained associated when comparing individuals 262 

with multiple cancers to those with a single cancer. We also found significant associations 263 

between the genes AHCTF1, ATM, BRCA1/2, CHEK2, SAMHD1, and SLC6A2 and our multiple 264 

cancer phenotypes. Other than AHCTF1 and SLC6A2, these genes remained associated with 265 

multiple cancer diagnoses when comparing to individuals with a single cancer. These findings 266 

offer insights into germline exome variants that increase an individual’s risk of developing multiple 267 

primary cancers. 268 

 269 

Compelling findings from our analyses of all individuals with more than one cancer diagnosis 270 

include associations with the rare variant rs146381257 in ZNF106. Carriers of the rs146381257 271 

risk allele (C) were primarily over-represented in individuals with at least one prostate, breast, 272 

lung, or urinary bladder cancer and in individuals with lymphoid neoplasms. Carriers also 273 

demonstrated an increased risk of developing multiple cancers compared to individuals with a 274 

single cancer. ZNF106 is an RNA binding protein involved in post-transcriptional regulation and 275 

insulin receptor signaling. Although germline variation in ZNF106 has not previously been 276 

associated with cancer risk, a recent study found it to be associated with worse urinary bladder 277 

cancer survival32. 278 

 279 

Additional noteworthy findings from our analyses of all multiple primary cancers combined include 280 

cancer susceptibility signals in SAMHD1 and SLC6A2. Carriers of rare and potentially deleterious 281 

variants in SAMHD1, a gene with a plausible tumor suppressor role33, had a significantly higher 282 

risk being diagnosed with multiple cancers compared to single cancers. Germline SAMHD1 283 

mutations are implicated in Aicardi-Goutieres Syndrome (AGS)34, an autosomal recessive 284 
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condition that results in autoimmune inflammatory encephalopathy. Most cancer-related studies 285 

have focused on the role of somatic alternations in SAMHD135. However, a study  of chronic 286 

lymphoid leukemia (CLL) proposed an oncogenic role of germline SAMHD1 variation mediated 287 

by DNA repair mechanisms36. Consistent with this hypothesis, we also found increased SAMHD1 288 

variation in individuals with lymphoid neoplasms, as well as with prostate, breast, colorectal and 289 

lung cancers. SLC6A2, also known as NAT1, has been found to be prognostic for colon cancer37, 290 

and both in-vivo and in-vitro studies have linked expression to survival in many cancer types, 291 

including prostate38 and breast39. Polymorphisms in SLC6A2 may also interact with smoking 292 

exposure to modulate risk for tobacco-related cancers40. In our study, the increased cancer risk 293 

detected among SLC6A2 carriers was limited to comparisons with cancer-free controls.  294 

 295 

Because we compared multiple primary cancers with both cancer-free controls and individuals 296 

diagnosed with a single cancer, we were well positioned to explore patterns of pleiotropy and 297 

disentangle variation likely to be driven by single cancers. For example, we identified two variants, 298 

rs7872034 (missense variant in SMC2) and rs143745791 (missense variant in NCBP1), 299 

associated with a diagnosis of at least one breast cancer (plus any other cancer) versus no 300 

cancer. These variants remained associated with a diagnosis of breast and another cancer when 301 

comparing to individuals diagnosed with a single breast cancer. While rs7872034 is in high LD 302 

(r2 = 0.98) with a known breast cancer risk variant (rs4742903; SMC2 intron)41, it may also 303 

increase the risk of developing multiple cancers. Regarding rs143745791, germline variants in 304 

NCBP1 have not been previously associated with cancer; because it is rare (MAF < 0.2%), larger 305 

sequencing efforts may be necessary identify variation in studies of individuals with a single 306 

cancer. Expression of this gene has been found to promote lung cancer growth and poor 307 

prognosis42, and NCBP1 is overexpressed in basal-like and triple-negative breast cancers43. 308 

Similarly, BRCA1/2 germline variants are prevalent among these subtypes; however, in our study 309 
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populations, BRCA1/2 carriers were more common among those with an additional ovarian 310 

cancer whereas NCBP1 carriers more frequently had an additional cervical cancer.  311 

 312 

In our prostate cancer-specific analysis comparing individuals with multiple cancers versus those 313 

with only a single cancer, we discovered an association with rs3020779, an eQTL for RNF123 314 

(also known as KPC1), which is a gene involved in p50 mediation and downstream stimulation of 315 

multiple tumor suppressors44. In our analysis of head and neck cancer, we detected an 316 

association with rs12253181 (eQTL for RTKN2); while this gene has not previously been 317 

associated with head and neck cancer risk, it has been shown to function as an oncogene in non-318 

small cell lung cancer (NSCLC) and decreasing its expression may inhibit proliferation by inducing 319 

apoptosis45. 320 

 321 

Limitations of our study included the identification of variants that were likely-somatic in our 322 

analyses of hematologic cancers due to an expansion of hematopoietic clonal populations with 323 

the same acquired mutation (i.e., CHIP). Confounding of germline testing by CHIP has been 324 

reported in TP5346 and TET247, so careful interpretation is critical to avoid unnecessary clinical 325 

intervention. An additional limitation of our, and other, studies are obtaining accurate effects 326 

estimates for rare variants and the reliance on available annotations for inclusion into gene-based 327 

tests. Replication of rare findings in larger cohorts and optimization of functional impact 328 

annotations could lead to more precise results. Also, while our approach did not allow for formal 329 

replication, it was designed to identify signals for a largely understudied phenotype that were 330 

concordant in two populations. Finally, while all individuals with multiple cancers were included in 331 

our study regardless of genetic ancestry, non-European ancestries were underrepresented; 332 

larger, more diverse cohorts will be needed to fully explore the genetic basis of multiple cancers. 333 

 334 
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Strengths of this work include studying individuals of multiple ancestries who were largely 335 

unselected for specific cancer phenotypes.  We also performed the first ever exome-wide study 336 

of genetic susceptibility to multiple primary cancers, using two large prospective study 337 

populations. Our study design allowed us to characterize variation across multiple primary 338 

cancers representing 36 unique sites, as well as to conduct cancer-specific analyses of 16 sites. 339 

Using this approach, we confirmed many known single-variant and gene-based findings, 340 

strengthening and supporting our novel results reported for individual cancers through our cancer-341 

specific analyses. 342 

 343 

In summary, by undertaking an exome-wide survey of common and rare variation in two large 344 

study populations, we identified several variant and gene-based associations that may increase 345 

the risk of developing multiple cancers within individuals. Our findings have potential implications 346 

for improving our understanding of the shared mechanisms of carcinogenesis. They may also 347 

enable screening strategies that prioritize individuals at risk for developing additional cancers. 348 

Furthermore, since many of the genes reported here have been considered as potential 349 

therapeutic targets in cancer, our work supports the use of germline information to help guide 350 

precision medicine. Future studies should aim to replicate our findings and undertake experiments 351 

that validate the functionality of the discovered pleiotropic variants. Combined with future 352 

research, our results have potential to inform genetic counseling, improve risk prediction for 353 

multiple cancers, and guide novel treatment and drug development.  354 
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FIGURE TITLES AND LEGENDS 

Figure 1. Cancer Diagnosis Pairs Present in the Combined Study Populations 

 

Figure 1 Legend: Circos plot describing the pairs of first and second cancer diagnoses with at 

least 25 cases present in Kaiser Permanente Research Bank and the UK Biobank study 

populations combined. Each connection reflects the number of cases with both of the linked 

primary cancers, where the color of the line shows the first cancer site diagnosed.  
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Figure 2. Germline Single Variant Association Results for Multiple Primary Cancers Combined 

or Grouped by Organ Site 

 

Figure 2 Legend: Suggestive (p < 5x10-6) germline variant associations with multiple cancer 

phenotypes versus cancer-free controls (n = 165,853) following a fixed-effects meta-analysis of 

Kaiser Permanente Research Bank and UK Biobank WES data. Associations were detected for 

any 2+ primary cancers (n = 6,429) and with groups of cases defined by a shared index cancer, 

at any time point, plus any other cancer diagnosis: melanoma + (n = 1,443), prostate + (n = 1,977), 

breast + (n = 1,874), head and neck + (n = 283), thyroid + (n = 198), urinary bladder + (n = 829), 

colorectal + (n = 1,324), lymphoid neoplasms + (n = 728). Variants that have been previously 

associated in single cancer studies have superscript (a). The heatmap reflects the number of 

carriers with the risk-increasing allele for each associated variant with the index (y-axis) and 

additional (x-axis) cancer over the total number of carriers, restricting to cancer cases. When the 

index and additional cancer are the same, the heatmap value represents all carriers with the 

specified cancer diagnosis divided by the total number of carriers. Abbreviations: SNP – single 

nucleotide polymorphism; EA – effect allele; OR – odds ratio.  
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Figure 3. Germline Gene Based Association Results for Multiple Primary Cancers Combined or 

Grouped by Organ Site 

 

Figure 3 Legend: Burden tests were performed combining variants defined as pLOF with or 

without deleterious missense variants, defining deleteriousness by at least one (1/5) or all five 

(5/5) prediction algorithms used (Methods), at a MAF < 0.5%, 1%, or 5%. Following a fixed-effects 

meta-analysis of Kaiser Permanente Research Bank and UK Biobank data, Bonferroni significant 

associations (p < 2.65x10-6 = 0.05/ 18,842) corrected for the number of genes tested were found 

for comparisons of cancer-free controls (n = 165,853) with all cases with any 2+ primary cancers 

(n = 6,429) and with groups of cases defined by an index cancer for the following phenotypes: 

prostate + (n = 1,977), breast + (n = 1,874), ovary + (n = 239), and head and neck + (n = 283). 

For each gene, the variant grouping with the smallest p-value and fewest number of variants was 

selected. The heatmap reflects the number of carriers of each associated variant, with the index 

(y-axis) and additional (x-axis) cancer over the total number of carriers, where carrier is defined 

as having at least one alternate allele across all variants in a given gene, restricting to cancer 

cases. When the index and additional cancer are the same, the heatmap value represents all 

carriers with the specified cancer diagnosis divided by the total number of carriers. Abbreviations: 

OR – odds ratio; pLOF – predicted loss of function. 
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TABLES 

Table 1. Characteristics of the Kaiser Permanente Research Bank and UK Biobank study 

populations by ancestry group. Cases are individuals with multiple primary cancers. Controls 

are those without any cancer.   

 Population: Kaiser Permanente Research Bank 
 

Population: UK Biobank 
 Cases Controls 

 

Cases Controls 

Ancestry N 
Mean 
Age 

Female 
(%) N 

Mean 
Age 

Female 
(%) 

 

N 
Mean 
Age 

Female 
(%) N 

Mean 
Age 

Female 
(%) 

AFR 99 70.5 33.3 100 70.4 32.0 
 

29 55.9 51.7 3,292 51.8 60.4 

EAS 95 69.7 49.5 91 69.5 49.5 
 

10 58.8 80.0 1,009 52.6 66.9 

EUR 2,786 72.8 43.0 2815 72.9 43.3 
 

3,249 61.9 51.7 154,047 56.6 54.6 

LAT 131 69.5 46.6 130 69.5 45.4 
 

5 63.8 80.0 334 51.8 62.6 

SAS - - - - - - 
 

25 58.2 60.0 4,035 53.3 47.0 

 

 


