Title
Prior SARS-CoV2 infection in vaccinated solid organ transplant recipients induces potent neutralization responses against variants, including Omicron

Author Full Name and Affiliation
Alok Choudhary¹*, Mark Lerman², David Calianese¹, Salman Khan², Judson Hunt², Afzal Nikaein³, William Honnen¹, Dabbu Kumar Jaiyan¹, Erica Kalu², Abraham Pinter¹*
1Rutgers University, PHRI, NJMS, Newark, NJ, USA
2Medical City Dallas Hospital, Dallas, TX, USA
3Texas Medical Specialty, Dallas, TX, USA
*Corresponding author
choudhak@njms.rutgers.edu and pinterab@njms.rutgers.edu

Abstract
Factors affecting functional antibody responses in solid organ transplant recipients (SOTRs) to current SARS-CoV2 vaccines are not well understood. Here, we measured vaccine-induced neutralizing activities against the D614G-CoV2 baseline virus and eight variants, including Omicron, in a panel of CoV2 infected- (n=13) and uninfected- (n=63) vaccinated kidney and heart transplant recipients. In the CoV2 uninfected-vaccinated subset, only 19% and 35% of two and three-dose vaccinated recipients respectively possessed minimally protective neutralizing plasma antibody titers (IC50>1:50) against D614G. In contrast, all of the CoV2 infected-vaccinated SOTRs who received two vaccine doses possessed titers exceeding minimal protection; 12/13 exhibiting strong protection (IC50>1:600) against D614G with minimal increases provided by a third dose. Omicron was the most resistant variant: only 10% of CoV2 uninfected-vaccinated SOTRs reached the minimally protective neutralization titer, while 76% of CoV2 infected-vaccinated SOTRs exceeded this value. These results indicate that prior infection and vaccination can induce highly protective antibody responses in many SOTRs, and identify important factors (shorter time since transplantation, prednisone administration, and African American ethnicity) that limit these responses. Overall, these results suggest factors to consider in establishing optimum COVID-19 vaccination strategies in these cohorts.
1. Introduction

As of early Feb. 2022 the cumulative number of confirmed infections caused globally by SARS-CoV-2 (CoV2) are approaching 400 million, with close to 6 million deaths, while the US alone has reported greater than 76 million cases, with over 900,000 deaths. While the rapid development of various COVID-19 vaccines currently in use have helped control the spread of this virus and have greatly reduced severe complications, the emergence of more infectious and more resistant CoV2 variants has resulted in spikes in the number of infections and deaths, which are centered in unvaccinated populations and people with impaired immune responses. The recent emergence of the highly mutated Omicron variant has accelerated these trends, since this variant is resistant to humoral immunity generated by earlier variants and vaccines, and is highly infectious even in fully vaccinated individuals.

This is particularly a problem for solid organ transplant recipients (SOTRs), who generally require immunosuppression with drugs to prevent rejection and to protect allografts. Recent reports indicate that a majority of SOTRs possess limited immunity after the standard two dose regimen of RNA-based vaccines, while a third dose of the vaccine has resulted in increasing titers of antibodies targeting the Receptor Binding Domain (RBD) as well as other subdomains of the CoV2 spike protein. In a randomized clinical trial, 55% of SOTRs possessed the minimal protective titer of RBD antibodies 100 U/ml (15 U/ml correlates to IC50 ≥1:10) after the third dose of the mRNA vaccine compared to only 18% after the second dose. A recent study to evaluate the effect of a fourth dose of COVID-19 vaccines in 18 SOTRs showed positive antibody responses in subjects that were either negative or very low positive prior to receiving the latest boost.

To explore COVID-19 vaccine-induced immunity in SOTRs, we used RBD-specific binding assays to quantitate the immune responses in a cohort of 51 heart and kidney transplant patients, after their second dose, and 25 SOTRs after their third dose of COVID-19 vaccines. Quantitative binding assays were used to compare RBD-specific antibody levels, and neutralization assays were performed using D614G, Alpha, Beta, Gamma, Delta, Kappa, Lambda and Omicron spike pseudotyped viruses to evaluate the neutralization potency of plasma antibodies against these variants, and to determine if they are below or above the minimally protective IC50 titer of 1:50 plasma dilution. Approaches used in this study provide greater insights into the true protective immunity of SOTRs, while previous studies have inferred minimally protective responses based on poorly defined binding assays, or surrogate neutralization assays involving ACE2 binding competition, which do not evaluate the neutralizing effect of non-receptor binding motif...
(RBM) antibodies that are mostly responsible for neutralizing the currently circulating Omicron variant.

Results in this study indicate strong neutralizing responses to CoV2 variants, including Omicron, in SOTRs who were infected with CoV2 and vaccinated, while SOTRs who were not previously infected with the virus exhibit weak or undetectable neutralizing responses. Several factors were identified that correlated with reduced protective responses. Hopefully, careful consideration and management of such factors may allow enhanced vaccine strategies and responses in these populations in the future.

2. Methods

2.1 Study design and patient population

This study was aimed to recruit Kidney and Heart Transplant patients who have been vaccinated with at least two doses of a COVID-19 vaccine manufactured by Pfizer or Moderna or a single dose of the J&J vaccine, to investigate the demographical and clinical factors behind the poor immune response to COVID-19 vaccines in SOTRs. Kidney transplant recipients (KTRs), Heart transplant recipients (HTRs) or Kidney+Heart transplant recipients (HKTRs) were recruited from the transplant clinic at Medical City Hospital, Dallas during their routine visits. All the participants provided written informed consent. The majority of the patients did not report previous CoV2 infections, but ~16% had confirmed CoV2 infections prior to vaccination. Considering the requirement of a five-month interval for booster shots, the blood samples were collected within five months after the second and the third vaccine shots of Pfizer and Moderna. Blood collected in sodium-heparin tubes were processed for plasma separation by centrifugation. Plasmas were aliquoted in multiple 1 ml vials and stored at -80°C for subsequent analyses for antibody binding and CoV2 neutralization activity.

2.2 Expression and purification of CoV2 receptor binding domain (RBD) and Nucleocapsid proteins. Wt and variant RBD antigens were expressed as fusion proteins to the gp70 carrier domain, as previously described. In brief, a gene fragment of the CoV2-Spike gene encoding the RBD was synthesized commercially (IDT) and cloned at the 3’ end of a gene expressing the N-terminal fragment of the Friend ectotropic MuLV (Fr-MuLV) surface protein (SU) gp70 gene in the expression vector pcDNA3.4 (Addgene, Watertown, MA). The resulting plasmid was transfected into 293F cells using the Expi293 Expression system (Thermo Fisher Scientific, Waltham, MA), according to the manufacturer’s protocol. Supernatants were collected on day three post-transfection, and recombinant protein was purified by HisPur Cobalt Resin.
absorption (Thermo Fisher Scientific, Waltham, MA) and elution with 200mM imidazole. Measurements of purified proteins were acquired via Nanodrop and the final concentrations were derived with the molecular weight and extinction coefficient calculated online by ExPASy. CoV2 nucleocapsid (NC) protein made in E. coli was purchased from Sino Biological.

2.3 RBD and Nucleocapsid (NC) Plasma Antibody Detection by Enzyme Linked Immunosorbet Assay (ELISA). All recombinant proteins were coated overnight at 4°C at a concentration of 100 ng/well in 50 ul of bicarbonate buffer (pH=9.8), using U-shaped medium binding 96-well ELISA plates (Greiner Bio-One; Cat#:650001). After each step before development, the plates were washed four times with PBST (1X PBS with 0.1% Tween 20) using an automated washer. To avoid non-specific binding, the plates were blocked with 100 ul of 2% non-fat dry milk in 1XPBS for one hour at 37°C. Plasma from vaccinated SOTRs were prepared at different dilutions (1:2, 1:10, 1:50, 1:250, 1:1250, 1:6250) in 2% nonfat dry milk and incubated at 50 ul/well in duplicates for one hour at 37°C. Alkaline phosphatase conjugated goat anti-human IgG, IgM and IgA detector antibodies (Jackson ImmunoResearch Laboratories) were diluted 1:2000 in 2% non-fat dry milk and added to the plates (50 ul/well) and incubated for one hr at 37°C. Plates were developed with DEA substrate, and absorbances were recorded at an optical density (OD) of 405 nm. Control plates were coated with the gp70 carrier proteins and used to calculate the background value, which was subtracted from the RBD-gp70 binding values of the respective plasma. The quantitative value of plasma RBD antibodies was calculated using area under curve (AUC) after plotting values from all the different dilutions of plasma using Graph Pad Prism 8.0.

2.4 CoV2 Pseudovirus (psV) preparation and ACE2-HeLa cell-based neutralization Assay. Codon optimized D614G, Alpha, Beta, Gamma, Delta, Kappa and Lambda spike gene sequences with 18 aa C-terminal truncations were cloned into the pCAGGS vector\(^{40}\). D614G and seven different CoV2 pseudovirus variants were made by co-transfecting the spike and pnl4.3. Luc.\(\text{r}\)\(\text{e}\)\(\text{-}\) plasmids into HEK 293 T cells, to produce the CoV2 psV. After 48 hrs, the transfection supernatant was collected and filtered with 0.2 um filter, aliquotted, and frozen at -80°C. HuACE2-HeLa cells were infected with the CoV2 psV in DMEM media supplemented with polybrene (10 \(\mu\)g/ml) and infectivity was determined by reading luciferase activity in the cell-lysate after 72 hrs post-infection upon adding luciferase substrate (Britelite, PE). To determine the neutralization potency of the plasma psV dilutions giving ~100,000 RLU were used to infect Hu-ACE2-HeLA cells in the presence of titrated plasma.
2.5 Statistics

GraphPad Prism 8.0 software was used to calculate the mean, median, interquartile range (IQR) and determine suitable parametric or nonparametric tests to be applied for statistical analyses of the data. Unpaired Student t-tests or Mann-Whitney tests were performed for column statistical analysis to compare two different groups while paired t tests were performed to compare the second and third vaccine-induced antibody titers in the same subject and the neutralization potency of plasma against multiple CoV2 variants. Pearson’s coefficient and Spearman r value were calculated to identify positive and negative correlations and the neutralization potency of plasma, defined as the plasma dilution, required to reduce viral signal by 50% (IC50), were calculated using One-Site Fit LogIC50 regression in GraphPad Prism 8.0. P-values were calculated at a confidence interval of 95% and are indicated as: <0.05 or *; <0.01 or **; and <0.001 or ***. An IC50 >1:50 was considered to be above the minimal protective dose, determined by antibody transfer protection experiments in macaques.34

3. Results

A total of 51 solid organ transplant recipients (SOTRs) were recruited in this study. All the participants were vaccinated after transplantation, mostly with mRNA vaccines. A description of this cohort is provided in Table 1, including the distributions of age, gender, race, organ transplanted, and immunosuppressive regimens administered. Eight of the participants reported COVID-19 infections before vaccination; four prior to transplantation and four after transplantation. 14 out of 51 SOTRs were recruited after their third dose of the vaccine together with 11 new post-third dose vaccinated SOTRs. A description of the post-third dose SOTR cohort is provided in Table 2.

3.1 COVID-19 vaccinated SOTRs with prior CoV2 infections have stronger CoV2 RBD antibody responses compared to uninfected-vaccinated individuals. It is known that the RBD of the CoV2 Spike protein is an immunodominant target and the prime target for virus-neutralizing antibodies, and we therefore focused our study on responses to this region. We used a novel RBD-gp70 fusion protein system to express native RBD as antibody targets; these proteins more efficiently recognize virus-specific antibodies than standard RBD antigens, as previously described41. 51 SOTR plasmas were screened for levels of anti-CoV2 -RBD IgG, IgM and IgA induced after a full dose (two vaccinations for Moderna and Pfizer and one for J&J) of COVID-19 vaccines in both CoV2 infected and uninfected subjects. A total of 39 out 51 (76%) had detectable RBD antibodies with titers above the cut-off value, calculated as 3X background (AUC of 10 at OD 405nm) (Fig.1A). Anti-RBD-IgG was detected in 61% of the SOTRs, anti-RBD-
IgA in 51% and anti-RBD-IgM in 39% of the SOTRs (Fig.1B). All three anti-RBD Ig isotypes, IgG, IgM, and IgA, were detected in only 27% of the SOTRs, 50% of whom were previously infected with CoV2. There was a significantly higher level of all three anti-RBD isotypes in the infected-vaccinated group of SOTRs as compared to the uninfected-vaccinated group (Fig.1C-E). We further examined the correlation between plasma CoV2 nucleocapsid (NC) antibodies and RBD antibodies in the infected-vaccinated and uninfected-vaccinated groups. Most of the CoV2-uninfected SOTRs had low or undetectable CoV2 NC-specific antibodies, consistent with the absence of previous CoV2 infections, but did possess plasma RBD antibodies (Fig. 1G). As expected, previously infected SOTR vaccinees had relatively high plasma titers of CoV2 NC antibodies, compared to uninfected vaccinees, and these titers correlated significantly with higher RBD-specific antibodies (r=0.79, p=0.02) (Fig.1F).

3.2 COVID-19 vaccinated SOTRs with prior CoV2 infection possessed considerably higher protective plasma antibody titers against Omicron as compared to uninfected-vaccinated SOTRs. 51 SOTR plasmas were assayed for their neutralization potency in HuACE2-HeLA cell-based assays against pseudoviruses containing the D614G spike and several variants, including the currently circulating variants of concerns (VOC), Delta and Omicron. We observed strong correlations between plasma RBD antibody titers and CoV2 neutralization plasma IC50 against both D614G (r =0.81, p=<0.001) and Omicron (r =0.86, p=<0.001) (Fig. 2A-B). Interestingly, 7/8 of the CoV2 infected-vaccinated SOTRs showed very strong neutralization titers (IC50s >1:1,000), compared to only 2/43 plasma from uninfected-vaccinated SOTRs with similar neutralization titers against D614G (Fig. 2A). Strong neutralization of Omicron (IC50>1:600) was observed in 6/8 two-dose vaccinated SOTRs with prior CoV2 infection while only 2/43 uninfected-vaccinated plasma reached this strength against Omicron with two doses of the vaccine. In the two-dose vaccinated cohort, only 17% (8/43) of CoV2 uninfected SOTRs reached the minimal protective titer against D614G, which decreased to 9% (4/43) against the highly resistant Omicron variant (Fig. 2A-B). Similar trends were observed in CoV2 infected-vaccinated SOTRs against D614G (IC50>1:1000 for 3/5 SOTRs) and Omicron (IC50>1:600 for 2/5 SOTRs) (Fig. 2C). In three dose vaccinated cohorts, CoV2 uninfected SOTRs showed improved immunity compared to two dose cohorts, with 35% of SOTRs reaching the minimal protective titer against D614G and 15% against Omicron (Fig. 2C).

To compare plasma neutralization resistance by multiple CoV2 variants, we selected five infected-and three uninfected-two-dose-vaccinated SOTR plasmas which displayed potent neutralization against D614G. All eight plasmas showed comparable neutralization against D614G as well as
Alpha, Gamma, Lambda and Delta variants and remained above the minimal protective titer. A minor drop in neutralization potency of all eight plasmas were noticed against the Beta variant, but the great majority possessed a ~10 fold lower neutralization potency for Omicron compared to the other viruses (Fig. 2D), which is consistent to what has been reported for healthy vaccinees against Omicron16,42-44 and indirectly confirms that the majority of infected-vaccinated SOTRs and a handful of uninfected SOTRs can induce all the neutralizing antibody repertoires similar to healthy vaccinees.

We were able to obtain follow up samples from 14 SOTRs after their second and third doses of COVID-19 vaccines, with either Pfizer or Moderna, and compared their post-second and post-third dose RBD antibody titers (Fig. 2E) and plasma neutralization potencies (Fig. 2F). Four out of 14 were also infected and showed no significant differences in RBD plasma antibody titers or neutralization potencies against the D614G virus when comparing the second and third dose. Out of the ten subjects who were CoV2 uninfected and had undetectable post-second dose RBD plasma antibodies (RBD-AUC<10), only two showed significant increases in RBD antibody titers (>100 AUC) after their third dose, and were able to cross the minimal protective IC50 threshold, while the remaining eight plasma were below the cut-off value of detectable RBD titers. Interestingly, 3/10 plasmas from this group exhibited moderate increases in the neutralization titers (IC50 range 1:10 to 1:49) after their third dose without any detectable increase in their RBD antibody titers.

3.3 Subject ethnicity and time since transplantation are important factors of RBD plasma antibody titers in CoV2 uninfected SOTRs. Considering the dominant contribution of previous CoV2 infection in strong humoral immune responses of vaccinated SOTRs, we excluded CoV2 infected-vaccinated SOTRs (8 out of 51), to investigate factors that may contribute to lower levels of antibody production in CoV2 uninfected-vaccinated cohorts with two doses of mRNA or one dose of the J&J vaccine. We examined the effect of race, time since transplantation, type of transplanted organs, gender, and age to the levels of RBD antibody responses. Race and ethnicity are known to affect the antibody responses to rubella and influenza vaccines, which significantly induces higher titers in those of African American ethnicity as compared to those of White or Hispanic45,46. Contrary to this we noticed no significant difference in plasma RBD antibody levels between Hispanic and White SOTRs, but SOTRs of African American decent had significantly lower RBD antibody titers compared to those who identified as White (p=0.003) or Hispanic (p=0.013) (Fig. 3A).
Time since transplantation has been associated with a higher risk of complication due to infection; SOTRs within the first three months after transplantation are known to have five times higher risks of influenza infections, due to immunosuppressive drugs\(^47\), and also are reported to have a lower immunologic response to influenza vaccination during the first six months after transplantation\(^48\). SOTR plasma RBD antibody titers among 43 CoV2-uninfected SOTRs vaccinated at different times (0.2 to 22 years since transplantation) were analyzed. SOTRs who were vaccinated within the first 18 months (<1.5 Years) since transplantation had significantly lower RBD antibody titers compared to those who were vaccinated beyond this point (Fig. 3B). This suggests that SOTRs in cohorts vaccinated within the first 1.5 years following transplantation have a more strongly suppressed immune system compared to those vaccinated >1.5 years post-transplantation.

SOTRs are treated with immunosuppressive drugs that alter multiple immune mechanisms (i.e., mTOR and calcineurin inhibitors, antimetabolites, and corticosteroids\(^49\)). All 29 KTRs and the majority of HTRs participating in this study were on maintenance immunosuppressive drugs (calcineurin inhibitors, antimetabolite Mycophenolate Mofetil, and Prednisone) while 10/22 HTRs were on the same regimen except for Prednisone. In a comparative analysis of vaccine-induced RBD antibodies between two groups (with and without Prednisone) we noticed that the addition of Prednisone negatively impacts antibody responses to COVID-19 vaccines in CoV2 uninfected SOTRs, with a lower interquartile range (IQR) of anti-RBD-IgG levels (IQR=412-1 AUC) as compared to those who were not on Prednisone (IQR=943-10 AUC) (p=0.050) (Fig. 3C).

Immunosuppressive drugs induced nephrotoxicity is well documented\(^50\). Elevated serum creatinine (SCr) is one of the best clinical measures of renal function taken during routine follow-up of transplant recipients, and elevated SCr has been reported as a risk factor of negative responses towards vaccination\(^51\). We noticed a significant negative correlation between vaccine induced RBD-IgG vs SCr level (r = -0.49, p=0.008**) and RBD-IgA vs SCr level (r = -0.63, p= <0.001***), (Fig. 3D).

These studies showed that while vaccine type, SOTR gender, age, and the type of transplanted organ (i.e., heart or kidney) had no influence on COVID-19 vaccine-induced CoV2 RBD antibody responses in SOTRs after full vaccination (Fig. 4A-D), prior CoV2 exposure (positive predictor), ethnicity, and vaccination within 18 months (1.5 yrs) of transplantation (negative predictors) were the most dominant positive and negative factors behind the differential responses to COVID-19 vaccines after three doses. SOTRs of African American ethnicity and those who were vaccinated during the first 1.5 years since transplantation, responded poorly even after receiving a third dose of the COVID-19 vaccine (Fig. 3E). Interestingly, all the eight CoV2-uninfected KTRs that could
not neutralize the D614G virus, even after the third dose, were vaccinated during their first 18 months (1± 0.4 years). In contrast, of 12 HTRs (one recipient was HTR+KTR) who were vaccinated during 9 ± 7 years since transplantation 50% of them had titers above the minimally protective titer for the Delta variant and 25% had protective titers against the Omicron variant (Table 2 and 3).

Discussion
This study examined the effect of a number of factors on RBD binding titers, neutralization breadth and potencies of plasma antibodies induced by COVID-19 vaccination with and without prior CoV2 infection in kidney and heart SOTRs. Since CoV2 antibodies do not necessarily possess neutralization activity, it was important to measure actual neutralization titers, rather than rely on binding correlates or surrogate virus neutralization test (sVNT) based on ACE2 binding competition, as was done in many previous studies of SOTR responses. sVNTs are qualitative or semiquantitative assays for plasma neutralizing antibodies which depend on the interaction between RBD and coated human ACE2 receptor on an ELISA plate. Although ACE2 competition is the basis for the majority of neutralizing antibodies induced by the current vaccines against wt-CoV2, this is not the case in RBD-mutated variants, especially Omicron. Instead, the Omicron variant can be neutralized by antibodies directed to conserved regions of the RBD core, or domains in the Spike protein outside the RBD, which are not involved in ACE2 competition. Thus, the ACE2-competition assay does not effectively measure the activity of Omicron-neutralizing antibodies such as Sotrovimab (VIR-7831), which is directed against a highly conserved target in the core of the RBD, and does not inhibit ACE2 binding, or NTD-specific neutralizing antibodies which have been shown to be induced by booster doses and CoV2-infections in vaccinated individuals. This was also evident by our findings where we noticed a moderate increase in D614G neutralization without any change in RBD antibody titers for 30% of the vaccinees when we compared post 2nd and 3rd dose responses. This clearly indicates the need of actual neutralization assay to accurately measure levels of protection.

The most striking observation arising from this study was the significantly higher neutralization titers of SOTRs who reported CoV2-infections prior to vaccination when compared to vaccinees who were not previously infected, which extended to the highly resistant Omicron variant. The CoV2 infected-vaccinated recipients possessed higher RBD antibody binding titers, higher neutralization potencies, and a greater breadth of neutralization compared to fully vaccinated uninfected SOTRs. While 6/8 previously infected SOTRs who received two vaccine doses possessed strong neutralizing titers (>1:600) against the Omicron variant, only ~15% of CoV2-
uninfected SOTRs who received the recommended third dose of a COVID-19 vaccine possessed protective levels of neutralizing antibodies (1:50) against this variant. This enhanced neutralization extended to the other variants as well; the percentage of SOTRs above the minimal protective neutralization titer against CoV2 variants after a third vaccine dose in uninfected versus infected subjects were 35% vs 100% for D614G, 30% vs 80% for Beta, 30% vs 100% for Delta, and 15% vs 60% for Omicron.

Similar observations were previously made for healthy non-immunosuppressed individuals who were CoV2-infected prior to vaccination57. Strong germinal center reactions and T cell responses have been suggested as factors accounting for stronger antibody responses in prior infected-vaccinated individuals58,59. Unfortunately, pre-vaccination bleeds were not available in this study, so we cannot distinguish whether these effects were due to residual antibody titers due to infection or whether they represent a more effective booster response to vaccination. However, in most cases sufficient time had elapsed since infection to have significantly diluted out the initial response, and thus it is more likely that stronger recall responses account for the enhanced immunity. In any case, these results clearly indicate that the transplant-related immunosuppressive regimens to which these patients were subjected to did not inhibit the ability of the combined infection-vaccination stimulus to induce an effective neutralization response that extends to a relatively resistant virus, such as Omicron, and suggest that vaccines that better induce the full range of immunological responses induced by natural infection may be further beneficial for these subjects.

We also defined demographic effects and other clinical factors which correlate with diminished protective responses. One important factor identified in this study that inhibited an effective neutralizing response was length of time since transplantation. It has been previously reported that longer post-transplantation time positively correlates with the efficacy of vaccine-induced humoral responses in SOTRs36. In our study, quantitation of plasma RBD antibody titers allowed the delineation of the post-transplantation time-point within which the SOTRs are more likely to have weak antibody responses to the vaccine. We found that those SOTRs who were more than 1.5 years post-transplantation had better antibody responses to the vaccine (10-1 vs 865-10 AUC RBD-IgG-IQR, p=0.002). This is consistent with earlier findings with influenza vaccines, which reported that 6 months post transplantation was an optimal time for immunogenicity, whereas we found that 18 months after transplantation was a better predictor. One possibility for this difference is that the lack of adjuvants used in mRNA based COVID-19 vaccines compared to influenza vaccines reduced the strength of the immune responses, but this question merits additional study.
Also, consistent with earlier observations, we found weaker antibody responses in African American SOTRs60 and a negative impact of certain immunosuppressive drugs (prednisone) and drug-induced nephrotoxicity51 on vaccine-induced immunity. Interestingly, all CoV2 uninfected KTRs exhibited low RBD antibody titers (<10 AUC) even after the 3rd dose compared to the HTRs (100-1000 AUC), although we were not able to ascertain if this was due to organ type or time since transplantation, as we did not have matched KTR and HTR samples, in terms of time since transplantation, for comparison. These results further support the idea of critical kidney-mediated immunological functions, which are distinct from the kidney’s excretory and electrolyte homeostatic functions61-65 and suggests a careful management of these effects66,67, and the possible benefit of modifications of immunosuppressive drugs doses immediately before and after future vaccinations, as methods for enhancing the level of vaccine-induced immunity.

Acknowledgements/Funding

We thank the study participants for their generosity and willingness to participate in longitudinal COVID-19 research studies. This work was partially supported by funding from the center for COVID-19 Response and Pandemic Preparedness (CCRP2), Rutgers University.

Disclosures

No potential conflict of interest relevant to this article was reported by any authors.
References

39. Pratik Datta PDRU, PhD; Natalie Bruiners, Ph.D; William Honnen; Mary O Caryannopoulos; Alok K Choudhary, Ph.D; Charles Reichman; Alberta Onyuka, M.S; Deborah Handler; Valentina Guerrini, Ph.D; Pankaj K Mishra, Ph.D; Alfred Lardizabal; Hannah K Dewald; Leeba Lederer; Aliza L Leiser; Sabiha Hussain, MD; Sugeet K Jagpal, MD; Jared Radbel, MD; Tanaya Bhowmick, MD; Daniel B Horton, MD; Emily S Barrett; Yingda L Xie; Patricia Fitzgerald-Bocarsly; Stanley H Weiss; Heta Parmar; Melissa Woortman; Jason Roy; Maria Gloria Dominguez-Bello; Martin J Blaser; Jeffrey L Carson; Reynold A Panettieri; Steven K Libutti; Henry F Raymond; Abraham Pinter. Highly versatile antibody binding assay for the detection of SARS-CoV-2 infection and vaccination. Journal of Immunological Methods, Submitted for publication. July, 2021.

42. WHO. Tracking SARS-CoV-2 variants. 2022.

Table. 1 Demographic and clinical characteristics of the 51 SOTR (8 CoV2 infected/vaccinated and 43 CoV2 uninfected/vaccinated)
<table>
<thead>
<tr>
<th></th>
<th>HTR (n)</th>
<th>KTR (n)</th>
<th>HTR+KTR</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total number (n)</td>
<td>11</td>
<td>8</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Age (Mean ± SD)</td>
<td>65 ± 6</td>
<td>68 ± 7</td>
<td>66</td>
<td></td>
</tr>
<tr>
<td>Female (n) %</td>
<td>2, (27%)</td>
<td>4, (50%)</td>
<td>1, (100%)</td>
<td></td>
</tr>
<tr>
<td>Pfizer 3rd Dose</td>
<td>8</td>
<td>5</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Moderna 3rd Dose</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Post-3rd Dose Time (Days)</td>
<td>78 ± 28</td>
<td>60 ± 35</td>
<td>NA</td>
<td>ns</td>
</tr>
<tr>
<td>Post-transplantation Time (years)</td>
<td>9 ± 7</td>
<td>1 ± 0.4</td>
<td>NA</td>
<td>0.002</td>
</tr>
</tbody>
</table>

Table. 2 Post third dose comparison between CoV2 uninfected heart and kidney transplant patients (n=20)
Fig. 1 Anti-CoV2-RBD plasma IgG, IgM, and IgA response in SOTR after two doses of COVID-19 vaccines.
(A) Heat map representation of SOTR plasma RBD-IgG, IgM, and IgA antibodies. Direct binding ELISA results using recombinant CoV2-RBD-gp70 fusion proteins were analyzed at OD 405nm and quantitated as area under curve (AUC).
(B) Comparison of anti-RBD plasma IgG, IgM, and IgA levels to evaluate the major RBD antibody isotype response in SOT vaccinees.
(C-E) Comparison of vaccine efficacy between CoV2 infected-vaccinated and CoV2 uninfected-vaccinated SOTR.
(F-G) Correlation between RBD and NC plasma antibodies in CoV2-infected vaccinated and uninfected-vaccinated SOTR. Horizontal green dotted lines
represent CoV2 NC antibody positive samples and vertical blue lines represents CoV2 RBD antibody positive samples.
Fig. 2 Plasma RBD antibodies titers correlate with CoV2 variant neutralization potency. (A) Comparison of infected/vaccinated and uninfected/vaccinated correlations between CoV2 RBD antibodies and CoV2 (D614G) neutralization (B) and correlations between CoV2 RBD antibodies and Omicron neutralization. Horizontal red dotted line represents minimal required protective IC50 of plasma for virus neutralization (1:50 dilution) and vertical red dotted line represents cut-off for the RBD positive serology. (C) Five CoV2-infected/vaccinated (Red Circle) and twenty CoV2-uninfected/vaccinated (Black Circle) SOTR plasma neutralization IC50 against CoV2-D614G, Beta, Delta, and Omicron following a third dose of a COVID-19 vaccine. (D) Comparison of five infected-vaccinated (I&V) and three uninfected-vaccinated (V) SOTR plasma neutralization efficiency against eight different CoV2 variants. All eight plasma is represented by eight different colors. (E) CoV2 RBD titers and (F) CoV2-D614G neutralization efficacy were compared in 14 SOTR samples after their second (blue bar) and third (red bar) dose of a COVID-19 vaccine. Horizontal red dotted line represents the minimal protective IC50 of 1:50 for virus neutralization and vertical line represents CoV2 RBD antibody positive samples.
Fig. 3 Role of race, time since transplantation, immunosuppressive drugs, and serum-creatinine level on COVID-19 vaccine induced antibody response. (A) Comparison of vaccine induced anti-RBD-IgG, IgM, and IgA in CoV2 uninfected SOTR of different ethnic groups. (B) Effect of time since transplantation on vaccine induced antibodies. (C) Comparison of vaccine induced antibodies in CoV2 uninfected SOTR on different immunosuppressive drug regimens (T/S-M: Tacrolimus/Sirolimus + Myfortic; T/S-MP: Tacrolimus/Sirolimus + Myfortic+ Prednisone) (D) Effect of serum creatinine level (mg/dl) on the vaccine induced antibody response. (E) Comparison of CoV2 neutralization potency of plasma between infected-vaccinated (Red Circle), CoV2 uninfected SOTRs Vaccinated during first 1.5 Years since Transplantation (Blue Circle), CoV2 uninfected SOTR of African American ethnicity (Black Circle) and rest of the CoV2-Uninfected-Vaccinated SOTR (Green Circle).
Fig. 4 Effect of vaccine types, sex, age, and the type of organ transplant on COVID-19 vaccine induced antibody response.

(A) Comparison of vaccine induced RBD antibodies in SOTRs by three different COVID-19 vaccines: J&J, Moderna and Pfizer.

(B) Comparison of vaccine induced RBD antibodies in SOTRs 18-59 years old and >60 years old were compared to show the effect of corticosteroid on the vaccine induced antibody response.

(C) Comparison of
vaccine induced RBD antibodies in CoV2 uninfected SOTR of Males and Females gender. (D) Comparison between kidney transplant recipients (KTRs) and heart transplant recipients (HTRs).
<table>
<thead>
<tr>
<th>CoV2-Infected Vaccinated</th>
<th>Plasma ID</th>
<th>Transplanted Organ</th>
<th>CoV2-WT</th>
<th>Beta</th>
<th>Delta</th>
<th>Omicron</th>
</tr>
</thead>
<tbody>
<tr>
<td>SOT_58</td>
<td>H</td>
<td>61231</td>
<td>51137</td>
<td>56527</td>
<td>3945</td>
<td></td>
</tr>
<tr>
<td>SOT_70</td>
<td>K</td>
<td>5264</td>
<td>2214</td>
<td>5712</td>
<td>741</td>
<td></td>
</tr>
<tr>
<td>SOT_72</td>
<td>K</td>
<td>155</td>
<td><50</td>
<td>91</td>
<td><50</td>
<td></td>
</tr>
<tr>
<td>SOT_81</td>
<td>H</td>
<td>923</td>
<td>321</td>
<td>1019</td>
<td>129</td>
<td></td>
</tr>
<tr>
<td>SOT_85</td>
<td>K</td>
<td>641</td>
<td>141</td>
<td>363</td>
<td><50</td>
<td></td>
</tr>
<tr>
<td>SOT_62</td>
<td>H</td>
<td><50</td>
<td><50</td>
<td><50</td>
<td><50</td>
<td></td>
</tr>
<tr>
<td>SOT_65</td>
<td>H</td>
<td>1184</td>
<td>918</td>
<td>955</td>
<td>133</td>
<td></td>
</tr>
<tr>
<td>SOT_66</td>
<td>K</td>
<td><50</td>
<td><50</td>
<td><50</td>
<td><50</td>
<td></td>
</tr>
<tr>
<td>SOT_67</td>
<td>K</td>
<td><50</td>
<td><50</td>
<td><50</td>
<td><50</td>
<td></td>
</tr>
<tr>
<td>SOT_68</td>
<td>H</td>
<td><50</td>
<td><50</td>
<td><50</td>
<td><50</td>
<td></td>
</tr>
<tr>
<td>SOT_69</td>
<td>K</td>
<td><50</td>
<td><50</td>
<td><50</td>
<td><50</td>
<td></td>
</tr>
<tr>
<td>SOT_71</td>
<td>H</td>
<td>289</td>
<td>57</td>
<td>232</td>
<td><50</td>
<td></td>
</tr>
<tr>
<td>SOT_73</td>
<td>K</td>
<td><50</td>
<td><50</td>
<td><50</td>
<td><50</td>
<td></td>
</tr>
<tr>
<td>SOT_74</td>
<td>H</td>
<td><50</td>
<td><50</td>
<td><50</td>
<td><50</td>
<td></td>
</tr>
<tr>
<td>SOT_75</td>
<td>H</td>
<td>78</td>
<td>84</td>
<td>107</td>
<td><50</td>
<td></td>
</tr>
<tr>
<td>SOT_76</td>
<td>H</td>
<td>60</td>
<td><50</td>
<td><50</td>
<td><50</td>
<td></td>
</tr>
<tr>
<td>SOT_77</td>
<td>H</td>
<td><50</td>
<td><50</td>
<td><50</td>
<td><50</td>
<td></td>
</tr>
<tr>
<td>SOT_78</td>
<td>K</td>
<td><50</td>
<td><50</td>
<td><50</td>
<td><50</td>
<td></td>
</tr>
<tr>
<td>SOT_79</td>
<td>H</td>
<td>4739</td>
<td>2168</td>
<td>6861</td>
<td>907</td>
<td></td>
</tr>
<tr>
<td>SOT_80</td>
<td>K</td>
<td><50</td>
<td><50</td>
<td><50</td>
<td><50</td>
<td></td>
</tr>
<tr>
<td>SOT_82</td>
<td>K</td>
<td><50</td>
<td><50</td>
<td><50</td>
<td><50</td>
<td></td>
</tr>
<tr>
<td>SOT_83</td>
<td>K</td>
<td><50</td>
<td><50</td>
<td><50</td>
<td><50</td>
<td></td>
</tr>
<tr>
<td>SOT_86</td>
<td>H+K</td>
<td>85</td>
<td>64</td>
<td>99</td>
<td><50</td>
<td></td>
</tr>
<tr>
<td>SOT_87</td>
<td>H</td>
<td><50</td>
<td><50</td>
<td><50</td>
<td><50</td>
<td></td>
</tr>
<tr>
<td>SOT_89</td>
<td>H</td>
<td>1141</td>
<td>359</td>
<td>575</td>
<td>58</td>
<td></td>
</tr>
</tbody>
</table>

Table. 3 IC50 values against CoV2-WT, Beta, Delta, and Omicron variants of post-third dose plasma (n=25)