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Abstract  43 

Background 44 

Globally, the anti-tuberculosis (TB) treatment success rate is approximately 85%, with 45 

treatment failure, relapse and death occurring in a significant proportion of pulmonary TB 46 

patients. Treatment success is lower among people with diabetes mellitus (DM). Predicting 47 

treatment failure early after diagnosis would allow early treatment adaptation and may improve 48 

global TB control. 49 

Methods 50 

Samples were collected in a longitudinal cohort study of adult TB patients with or without 51 

concomitant DM from South Africa and Indonesia to characterize whole blood transcriptional 52 

profiles before and during anti-TB treatment, using unbiased RNA-Seq and targeted gene 53 

dcRT-MLPA. 54 

Findings 55 

We report differences in whole blood transcriptome profiles, which were observed before 56 

initiation of treatment and throughout treatment, between patients with a good versus poor anti-57 

TB treatment outcome. An eight-gene and a 22-gene blood transcriptional signature 58 

distinguished patients with a good treatment outcome from patients with a poor treatment 59 

outcome at diagnosis (AUC=0·815) or two weeks (AUC=0·834) after initiation of anti-TB 60 

treatment, respectively. High accuracy was obtained by cross-validating this signature in an 61 

external cohort (AUC=0·749). 62 

Interpretation 63 

These findings suggest that transcriptional profiles can be used as a prognostic biomarker for 64 

treatment failure and success, even in patients with concomitant DM. 65 
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Introduction 75 

With more than 10 million new cases and approximately 1·5 million deaths annually, 76 

tuberculosis (TB), which is caused by Mycobacterium tuberculosis (Mtb), continues to be a 77 

major global health threat.1 Upon infection with Mtb, 5-10% of adults develop active disease 78 

during their lifetime and one quarter of the world’s population is estimated to be latently 79 

infected with Mtb (LTBI). The global anti-TB treatment success rate is only about 85% and 80 

even lower in patients with multi-drug resistant TB or with comorbidities like HIV or diabetes 81 

mellitus (DM)1-3, resulting in a significant number of patients with poor clinical outcomes.  82 

DM triples the risk of developing active TB4 and increases the risk of poor clearance of 83 

the infection following anti-TB treatment.5-7 In 2020, 0·37 million TB cases were estimated to 84 

suffer from DM comorbidity.1 85-95% of all DM cases is attributed to type-2 diabetes mellitus 85 

(T2DM).8 Since global DM prevalence is estimated to rise from 463 million people in 2019 to 86 

700 million in 20459, in particular in areas where TB is endemic, there is increasing concern 87 

about the consequences of the rising DM prevalence for global TB control.1 The mechanisms 88 

underlying DM-induced treatment failure remain, however, poorly understood.  89 

Prediction of treatment failure based on sputum-smear microscopy and mycobacterial 90 

culture lacks sensitivity10 and depends on the quality of sputum samples, which are difficult to 91 

collect and are frequently inconsistent in quality.11-13 In addition to more advanced sputum-92 

based diagnostics, monitoring of whole blood transcriptomics may be an additional, 93 

complementary but independent method to monitor treatment responses, possibly with 94 

increased sensitivity.14 Numerous studies have reported transcriptional biomarker profiles for 95 

active TB and response to anti-TB treatment using whole-blood or PBMCs in settings with 96 

varying TB incidence.15-20 In addition, multiple studies have demonstrated the predictive 97 

potential of host gene biomarkers in identifying patients at risk of developing active TB, relapse 98 

and treatment failure.21-28 Together, these studies showed that gene signatures may have utility 99 
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at predicting anti-TB treatment success versus failure already early after TB diagnosis, 100 

providing a significant improvement over the currently used low sensitivity conversion to 101 

negative sputum-based culture testing.10 Despite the high incidence of DM and pre-DM among 102 

TB patients in TB-endemic settings7,29-31, only a few studies have identified or validated such 103 

signatures in TB patients with DM or hyperglycemia.32,33  104 

Characterizing transcriptomic profiles may improve our understanding towards the 105 

immunological pathways that are involved in DM-associated TB pathology and monitoring 106 

treatment success and failure in TB patients with concomitant DM is key to combat the 107 

tuberculosis-diabetes (TB-DM) co-epidemic. Although the blood transcriptome profile of TB-108 

DM patients is more similar to TB patients than to DM patients, suggesting a dominant 109 

influence of active TB infection, we and others recently demonstrated significant differences 110 

in the blood transcriptome of TB-DM patients compared to TB patients.32,33 Additionally, the 111 

transcriptomic profiles of patients with TB-related intermediate hyperglycemia (TBrel-IH) 112 

were similar to the profiles of TB-DM patients.32 Importantly, we also showed that DM 113 

comorbidity lowered the performance of published diagnostic biomarker signatures.32 114 

Therefore, there is a need for biomarkers that predict treatment success and failure in TB 115 

patients independently of their glycemia or DM status. 116 

The aim of the current study was to identify blood transcriptional gene signature for 117 

predicting the anti-TB treatment outcome at an early stage after initiation of anti-TB treatment, 118 

irrespective of concomitant DM. We combined an unbiased RNA-Seq approach and a selective 119 

dcRT-MLPA approach (a multiplex RT-PCR platform) as two independent strategies to 120 

identify gene signatures with high discriminatory power to distinguish patients with a good 121 

treatment outcome from patients with a poor treatment outcome. Host gene biomarker profiles 122 

to identify anti-TB treatment success or failure could facilitate the evaluation of new anti-TB 123 
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drugs and improve clinical surveillance of TB patients, even in settings with high DM 124 

incidence. 125 

 126 

Methods 127 

Study participant recruitment, classification and treatment  128 

Adult pulmonary TB patients were recruited as part of the TANDEM project29 in two locations: 129 

Bandung in Indonesia (UNPAD) and Cape Town in South Africa (SUN). All TB patients were 130 

newly diagnosed and microbiologically confirmed, and included people with TB-DM. The TB-131 

DM group included participants with both pre-diagnosed DM and newly identified DM, with 132 

new diagnosis based on a laboratory HbA1c test ≥6·5% with a confirmatory HbA1c test ≥6·5% 133 

or fasting blood glucose ≥7 mmol/L at TB diagnosis29, followed by a further HbA1c test ≥6·5% 134 

after 6 months of TB treatment. The TB patients without DM included people with a normal 135 

glycaemic index (laboratory HbA1c <5·7%) at TB diagnosis (“TB-only”). Patients whose 136 

HbA1c test results were ≥5.7% and <6.5% at both TB diagnosis and at 6 months were deemed 137 

to have pre-diabetes (“TB-preDM”) and patients with raised glycaemia at TB diagnosis but 138 

below the cut-off for DM diagnosis (5·7%≤ laboratory HbA1c <6·5%) were deemed to have 139 

TB-related intermediate hyperglycaemia (“TBrel-IH”). In South Africa, healthy controls 140 

without TB or DM were also recruited for baseline sample analysis. Multi-drug-resistant TB, 141 

HIV positivity, pregnancy, serious co-morbidity and corticosteroid use were exclusion criteria.  142 

TB patients received standard first line TB treatment according to WHO Guidelines. 143 

Microbiological measures recorded at baseline and throughout treatment included sputum 144 

smear and culture, with time to positivity (TTP) in mycobacteria growth indicator tubes 145 

(MGIT) also assayed in South Africa. TB patients were classified based on their treatment 146 

outcome: “poor treatment outcome” included those patients who died, failed initial treatment 147 

(remained sputum positive at five months) or experienced TB-recurrence in the 12 month 148 
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follow-up period post treatment, whilst those with “good treatment outcome” had successful 149 

TB treatment without subsequent recurrence. Patients for whom the outcome data were missing 150 

were not included in downstream analyses. Most TB-DM patients received local standard of 151 

care DM treatment, whilst a subgroup in Indonesia received more intensive HbA1c monitoring 152 

and treatment adjustment through TB treatment as part of a pragmatic randomised control 153 

trial.34  154 

Ethics Statement 155 

The study was approved by the London School of Hygiene & Tropical Medicine Observational 156 

Research Ethics Committee (6449), the SUN Health Research Ethics Committee (N13/05/064) 157 

and the UNPAD Health Research Ethics Committee, Faculty of Medicine, Universitas 158 

Padjadjaran (number 377/UN6.C2.1.2/ KEPK/ PN), and participants gave written informed 159 

consent. 160 

RNA sample collection and extraction 161 

Patient samples were collected prior to initiation of treatment (diagnosis), at weeks 2, 4, 8, 16 162 

and 26 through treatment, and at 12 months after TB diagnosis, and from HC at baseline only. 163 

Venous blood (2·5ml) was collected into PAXgene Blood RNA Tubes (PreAnalytiX). Total 164 

RNA was extracted using RNeasy spin columns (Qiagen) and quantified by Nanodrop 165 

(Agilent). The LabChip GX HiSens RNA system (PerkinElmer) was used for quality 166 

assessment of samples processed by RNA-Seq.  167 

Unbiased RNA-Seq of global gene expression 168 

Samples collected at TB diagnosis and weeks 2, months 2, and months 6 from the first 63 169 

participants recruited were analysed by RNA-Seq (Table 1). Libraries were generated using the 170 

poly-A tail Bioscientific NEXTflex-Rapid-Directional mRNA-Seq method with the Caliper 171 

SciClone. Single-end sequencing was performed using the NextSeq500 High Output kit V2 172 
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(Illumina) for 75 cycles. Sequence data from FASTQ files were aligned to the Human g1kv37 173 

reference genome, using STAR (v2.5.1b).35 Quality control was performed with FastQC36, 174 

while transcript quantification was performed using HT-seq count (v0.61)37: lowly expressed 175 

transcripts (<50 counts across all samples), were removed from the downstream analysis. 176 

RNA-Seq data were normalised using DESeq2 (v1.30.0).38  177 

Dual-color Reverse-Transcriptase Multiplex Ligation-dependent Probe Amplification (dcRT-178 

MLPA) 179 

Dual-color reverse-Transcriptase Multiplex Ligation-dependent Probe Amplification (dcRT-180 

MLPA) was performed on all samples to identify blood transcriptional profiles as described 181 

previously.39 Brief descriptions are provided in the Supplementary Information. RT primers 182 

and half-probes were designed by Leiden University Medical Centre (LUMC, Leiden, The 183 

Netherlands) and encompassed sequences for 144 selected key immune-related genes to profile 184 

the innate, adaptive and inflammatory immune responses (Supplementary Table S1), and four 185 

housekeeping genes (GAPDH, ABR, GUSB, B2M). Genes with an adjusted p-value <0·05 186 

(Benjamini-Hochberg40) and a log2-fold change (FC) <-0·6 and >0·6 were considered 187 

differentially expressed genes (DEGs). Genes that were below the detection limit in >90% of 188 

the samples per cohort were excluded from analysis. 189 

Data analysis and Statistics 190 

Statistical analyses to compare participant demographics were carried out using GraphPad 191 

Prism 8 software (Graphpad Software, San Diego, CA, USA). For continuous measures, a 192 

Mann-Whitney U-test was used when comparing two groups and a Kruskal-Wallis test when 193 

comparing three groups. For non-continuous measures, the Chi-square test was used. P-values 194 

as <0·05 were considered significant. 195 
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Molecular Degree of Perturbation (MDP) analysis was performed by R using mdp R 196 

package41, and differences between the mean ranks of the groups were assessed by Mann-197 

Whitney U test followed by Benjamini-Hochberg False discovery correction.40 Cell population 198 

estimates were calculated using the cellCODE42 R package, with the IRIS43 and DMAP44 data 199 

sets used as a reference. Modular analysis was performed using the R package tmod45 and 200 

its HGtest method, with DEGs used as the foreground and all genes used as the background 201 

signal. 202 

Differential expression analysis (DEA) was performed in R using the MaSigPro 203 

package46 to characterise longitudinal differential gene expression of genes measured by RNA-204 

Seq: this followed a two-step regression method, finding genes with significant temporal 205 

expression changes and also significant differences between clinical groups. A quadratic 206 

regression model was executed due to the number of timepoints analysed. The regression 207 

model treats time as a quantitative variable so differentially expressed are not only detected, 208 

but also changes in trends and magnitude.   209 

Longitudinal DEA of genes measured by dcRT-MLPA was assessed by means of linear 210 

mixed models for repeated measures over time using lme4 package in R.47 A Benjamini-211 

Hochberg False discovery correction was performed, with an adjusted p-value of <0·05 deemed 212 

significant. Non-parametric Mann-Whitney U-test followed by Benjamini-Hochberg 213 

correction was performed to identify DEGs between patients who had a good and poor 214 

treatment outcome. Correlations were evaluated using Pearson’s correlation coefficient. 215 

Treatment outcome signatures based on dcRT-MLPA data were identified in TB 216 

patients of South Africa and Indonesia using Recursive Feature Elimination (RFE)48 and 217 

Random Forest (RF). Because the number of patients with a good treatment outcome was 218 

considerably larger than those with a poor treatment outcome (poor, n=38; good, n=134), a 219 

random down-sampling technique as well as a Synthetic Minority Oversampling Technique 220 
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(SMOTE) were applied to balance the classes (i.e. “good treatment outcome” and “poor 221 

treatment outcome”) of the dataset.49 RF was performed as machine learning algorithm on the 222 

dataset including the selected genes and the performance of gene signatures was evaluated by 223 

Leave-One-Out Cross Validation (LOOCV).50,51 We assessed the classifying performance of 224 

the model by evaluating Receiver Operating Characteristic (ROC) curve and Area Under the 225 

ROC Curve (AUC) with 95% Confidence Interval (CI). An extended description of the data-226 

analysis methods is provided in the Supplementary Information. 227 

 228 

Role of Funders 229 

Funders had no role in study design, data collection, data analyses, data interpretation, writing 230 

of the report and decision to submit the paper for publication. 231 

 232 

Results 233 

Study Design and Cohort 234 

Pulmonary TB patients were recruited into the prospective longitudinal study in South Africa 235 

and Indonesia, and followed up through standard treatment and for the following 12 months. 236 

Altogether, 39 TB patients of the 176 recruited had a “poor treatment outcome”, with 7 237 

patients dying, 26 failing treatment (based on continued sputum smear or culture positivity at 238 

month 6), and 6 experiencing recurrences in the subsequent 18 months. The “poor treatment 239 

outcome” rates were similar in the two sites (Table 1). The median age of the patients was 240 

equal in patients with either a good or poor treatment outcome (median = 47 years), with a 241 

higher proportion of males with a poor treatment outcome than a good treatment outcome (56% 242 

and 67% respectively). The proportion of TB patients with DM with a poor treatment outcome 243 

(15/39; 38%) was slightly higher than that with a good treatment outcome (44/137; 32%), 244 
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whereas the proportion with TBrel-IH was higher in those with a good treatment outcome 245 

(65/137; 47%) than a poor treatment outcome (14/39; 36%). There was no evidence that those 246 

who had a poor treatment outcome had more severe TB at diagnosis, with similar sputum 247 

bacterial loads (as measured by TTP) in TB patients from South Africa and similar sputum 248 

smear grade in Indonesia across the good and poor treatment outcome groups. 249 

Poor treatment outcome was reflected by an attenuated treatment response compared to good 250 

treatment outcome  251 

The holistic unbiased analysis of gene expression in TB patients with good or poor treatment 252 

outcomes by RNA-Seq approach was performed on a subset of study participants (Table 1). 253 

There were significant changes in global gene expression in patients with a good treatment 254 

outcome continuously through TB treatment, reflecting treatment response (Figure 1A). Gene 255 

expression perturbation was also evident in patients who had a poor treatment outcome, 256 

although the sample score was higher at diagnosis compared to patients who had a good 257 

treatment outcome. This represents differences at the transcriptomic level between patients 258 

with a good versus a poor treatment outcome, already before initiation of anti-TB treatment. 259 

This was followed by less change over time in response to TB treatment in the poor TB 260 

outcome group.   261 

Next, we focused our molecular distance analysis on 144 TB-associated genes as 262 

measured by dcRT-MLPA, which was performed on all study participants (n=201) (Table 1). 263 

Again, there were significant changes in global gene expression continuously through TB 264 

treatment in patients with a good treatment outcome, but not in patients with a poor treatment 265 

outcome (Figure 1B), reflecting an attenuated TB treatment response. Despite the substantial 266 

treatment response in patients who had a good treatment outcome, gene expression perturbation 267 

did not completely normalize to levels of healthy controls by 6 months (Supplementary Figure 268 

S1).  269 
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Together, these data suggest that there was a different biosignature in those with good 270 

versus poor treatment outcomes, which was reflected by transcriptomic differences before 271 

initiation of anti-TB treatment and by a tempered response to anti-TB treatment in patients with 272 

a poor treatment outcome compared to patients with a good treatment outcome. 273 

Global Differential expression in patients who had good or poor responses to TB treatment 274 

The changes in gene expression in the RNA-Seq data through time and between the patients 275 

with a good or poor treatment outcome were analyzed by MaSigPro, initially in the South 276 

African and Indonesian cohorts separately. The strength in this method was that it was able to 277 

monitor the change in dynamics over time and also between different treatment groups. In 278 

South Africa, the genes which changed differently through time between the patients with good 279 

or poor treatment outcome were grouped into nine clusters (Supplementary Figure S2A, 280 

Supplementary Table S2), with an increase in expression through treatment in four clusters 281 

(1,2,3,5), a decrease in four clusters (4,6,7,8), and no change in one cluster (9). Genes with 282 

higher expression throughout treatment in TB patients with poor treatment outcome were 283 

grouped in seven clusters (1,3,4,5,7,8,9) and those with higher expression in TB patients with 284 

a good treatment outcome were grouped in two clusters (2,6). A similar pattern was observed 285 

in the Indonesian cohort, with DEGs identified through treatment between good and poor 286 

separating into nine clusters (genes increasing in clusters 2,5,7, and decreasing in clusters 287 

1,3,4,6,8,9) (Supplementary Figure S2B, Supplementary Table S3), with higher expression in 288 

either the good or poor treatment outcome group. Importantly, these differences in gene 289 

expression through time were observed in all TB patient groups, irrespective of their DM status.  290 

The genes grouped into the clusters in the Indonesian and South African cohorts 291 

partially overlapped but there was variability. A third MaSigPro analysis was therefore 292 

conducted, to find those genes which were differentially expressed through treatment between 293 

TB patients with a good or poor treatment outcome, irrespective of their geographical origin 294 
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(Figure 2, Supplementary Table S4). Again, the genes differentially expressed through 295 

treatment in the combined analysis separated into nine clusters, with variable patterns of 296 

expression over time and between TB patients with good or poor treatment outcome. Some 297 

clusters (2,5,6) contained genes which were different between the groups at all time points, 298 

whereas other clusters (1,3,4,5,7,8,9) were similar at some timepoints and more divergent at 299 

others (Figure 2, Table 2).  300 

The number of transcripts within each cluster in the combined analysis ranged from 4 301 

to 47 (Table 2), with the majority of genes identified in all clusters encoding proteins. There 302 

were also various regulatory transcripts in some clusters, including long non-coding RNAs, 303 

miRNA, snoRNA, retained introns, as well as antisense, nonsense-mediated decay, 304 

overlapping senses and sense intronic transcripts. To understand the biological function of the 305 

DEGs, the transcripts within each cluster were analysed using the g:COST tool within the 306 

g:Profiler application52, to determine significant enrichment of genes in Gene Ontology (GO) 307 

molecular function, cellular component and biological process categories, as well as in curated 308 

biological pathways from KEGG and Reactome databases and the CORUM protein database. 309 

Genes in cluster 2 were largely involved in B cell receptor signalling, seen in the GO and 310 

pathway analyses, and these were more highly expressed in people who had a poor treatment 311 

outcome, with increasing expression through treatment. This upregulation of genes involved in 312 

B cell function, particularly those involved in earlier stages of B cell development, was not 313 

related to the overall number of B cells in the samples, as predicted from the samples using 314 

CellCode analysis package (Supplementary Figure S3). Cluster 9 was predominantly 315 

composed of immunoglobulin transcripts, whose expression decreased much more 316 

substantially in patients with a good treatment outcome. The largest gene cluster (4) was 317 

enriched with genes involved in actin remodelling, including the Arp 2/3 complex, and in 318 

pathways related to infections with bacteria such as Shigella, E. coli, Yersinia and Salmonella. 319 
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Cluster 7 contained genes related to mitotic cell division, and these were more highly expressed 320 

in patients with a poor treatment outcome (Table 2). These analyses were also performed using 321 

the DAVID online tool53, and similar results were obtained (not shown). The DEGs found in 322 

the combined and separate cohort MaSigPro analyses were used as a foreground against all 323 

genes in a modular analysis using the Tmod package, which gives biological function to a gene 324 

list. It showed an upregulation of genes involved in B cell function in good versus poor 325 

treatment outcomes, in both the Indonesian and South African cohorts (Supplementary 326 

Table S5).  327 

Identification of DEGs through TB treatment in patients with good or poor treatment 328 

outcomes 329 

Next, we focused our DEA on 144 genes that previously have been associated with TB39 using 330 

dcRT-MLPA (Supplementary Table S6). No significant DEGs were detected by directly 331 

comparing patients with a good versus a poor treatment outcome at the indicated timepoints 332 

(Supplementary Figure S4), and therefore we analyzed longitudinal expression of genes. 333 

Kinetic profiling of DEGs identified 16 DEGs in patients with a good treatment outcome and 334 

12 DEGs in patients with a poor treatment outcome. The longitudinal expression of DEGs 335 

identified by dcRT-MLPA showed a significant correlation with genes measured by RNA-Seq, 336 

highlighting the validity and reproducibility of our approach (Supplementary Figure S5). A 337 

high correlation between DEGs of patients who had a poor treatment outcome and DEGs of 338 

patients who had a good treatment outcome could be detected (R=0·87, p<0·0001), 339 

highlighting the challenge of discriminating patients with a good versus a poor treatment 340 

outcome based on single genes (Supplementary Figure S6). Genes associated with active 341 

TB15,20,54 or risk of developing TB22 were substantially downregulated (GBP1, GBP2, GBP5, 342 

and IFITM3) or upregulated (GNLY and PRF1) over time in TB patients regardless of their 343 

treatment outcome, reflecting transcriptomic response to anti-TB treatment (Figure 3A and 344 
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Supplementary Figure S7). Other genes associated with active TB were significantly down- or 345 

upregulated  (STAT2, MMP9, IRF7, IFI6, IFIT2, IFIT3, and CCR7) during anti-TB treatment 346 

in patients who had a good treatment outcome, but not in patients who had a poor treatment 347 

outcome, or vice versa (CD3E, PTPRCv1, NLRP1, BCL2)15,39,54,55. The expression of TAGAP, 348 

previously associated with active TB55, was significantly increased during anti-TB treatment 349 

in patients who had a poor treatment outcome. Modular analysis showed that the gene profile 350 

of regulated genes was dominated by genes in the interferon (IFN) signaling pathway, 351 

especially in patients who had a good treatment outcome (Figure 3B).  352 

Identification of a signature predicting treatment outcome  353 

Machine learning algorithms were implemented on data obtained at each time point to develop 354 

biomarker panels to predict treatment outcomes at different stages of TB treatment. First, we 355 

aimed to identify gene signatures from RNA-Seq analysis on a subset of subjects, but we found 356 

a low performance of gene signatures generated on diagnosis, week two and month six 357 

(AUC=0·625, AUC=0·667 and AUC=0·615, respectively) to predict treatment outcome, 358 

potentially due to a low number of patients in the training and test set (Supplementary Figure 359 

S8A). The best performing model was built on month two resulting in an AUC of 0·8667 360 

(Supplementary Figure S8A, Supplementary Table S7). We also tested an active TB disease 361 

biomarker signature, namely the three-gene Sweeney signature20, to determine whether it 362 

resolved significantly more in those with a good treatment outcome than in those with a poor 363 

treatment outcome. This signature has previously been shown to persist in patients with 364 

persistent lung inflammation26. However, in our RNA-Seq data, this signature revealed an AUC 365 

of 0·5333 (Supplementary Figure S8B) highlighting that the process behind poor treatment 366 

outcome cannot be predicted by expression of these three genes. 367 

Next, we aimed to identify early correlates of treatment outcome by implementing 368 

machine learning algorithms on gene expression as measured by dcRT-MLPA. We focused 369 
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our analysis on the identification of gene predictors at diagnosis and at week two that could 370 

possibly be used in future studies to predict the occurrence of poor or good treatment outcome 371 

before or early after anti-TB treatment initiation, first by down-sampling the good treatment 372 

outcome class.  The top eight ranked genes (GBP1, FCGR1A, STAT1, IFITM3, BCL2, CCL4, 373 

TLR9, CD274) from the diagnosis signature were used for RF machine learning model 374 

implementation (Table 3). Excitingly, the signature had a high predictive power (AUC=0·815) 375 

to classify TB patients with a good or poor treatment outcome, already before anti-TB treatment 376 

initiation (Figure 4A). Furthermore, the gene signature showed high performance on the 377 

cohorts separately (South Africa, AUC=0·845; Indonesia, AUC=0·744). Next, we investigated 378 

whether accuracy could be improved by predicting treatment outcome after initiation of anti-379 

TB treatment, thus measuring the early treatment response. We identified a 22-gene signature 380 

to predict treatment outcome at two weeks after initiation of anti-TB treatment (Table 3). The 381 

performance of the week two signature in predicting treatment outcome was slightly improved 382 

(AUC=0·834) compared to the diagnosis signature, especially in patients from the Indonesian 383 

cohort (AUC=0·867 versus AUC=0·744 at diagnosis). Furthermore, we identified a 14-gene 384 

month two signature, which, however, demonstrated a slightly lower accuracy in predicting 385 

treatment outcome compared to diagnosis and week two gene signatures (AUC=0·791). 386 

Since we detected differences in the kinetics of gene expression of patients who had a 387 

good treatment outcome versus patients with a poor treatment outcome (Figure 1), we next 388 

assessed whether a “delta” gene signature, by subtracting week two values from diagnosis, 389 

could improve the predictive performance. The delta signature encompassed seven genes 390 

(GNLY, MRC1, GBP5, NLRP1, FLCN1, ZNF532, and IFIT2) and slightly improved predictive 391 

performance (pooled cohorts, AUC=0·849; South Africa, AUC=0·839 and Indonesia, 392 

AUC=0·872) compared to the week two and diagnosis signatures (Supplementary Figure S9, 393 

Supplementary Table S8). Multiple genes were included in more than one gene signature 394 
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(Supplementary Figure S10A), of which four genes (GBP1, GBP5, FCGR1A, INDO) are 395 

shown in Figure 4B. Next, we validated performance of the diagnosis signature and month two 396 

signature on an independent validation cohort28, which like our cohorts, included diabetic 397 

patients. Our diagnosis gene signature had high predictive power on the Indian validation 398 

cohort (AUC=0·749) (Figure 4C). The week two and delta signatures could not be validated 399 

on the Indian cohort, because samples were not collected two weeks after initiation of anti-TB 400 

treatment in this cohort. Three genes (CD3E, PTPRCv1, NOD2) that were included in our gene 401 

signatures, were also part of gene signatures described by Sivakumaran et al. (Supplementary 402 

Figure S10B). Finally, we assessed whether gene signatures with improved performance could 403 

be obtained by applying SMOTE49 as an alternative sampling technique. A diagnosis SMOTE 404 

gene signature was obtained that showed overlap with the diagnosis gene signatures obtained 405 

by random down-sampling (Supplementary Table S9, Supplementary Figure S10C). The 406 

SMOTE signature produced a high degree of accuracy in discriminating patients with a good 407 

treatment outcome from patients with a poor treatment outcome, but performed with lower 408 

accuracy compared to the diagnosis signature obtained by random down-sampling (pooled 409 

cohorts, AUC=0·728; South Africa, AUC=0·695; Indonesia, AUC=0·765) (Supplementary 410 

Figure S11). The diagnosis SMOTE signature exerted a similar predictive capacity on the 411 

external Indian cohort compared to the down-sampling signature (SMOTE, AUC=0·704; 412 

down-sampling, AUC=0·749). 413 

Taken together, we identified gene signatures with high predictive power on treatment 414 

outcome, irrespective of DM as comorbidity, in patients from South Africa and Indonesia and 415 

in patients from the external Indian validation cohort.  416 

  417 
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Discussion 418 

In this study, we identified peripheral blood transcriptional signatures which predict anti-TB 419 

treatment success and failure in TB patients with or without concomitant hyperglycaemia or 420 

DM. Previous studies developing biomarker signatures of TB treatment success, recurrence or 421 

failure24-26,56 did not include people with DM comorbidity, and we have previously found 422 

concomitant DM impairs existing TB diagnosis signature accuracy.32 Here we showed DM 423 

also affects existing TB treatment-response biomarker signatures in the RNA-Seq dataset, 424 

suggesting that they should be derived with cohorts including this population. 425 

Our whole cohort dataset, from which we generated treatment outcome signatures, was 426 

derived using our dcRT-MLPA gene set, which did not contain most of the genes reported in 427 

previous signatures, except GBP5, which was included in our week two and month two gene 428 

signatures. Sivakumaran et al.28 recently reported baseline and month two gene signatures 429 

predicting treatment outcome at six months after initiation of anti-TB treatment, using the same 430 

material (whole blood), technique (dcRT-MLPA) and gene set. Notably, our treatment outcome 431 

gene signatures showed some overlap with the signatures reported by Sivakumaran et al. 432 

(CD3E, PTPRCv1, NOD2), suggesting that these genes are useful in predicting treatment 433 

outcome independently of ethnical background. Furthermore, our treatment outcome gene 434 

signatures showed overlap of genes of the TB risk signature predicting TB progression from 435 

healthy controls more than a year before onset of TB (GBP1, GBP2, GBP5, FCGR1A, STAT1, 436 

TAP1).22 Within our study, 12 genes (BCL2, BMP6, CCL13, CD209, FCGR1A, GBP1, GBP5, 437 

INDO, MMP9, MRC1, STAT1, TLR9) were overlapping between gene signatures, including 438 

both the gene signatures obtained by down-sampling and the gene signatures obtained by 439 

SMOTE. The occurrence of genes in multiple gene signatures within this study and between 440 

studies highlights the power of transcriptomic biomarkers in predicting treatment outcome and 441 
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suggests that universal biomarkers can be applied to cohorts of different ethnicity and 442 

independently of the DM/glycaemia status of TB patients. 443 

Patients with a poor treatment outcome responded to anti-TB treatment at the level of 444 

individual genes, as detected by downregulation of genes (GBP1, GBP2, GBP5, IFITM3) that 445 

have been associated with active TB and upregulation of genes (CD3E, PTPRCv1, NLRP1, 446 

GNLY, PRF1, BCL2) that show lower expression in patients with active TB compared to LTBI 447 

or healthy controls15,20,39,55. However, MDP analysis showed that the response to anti-TB 448 

treatment was diminished in those with a poor treatment outcome compared to patients who 449 

had a good treatment outcome. Notably, the majority of genes that were significantly 450 

downregulated in patients who had a good treatment outcome, but not in patients who had a 451 

poor treatment outcome, are involved in IFN signaling (IRF7, IFIT2, IFIT3, STAT2, IFI6, 452 

TAP2). This suggests that a poor treatment outcome was reflected by persisting IFN signaling 453 

response and supports a role for type I IFN signaling in TB pathogenesis.15,57  454 

TAGAP was significantly increased in patients who had a poor treatment outcome in 455 

the pooled South African and Indonesian cohort as well as in both cohorts separately. TAGAP 456 

encodes T-cell activation Rho-GTPase-activating protein, however, the exact role of TAGAP 457 

in Mtb pathogenesis is currently unknown. Several studies have linked TAGAP with active TB; 458 

TAGAP was enriched for differential acetylation peaks upon Mtb infection in granulocytes58 459 

and TAGAP was induced upon vaccination with AERAS-402 vaccine encoding a fusion protein 460 

of Mtb antigens.59 Furthermore, TAGAP had higher expression in TB patients compared to 461 

LTBI and healthy controls55 and, surprisingly, lower expression in pulmonary TB compared to 462 

household controls.60 Our data showing that TAGAP expression was significantly increased 463 

during anti-TB treatment in patients who had a poor treatment outcome could indicate that 464 

TAGAP is actively involved in TB pathogenesis or that TAGAP expression is a consequence of 465 

persisting Mtb infection, but this remains to be investigated. 466 
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There are several limitations of the current study. First, the sample size in this study 467 

was not based on an a priori power calculation, as this study was part of a larger study 468 

investigating differences in gene expression in patients with varying degrees of hyperglycemia. 469 

To increase statistical power, we therefore pooled patients from two cohorts (South Africa and 470 

Indonesia), which introduced heterogeneity within the studied groups. However, this can also 471 

be a strength, potentially increasing application over different ethnic backgrounds.  Second, 472 

there were missing values in the cohort study. The missing values occurred as a result of 473 

random drop-outs or technical errors caused by low quantity or quality of some samples, and 474 

therefore the use of linear mixed models for the DEA most likely produced unbiased results. 475 

Third, although the prevalence of hyperglycaemia/DM is not indicated in the majority of other 476 

TB biomarker studies, which is a limitation of these studies considering the rising incidence of 477 

TB-DM comorbidity, our study contained many patients with high HbAc1 levels. Although 478 

this may have introduced a bias, the strength of this approach is that treatment outcome 479 

signatures have been developed that can be applied to patients independently of their 480 

glycaemia/DM status. Furthermore, we showed that our eight-gene diagnosis signature had a 481 

high performance (AUC=0·749) when tested on an external validation cohort in patients with 482 

a different ethnic background (India), which is striking since geographic or ethnic variations 483 

may significantly impact on the immune responses to TB. 484 

In this study, we demonstrated the potential of gene signatures to predict treatment 485 

outcome, in a cohort including patients with concomitant DM or hyperglycaemia. Identification 486 

of a diagnosis gene signature containing only eight genes in this study, and even fewer genes 487 

in signatures reported by others26,27, indicates that clinically-implementable biomarker 488 

signatures can be developed using transcriptomic-based approaches using easily accessible 489 

whole blood, and that are promising as surrogate marker for sputum culture conversion.  490 

  491 
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Tables 664 

Table 1. Study Participant Demographics 665 

Characteristic Country TB Patients 
Healthy Controls P-value 

    Good Outcome Poor Outcome 

Total Number of Participants 

S Africa 76 18 27 - 

Indonesia 61 21 0 - 

All  137 39 27 - 

Age in years, median (range) 

S Africa 46 (22-68) 42 (19-55) 42 (30-70) 0.485 

Indonesia 49 (25-73) 49 (35-68) - 0.96 

All  47 (22-73) 47 (19-68) 42 (30-70) 0.2801 

Sex,  % male       (No. male/ female) 

S Africa 58 (44/32) 67 (12/6) 52 (14/13) 0.6981 

Indonesia 53 (32/29) 67(14/7) - 0.3136 

All  56 (76/61) 67 (26/13) 52 (14/13) 0.2704 

Number with Diabetes / Intermediate 
Hyperglycaemia / Normal  glycaemia  

(%) 

S Africa 13/49/14 4/11/3 0/0/27 0.8775$ 

Indonesia 31/16/14 11/3/6 - 0.5589 

All  44/65/28 15/14/9 0/0/27 0.5409$ 

HbA1c median (range)  

S Africa 6.0 (4.9-14.3) 6.0 (4.8-14.1) 5.3 (4.8-6.4) 0.6144$ 

Indonesia 8.15 (4.9-17.1) 7.1 (5.1-14.1) - 0.5612 

All  6.0 (4.9-17.1) 6.1 (4.8-14.1) 5.3 (4.8-6.4) 0.9892$ 

BMI at TB diagnosis:, median (range) 

S Africa  18.7 (13.9-32.3) 18.3 (13.7-31.2) 23.7 (17.4-45.2) 0.9588$ 

Indonesia 19.7 (13.8-33.3) 18.8 (16.3-27.3) - 0.8433 

All  19.1 (13.8-33.3) 18.8 (13.7-31.2) 23.7 (17.4-45.2) 0.8351$ 

TTP (days) at TB diagnosis: Median 

(range) (missing values) 
S Africa 6 (1-21) (18) 6 (3-21) (3) N/A 0.8916 

Smear Grade at diagnosis number: 

3+/2+/1+/scanty/negative 
Indonesia 16/23/14/2/6 8/4/6/2/1 N/A 0.3637 

Sputum conversion at Month 2: number 

yes/no (missing values) 

S Africa 49/19 (8) 10/6 (2) N/A 0.4518 

Indonesia 44/15 (2) 10/8 (2) N/A 0.1227 

All  93/34 (10) 20/14 (4) N/A 0.1029 

Outcome classification: Cured 

/Recurrence/Failed/Died 

S Africa 76/0/0/0 0/4/10/4 N/A <0.0001 

Indonesia 61/0/0/0 0/2/16/3 N/A <0.0001 

All  137/0/0/0 0/6/26/7 N/A <0.0001 

RNASeq subset 

S Africa 26 6 0 - 

Indonesia 23 8 0 - 

All  49 14 0 - 

MLPA subset 

S Africa 76 18 27 - 

Indonesia 58 21 0 - 

All  135 39 27 - 

$ Comparison of TB patients with Good or Poor TB treatment outcome, HC excluded  666 
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Table 2. Clusters of genes differentially expressed between TB patients with good or poor treatment 667 
outcomes to TB treatment in MaSigPro analysis of combined RNA-Seq data from South Africa and 668 
Indonesia  669 

Clus

ter 

Nu

mbe

r 

Overall 

pattern 

 

Num

ber of 

gene 

trans

cripts 

Gene Function Top Functions from g:Profiler** 

with adjusted P<0·05 

Protei

n 
Codin

g 

Proce

ssed 
Trans

cript 

Pseud

o-
gene 

Regul

-atory 
RNAs

* 

1  through 

treatment; 

Higher in 

Good at W2 

26 20 1 0 5 

GO:MF – Opsonin Binding; 
GO:CC – Intracellular Vesicles; Endomembrane System 

2  through 

treatment; 

Higher in 

Poor 
throughout 

14 13 0 0 1 

GO:BP – B cell receptor (BCR) signaling; 
GO:CC – BCR complex 

KEGG – BCR signaling; primary immunodeficiency; 
REAC – BCR signaling 

WP – BCR signaling 

CORUM – CIN85-BLNK complex 

3  through 

treatment; 

Higher in 
Good at 

W26 

25 17 2 0 6 

No significant results 

4  through 

treatment; 

Higher in 

Poor 
throughout 

47 37 2 2 6 

GO:CC – Arp2/3 complex; 
KEGG – Shigellosis; E.coli, Yersinia, Salmonella infection; Endocytosis; 

REAC – Ephrin signaling; Rho GTPAses activate WASPs and WAVEs; 

TF – ZNF544 
CORUM – Arp2/3 complex 

5 Small  

through 

treatment; 
Higher in 

Poor 

throughout 

11 6 1 1 3 

GO:MF – L-tyrosine transmembrane transporter activity; 

GO:BP – positive regulation of fatty acid transport. 

6 No change; 
Higher in 

Poor 

throughout 

4 0 0 3 1 

No significant results 

7  to W2, 

then ; 

Higher in 
Poor at W2 

4 4 0 0 0 

GO:BP – mitotic cell cycle process 

WP – Retinoblastoma Gene in Cancer 

8  in Good 

through 

treatment; 
No change 

in Poor 

7 3 0 2 2 

GO:MF - RNA polymerase III activity 

9  through 

treatment; 

Much 

greater 
change in 

Good 

10 10 0 0 0 

GO:MF – immunoglobulin receptor binding 
GO:BP – phagocytosis, recognition; complement activation, classical 

pathway; immunoglobulin mediated immune response; B cell activation 

GO:CC – immunoglobulin complex; E/C space; plasma membrane 
REAC – Classical antibody-mediated complement activation; FCGR 

activation; phagocytosis. 

*Retained introns, Antisense, LncRNA, miRNA, nonsense-mediated decay, sense overlapping, sense intronic, 670 
snoRNA,  671 
**Redundant G:Profiler results are not shown  672 
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Table 3. dcRT-MLPA Gene signatures Good versus Poor obtained by pooling the study groups and the 673 
cohorts 674 
 675 
Diagnosis Signature 

Gene  Module 

GBP1 IFN signaling genes 

FCGR1A IFN signaling genes 

STAT1 IFN signaling genes 

IFITM3 IFN signaling genes 

BCL2 Apoptosis - Survival 

CCL4 Treg associated genes 

TLR9 Pattern recognition receptors 

CD274 IFN signaling genes 

  
Week two Signature 

Gene  Module 

GBP5 IFN signaling genes 

INDO IFN signaling genes 

GBP1 IFN signaling genes 

BMP6 Cell growth - proliferation 

CXCL9 Chemokines 

GATA3 Th2 associated genes 

FCGR1A IFN signaling genes 

MMP9 Inflammation 

PTPRCv1 T cell subset markers 

SPP1 Inflammation 

CD3E T cell subset markers 

ASAP1 Small GTPases - (Rho) GTPase activating proteins 

IL5 Th2 associated genes 

TNFRSF1B Apoptosis - Survival 

NLRP2 Inflammasome components 

MRC1 Pattern recognition receptors 

NLRP6 Inflammasome components 

IL22RA1 Th17 associated genes 

VEGF Cell growth - proliferation 

KIF1B Intracellular transport 

CCL19 Chemokines 

CD209 Pattern recognition receptors 

  
Month 2 Signature 

Gene  Module 

BLR1 G protein-coupled receptors 

BMP6 Cell growth - proliferation 

CCL13 Chemokines 

GBP1 IFN signaling genes 

GBP2 IFN signaling genes 

GBP5 IFN signaling genes 

IFI16 IFN signaling genes 

IL9 Th9 associated genes 

INDO IFN signaling genes 

MMP9 Inflammation 

NOD2 Pattern recognition receptors 

OAS3 IFN signaling genes 

PTPRCv2 T cell subset markers 

TAP1 IFN signaling genes 

Genes that appeared in more than one gene signature (diagnosis, week two or month two) are 

shown in bold. Gene signatures were obtained by down-sampling the majority class (good 

treatment outcome). 
 
 
 

 676 
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Figure legends 677 

Figure 1. MDP plots  representing the change in gene expression perturbation in TB patients categorized 678 
based on treatment outcome. Full blood transcriptomes from TB patients who had a good or poor treatment 679 
outcome were determined by (A) RNA-Seq and by (B) dcRT-MLPA. The extent of overall difference in gene 680 
expression, relative to the median of expression at diagnosis in those who had a good treatment outcome, was 681 
calculated for individual patients at the timepoints shown. The bars and whiskers show the median and data within 682 
the Q1-1·5 x inter quartile range (IQR) and Q3+1·5 x IQR interval. Differences were significant by Mann-Whitney 683 
U-test with Benjamini-Hochberg correction for multiple testing. * p<0·05, ** p<0·01, *** p<0·001, **** 684 
p<0·0001. 685 
 686 
Figure 2. MaSigPro analysis of TB patients with good or poor treatment outcome, across combined South 687 
African and Indonesian cohorts. Plots show hierarchical clusters of genes in patients with a good (blue) or poor 688 
(red) treatment outcome. Bars show mean ± 1 SEM. Data were filtered to remove lowly abundant transcripts prior 689 
to analysis. 690 
 691 
Figure 3. DEA of all TB patients from the pooled (South African and Indonesian) cohorts categorized based 692 
on treatment outcome compared to their gene expression levels at diagnosis. (A) Volcano plots representing 693 
DEGs regulated during anti-TB treatment of TB patients who had a good treatment outcome (left panel) or a poor 694 
treatment outcome (right panel). The y-axis scales of the plots are harmonized per treatment outcome. -log10-695 
transformed p-values are plotted against log2 FC. Genes with p<0·05 and log2 FC<-0·6 or >0·6 were labelled as 696 
DEGs. (B) Heatmaps displaying log2 FC of the DEGs and corresponding gene modules. The saturation of color 697 
represents the magnitude of differential expression. Differences were significant by means of linear mixed models. 698 
* p<0·05, ** p<0·01, *** p<0·001, **** p<0·0001. 699 
 700 
Figure 4. Prediction of treatment outcome in dcRT-MLPA data from peripheral blood. (A) ROC curves 701 
showing the predictive power of the gene signatures identified in the balanced pooled cohort (South Africa and 702 
Indonesia) to classify TB patients at diagnosis (left panel), two weeks (middle panel) or two months (right panel) 703 
after initiation of anti-TB treatment into patients who had a good treatment outcome and patients who had a poor 704 
treatment outcome, using the RFE-RF model and LOOCV. The dataset was balanced by down-sampling to 705 
encompass the same number of individuals with poor and good treatment outcome (diagnosis, n=34; week two, 706 
n=33; month two, n=34). (B) Gene expression kinetics of the single genes encompassing the diagnosis or week 707 
two gene signatures predicting treatment outcome in the pooled cohort. Box plots depict GAPDH-normalized, 708 
log2-transformed median gene expression values and the IQR, while the whiskers represent the data within the 709 
Q1-1·5xIQR and Q3+1·5xIQR interval. (C). ROC curves showing the predictive power of the gene signatures 710 
identified in the balanced pooled cohort (South Africa and Indonesia) to classify TB patients from an external 711 
validation cohort (India) at diagnosis (left panel) or two months (right panel) after initiation of anti-TB treatment 712 
into patients who had a good treatment outcome and patients who had a poor treatment outcome. The dataset was 713 
balanced by down-sampling to encompass the same number of individuals with poor and good treatment outcome 714 
(diagnosis, n=22; month two, n=22). Abbreviations: AUC, area under the curve; CI, confidence interval.  715 
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Supplementary Information 714 

Reverse-Transcriptase Multiplex Ligation-dependent Probe Amplification (dcRT-MLPA) 715 

For each target‐specific sequence, a specific RT primer was designed located immediately 716 

downstream of the left- and right-hand half‐probe target sequence. 125 ng RNA was reverse 717 

transcribed to cDNA by incubation at 37°C for 15 min, using RT-primer mix and Moloney 718 

Murine Leukemia Virus (M-MLV) reverse transcriptase (Promega, Leiden, The Netherlands). 719 

Reverse transcriptase was inactivated by heating at 98⁰C for two minutes. The left- and right-720 

hand half probes were hybridized to the cDNA at 60⁰C overnight and annealed half-probes 721 

were ligated at 54⁰C for 15 minutes using ligase-65 (MRC-Holland). Ligase-65 was 722 

subsequently inactivated by heating at 98⁰C for five minutes. Ligated probes were amplified 723 

by PCR: 33 cycles at 95⁰C for 30 seconds, 58⁰C for 30 seconds and 72⁰C for 60 seconds, 724 

followed by one cycle at 72⁰C for 20 minutes. PCR products were 1:10 diluted in Highly 725 

deionized (Hi-Di) formamide (ThermoFisher) containing 400HD Rhodamine X (ROX) 726 

fluorophore size standard (ThermoFisher). PCR products were denatured at 95⁰C for five 727 

minutes, stored immediately at 4⁰C and analyzed on an Applied Biosystems 3730 capillary 728 

sequencer in GeneScan mode (BaseClear, Leiden, The Netherlands). Trace data were analyzed 729 

using GeneMapper software 5 (Applied Biosystems, Warrington, UK). The areas of each 730 

assigned peak (arbitrary units) were exported for analysis in R (version 3.6.3). Data were 731 

corrected for batch effect and normalized to housekeeping gene glyceraldehyde 3-phosphate 732 

dehydrogenase (GAPDH). Signals below the threshold value for noise cutoff 733 

in GeneMapper (log2 transformed peak area 7·64) were assigned the threshold value for noise 734 

cutoff.  735 

RT primers and half-probes were designed by Leiden University Medical Centre 736 

(LUMC, Leiden, The Netherlands) and comprised sequences for four housekeeping genes and 737 
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31 
 

144 selected key immune-related genes to profile the following compartments of the human 738 

immune response (Supplementary Table S1): (1) Adaptive immune responses: T-cell 739 

responses; Th1 responses; Th2 responses; Th17/22 responses; Treg responses; T-cell 740 

cytotoxicity; Immune cell subset markers including B-cells and NK-cells. (2) Innate immune 741 

responses: Myeloid-associated markers and scavenger receptors; Pattern recognition receptors; 742 

Inflammasome components. (3) Inflammatory and IFN-signalling genes. (4) Other genes: Anti-743 

microbial activity; Apoptosis/cell survival; E3 ubiquitin protein ligases; Small 744 

GTPases/(Rho)GTPase activating proteins; Additional chemokines; Cell growth/proliferation; 745 

Cell activation; Transcriptional regulators/activators; Intracellular transport; Mitochondrial 746 

Stress/Proteasome; Inflammation. 747 

 748 

Linear Mixed Models for identification of DEGs 749 

Longitudinal DEGs were identified by means of linear mixed models using the lmer function 750 

of the lme4 package in R.47 To increase statistical power, datasets of all TB patients included 751 

in the South African and Indonesian cohorts were pooled independent of diabetes/glycaemia 752 

status and split based on treatment outcome. Models were fitted on GAPDH-normalized log2-753 

transformed targeted gene expression data. Outcome-time interactions were included as fixed 754 

effects and the patients ID-time interactions were included as random effects.  755 

 756 

Identification of gene signatures for treatment outcome 757 

For modelling analyses, RNA-Seq data were randomly split into training and test sets (60/40) 758 

using the R package caret.51 Feature selection was performed for each timepoint using RFE48 759 

with repeated cross validation as the re-sampling method (n=10). A weighted model was fitted 760 

using glmnet method, using weights 1/frequency * 0·5 and repeated cross validation for re-761 

sampling (n=10). Each model was used to make predictions on the corresponding test set. 762 
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32 
 

To identify signatures associated with treatment outcome in dcRT-MLPA data, TB 763 

patients of South Africa and Indonesia were pooled independent of diabetes/glycaemia status. 764 

To balance the dataset, we applied two random sampling approaches using R: (1) a down-765 

sampling approach, reducing the number of patients in the majority class (i.e. good treatment 766 

outcome) and (2) an up-sampling approach by generating synthetic data from existing data 767 

using the SMOTE49 function from the DMwR package in R, resulting in equal numbers of 768 

patients in both classes. Then, RFE48, available in the caret R package51, was applied with K-769 

fold validation (K=10) to the entire data set search for the optimal combination and number of 770 

top-ranking genes able to separate TB patients with a good and poor treatment outcome. RFE 771 

is a powerful approach for variable selection in high-dimensional data by selecting features 772 

that fit a model and removing the weakest feature (or features) until the specified number of 773 

features is reached. Once the best predictors of treatment outcome were identified, the 774 

expression values of these genes were extracted from the dataset. We subsequently applied 775 

RF50 as machine learning algorithm on the dataset and evaluated the performance by LOOCV, 776 

both available on the caret R package.51  777 
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Supplementary Figure S1. MDP plot representing the change in gene expression perturbation in TB patients from 
South Africa categorized based on treatment outcome. Blood transcriptomes from TB patients who had a good or poor 
treatment outcome were determined by dcRT-MLPA. The extent of overall difference in gene expression, relative to the 
median of expression in healthy controls, was calculated for individual patients at the timepoints shown. The bars and whisk-
ers show the median and data within the Q1-1·5 x inter quartile range (IQR) and Q3+1·5 x IQR interval. Differences were 
significant by Mann-Whitney U-test with Benjamini-Hochberg correction for multiple testing. * p<0·05, ** p<0·01, *** 
p<0·001, **** p<0·0001. 
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Supplementary Figure S2. Differential change in gene expression in TB patients through treatment in those who had 
a good or poor treatment outcome. MaSigPro analysis was conducted on the blood RNA-Seq data from TB patients from 
South Africa (a) or Indonesia (b), to identify genes which were significantly differentially expressed between those patients 
with a good or poor outcome. Plots show hierarchical clusters of genes, and bars show mean ± 1 SEM. Data were filtered to 
remove lowly abundant transcripts prior to analysis.   
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Supplementary Figure S3. Cell population estimates in good and poor treatment outcomes in South Africa and Indo-
nesia. Estimates of relative differences in cell proportions were calculated from RNA-seq data using R package CellCODE. 
IRIS and DMAP data sets used as reference. Bars and whiskers show median and 1·5 x IQR. 
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Supplementary Figure S4. Differential expression analysis in patients from South Africa and Indonesia who had a 
poor treatment outcome versus patients who had a good treatment outcome at the indicated timepoints. Non-paramet-
ric Mann-Whitney U-test with Benjamini-Hochberg correction for multiple testing was applied to test for statistical differ-
ences between the groups. 
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Supplementary Figure S5. Scatter plots representing Pearson correlations between the longitudinal DEGs identified 
by dcRT-MLPA versus the same genes identified by RNA-Seq. Values are plotted as log2 FC (month six-diagnosis). Black 
line corresponds to line of best fit and shaded bands indicate confidence intervals. 
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Supplementary Figure S6. Scatter plot representing Pearson correlations between the longitudinal DEGs in TB 
patients who had a poor treatment outcome versus the longitudinal DEGs in TB patients who had a good treatment 
outcome. Values are plotted as log2 FC (month 6-diagnosis). Black line corresponds to line of best fit and shaded bands 
indicate confidence intervals. Red shaded areas indicate genes that were identified as DEGs only in patients who had a good 
treatment outcome and blue shaded areas indicate genes that were identified as DEGs only in patients who had a poor 
treatment outcome.
 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted February 9, 2022. ; https://doi.org/10.1101/2022.02.08.22269796doi: medRxiv preprint 

https://doi.org/10.1101/2022.02.08.22269796
http://creativecommons.org/licenses/by-nd/4.0/


a

b

−l
og

10
 p

−v
al

ue

log2 FC

−l
og

10
 p

−v
al

ue

Good treatment outcome Poor treatment outcome

CCR7

CD3E

GBP1

GBP2

GBP5

IFI44

IFI6
IFIT2

IFIT3

IFIT5IFITM3

IRF7
PRF1

PTPRCv1

STAT2
TAP2

1
<0.050.01
0.001
1e−04
1e−06
1e−08
1e−10
1e−12
1e−14
1e−16
1e−18
1e−20
1e−22
1e−24
1e−26

−2 0 2

CD3E
GBP1

GBP2

GBP5

IFIT5

IFITM3
IL15

NLRP1

OAS2
PRF1

PTPRCv1

TAGAPTNF

1
<0.050.01
0.001
1e−04
1e−06
1e−08
1e−10
1e−12
1e−14
1e−16
1e−18
1e−20
1e−22
1e−24
1e−26

−2 0 2

BCL2

CASP8

CD3E
FCGR1A

GBP1
GBP5

GNLY
GZMAIFITM3

IL5

NLRP1 PRF1

PTPRCv1

TAGAP
1

<0.050.01
0.001
1e−04
1e−06
1e−08
1e−10
1e−12
1e−14
1e−16
1e−18
1e−20
1e−22
1e−24
1e−26

−2 0 2

CD14

CD19

CXCL9

GATA3

GBP1
GBP5

GNLY

IFI44L

IFI6

IFIT5

IFITM3 IL13
IL1B KIF1B

MMP9

NLRP13

RORC

STAT2

TIMP2

ZNF532

1
<0.050.01
0.001
1e−04
1e−06
1e−08
1e−10
1e−12
1e−14
1e−16
1e−18
1e−20
1e−22
1e−24
1e−26

−2 0 2

log2 FC

Good treatment outcome Poor treatment outcome

Supplementary Figure S7. Differential expression analysis of all TB patients from the South African and Indonesian 
cohorts categorized based on treatment outcome compared to their gene expression levels at diagnosis. (a) Volcano 
plots representing DEGs regulated during anti-TB treatment of TB patients from the South African cohort who had a good 
treatment outcome (left panel) or a poor treatment outcome (right panel). (b) Volcano plots representing DEGs regulated 
during anti-TB treatment of TB patients from the Indonesian cohort who had a good treatment outcome (left panel) or a poor 
treatment outcome (right panel). (a,b) The y-axis scales of the plots are harmonized per treatment outcome. -log10-trans-
formed p-values are plotted against log2 FC. Genes with p <0·05 and log2 FC <-0·6 or >0·6 were labelled as DEGs. 
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Supplementary Figure S8. Prediction of treatment outcome in RNA-Seq data from peripheral blood. ROC curves 
showing the predictive power of (a) the gene signatures identified in the pooled cohort (South Africa and Indonesia) or (b) 
the Sweeney gene signature to classify TB patients at the indicated timepoints after initiation of anti-TB treatment into 
patients who had a good treatment outcome and patients who had a poor treatment outcome. Data were split into training and 
test sets (60/40). For each time point a gene signature was generated by RFE and a weighted model fitted using glmnet 
method. Weights of 1/frequency * 0.5 were used. Abbreviations: AUC, area under the curve; CI, confidence interval.
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Supplementary Figure S9. Identification of a delta (week two minus diagnosis) signature predicting the outcome of 
anti-TB treatment. ROC curve showing the predictive power of the gene signature identified in the balanced pooled cohort 
to classify TB patients into patients who had a good treatment outcome and patients who had a poor treatment outcome, using 
the RFE - RF model and LOOCV. The dataset was balanced by down-sampling to encompass the same number of individuals 
with poor and good treatment outcome. Abbreviations: AUC, area under the curve; CI, confidence interval. 
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Supplementary Figure S10. Venn diagrams showing the number of genes encompassing treatment outcome signa-
tures as identified by RFE-RF models. (a) Venn diagram displaying the number of unique and overlapping genes compar-
ing diagnosis (blue), week two (orange) and month two (green) gene signatures obtained by random-downsampling. (b) Venn 
diagram displaying the number of unique and overlapping genes comparing the gene signatures in the current study (diagno-
sis, week two and month two; orange) obtained by random-downsampling with the gene signatures published by Sivakuma-
ran et al. (blue). (c) Venn diagram displaying the number of unique and overlapping genes comparing the diagnosis gene 
signature obtained by random-downsampling (blue) with the diagnosis gene signature obtained by applying SMOTE 
sampling (orange) to balance the classes. Overlapping genes are annotated.
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Supplementary Figure S11. Identification of a SMOTE diagnosis signature predicting the outcome of anti-TB treat-
ment.  ROC curves showing the predictive power of the gene signatures identified in the balanced pooled cohort (South 
Africa and Indonesia) and validated in the South African and Indonesian cohort or in an external Indian cohort. TB patients 
are classified into patients who had a good treatment outcome and patients who had a poor treatment outcome at diagnosis, 
using the RFE - RF model and LOOCV. The dataset was balanced by SMOTE to encompass the same number of individuals 
with poor and good treatment outcome. Abbreviations: AUC, area under the curve; CI, confidence interval. 

AUC = 0·704 (95% CI =  0·576 , 0·833)
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Supplementary Table S1. List of target genes for dcRT-MLPA.

Module Gene

Immune cell subset markers - B cells CD19

                                              NK cells NCAM1

CD3E

CD4

CD8A

CCR7

PTPRCv1

PTPRCv2

AIRE

IL7R

Th1 associated / IFN signaling genes CXCL10

IFNG

IL1B

IL2

IL15

TBX21

TNF

GATA3

IL4

IL4δ2

IL5

IL6

IL10

IL13

Th9 associated genes IL9

IL17A

RORC

IL22RA1

CCL4

CTLA4

FOXP3

IL2RA

LAG3

TGFB1

TNFRSF18

GNLY

GZMA

GZMB

PRF1

CASP8

BCL2

FASLG

FLCN1

TNFRSF1A

TNFRSF1B

CD14

CD163

CCL2

CCL3

T cell subset markers

Th2 associated genes

Th17 associated genes

Treg associated genes

Cytotoxicity markers

Apoptosis / Survival

Myeloid-associated genes

Th1 associated genes
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CCL5

CCL22

CXCL13

IL12A

IL12B

IL23A

FPR1

CCL11

CCL13

CCL19

CXCL9

CX3CL1

CD209

CLEC7A

MRC1

MRC2

NOD1

NOD2

TLR1

TLR2

TLR3

TLR4

TLR5

TLR6

TLR7

TLR8

TLR9

TLR10

NLRC4

NLRP1

NLRP2

NLRP3

NLRP4

NLRP6

NLRP7

NLRP10

NLRP11

NLRP12

NLRP13

CD274

FCGR1A

GBP1

GBP2

GBP5

IFI6

IFI16

IFI35

IFN signaling genes

Inflammasome components

Myeloid-associated genes

Chemokines

Pattern recognition receptors
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IFI44

IFI44L

IFIH1

IFIT2

IFIT3

IFIT5

IFITM1/3

INDO

IRF7

OAS1

OAS2

OAS3

SOCS1

STAT1

STAT2

TAP1

TAP2

DSE

MMP9

SPP1

TIMP2

TNIP1

BMP6

TGFBR2

AREG

EGF

VEGF

HCK

LYN

SLAMF7

ASAP1

RAB13

RAB24

RAB33A

TAGAP

TBC1D7

BPI

LTF

E3 ubiquitin protein ligases NEDD4L

Scavenger receptors MARCO

G protein-coupled receptors BLR1

CAMTA1

TWIST1

ZNF331

ZNF532

SEC14L1

KIF1B

Mitochondrial Stress / Proteasome HPRT

Housekeeping ABR

B2M

GAPDH

GUSB

Transcriptional regulators/activators

Intracellular transport

IFN signaling genes

Inflammation

Cell growth / Proliferation

Cell activation

Small GTPases / (Rho) GTPase activating proteins

Anti-microbial activity
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Supplementary Table S7. Gene signatures for each timepoint - RNA-Seq 

Diagnosis Week 2 Month 2 Month 6

MADCAM1 FGFR3 CD79B DNMT3B

MTFR2    ICAM3 PIK3CB HAUS4

TM4SF1         SLC7A4 MEF2BNB-MEF2B SLC22A18

CLCN1          PACSIN2 TCL1A RTN4

WASF4P         HPN TANGO6 CCRL2

ANKDD1B       ERGIC1 PTGES3 SERPINE2

HIST1H2BO     IL1R2 DOCK7 LYSMD2

TCTEX1D2      SSPN ZNHIT6 WASH2P

RPSAP54        DOK4 KIF14 IL17RC

WASH4P         PRKCG PARD6B ARFIP1

AC026185.1     TCN1 E2F5 CCDC68

RPS2P44    GCM1 AK7 PPP1R14A

RP11-466P24.6 GAS2L3 MPZL2 RIMBP3

RP11-1105G2.4 SYT2 AKR1E2 Y_RNA

RP11-229P13.25 NR1I2 OXSR1 MIR140

MIR3136 TENM4 CNIH2 LEPROT

CTB-50L17.9    SLC45A3 ACBD7 RPL18P10

RP11-272L13.4  WNK2 TNF AC099552.2

RP11-92K15.3   DPCD PTGES3L RP11-544A12.5

RP11-305L7.7 CXCL11 SPIB FLT1P1

B3GALNT1 USP32P1 RP11-295K2.3

SLC22A1 IGHD RP11-56M3.1

HIST1H2AJ GOLGA2P7 AC132186.1

SNRNP35 AC096579.7 C1orf213

CLCN1 RP11-458F8.1 UGDH-AS1

CTD-3088G3.8 AC002543.2 RP11-175P13.3

SULF2 IGKV1D-16 RP11-638I2.10

CLEC4C LINC00617 RP11-705O1.8

RNU6-1079P RP11-407G23.4 SENP3-EIF4A1

AGAP7 RP11-588K22.2 RP11-401F2.3

STARD7-AS1 RP11-325K4.2 RP11-1109F11.3

YBX1P1 AL133153.1 U91328.22

PRRT4 RP11-479F13.1

LINC01001

BCAS2P2

RP11-459O1.2

AL627309.1

IFNG-AS1

CTD-3051D23.4

RP4-647C14.3

CTD-2006K23.1

RP11-457M11.5

BX649553.4

CTB-39G8.3

MUC8

AC092299.8
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Delta (Week two - Diagnosis) Signature

Gene Module

GNLY Cytotoxicity markers

MRC1 Pattern recognition receptors

GBP5 IFN signaling genes

NLRP1 Inflammasome components

FLCN1 Apoptosis - Survival

ZNF532 Transcriptional regulators - activators

IFIT2 IFN signaling genes

Genes that appeared also in the diagnosis or week two gene signatures are 

shown in bold. Gene signatures were obtained by downsampling the majority 

class (Good treatment outcome).

Supplementary Table S8. Delta signature Good vs Poor obtained by 

pooling the study groups and the cohorts. 
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Diagnosis Signature

Gene Module

AREG Cell growth - proliferation

BCL2 Apoptosis - Survival

CASP8 Apoptosis - Survival

CCL13 Chemokines

CD209 Pattern recognition receptors

CLEC7A Pattern recognition receptors

CTLA4 Treg associated genes

CX3CL1 Chemokines

FCGR1A IFN signaling genes

GBP1 IFN signaling genes

IL12B Myeloid associated genes

LTF Anti-microbial activity

NLRP3 Inflammasome components

STAT1 IFN signaling genes

TIMP2 Inflammation

TLR8 Pattern recognition receptors

TLR9 Pattern recognition receptors

TNFRSF1A Apoptosis - Survival

ZNF331 Transcriptional regulators - activators

Gene signature obtained by applying SMOTE sampling technique. Genes that 

are also identified in the Diagnosis signature obtained by downsamling are 

shown in bold.

Supplementary Table S9. SMOTE signature Good vs Poor obtained by 

pooling the study groups and the cohorts. 
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